ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 18, No. 4, 2025
P. 36-45, Bibliography 22 , Engl.
UDC: 616.831-005.1-005.4:591.335:612.08
doi: https://doi.org/10.15407/biotech18.04.036
Full text: (PDF, in English)
TRANSPLANTATION OF MESENCHYMAL STROMAL CELLS IN EXPERIMENTAL ACUTE REVERSIBLE CEREBRAL ISCHEMIA (COMPARATIVE ANALYSIS)
S.V. Konovalov 1, V.M. Moroz 1, M.V. Yoltukhivskyi 1, I.V. Gusakova 1, A.O. Stelmashchuk 1, O.G. Deryabina 2, V.A. Kordium 3
1 National Pirogov Memorial Medical University, Vinnytsia, Ukraine
2 State Institution “National Scientific Centre “Institute of Cardiology, Clinical and Regenerative Medicine after M.D. Strazhesko” of the National Academy of Medical Sciences of Ukraine, Kyiv
3 Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv
The issue of treating cerebrovascular disorders is very important due to their wide occurrence in the human population, especially in the elderly. The resulting ischemia of brain tissues leads to mortality, violent behaviour, biochemical and morphological changes in the brain. Correlation analysis allows evaluating the statistical relationship between two random variables or two-dimensional data. In recent years, the neuroprotective properties of mesenchymal stromal cells (MSCs) have been actively studied. Stem cell transplantation for ischemic stroke is one of the ways of the modern regenerative strategy in the treatment of this pathology.
Aim. Тhe study was to analyse the correlations between biochemical indicators determined in the somatosensory cortex and hippocampus, morphological manifestations of neuroapoptosis, and parameters of CNS functioning in acute cerebral ischemia in rats after MSCs transplantation.
Methods. A 20-minute bilateral cerebral ischemia-reperfusion in rats. Experimental animals were intravenously injected with mesenchymal stromal cells from human umbilical cord Wharton jelly (hWJMSCs) or adult adipose-derived stem cells (hAD-MSCs). Rats were evaluated for mortality dynamics, neurological deficits, and biochemical parameters 7 and 14 days after surgery.
Results. Mortality after transplantation of hWJ-MSCs was 10% versus 65% in the control group and 32% in the group of rats that received hAD-MSCs. On day 7, the mean McGraw scores were 7.1 Ѓ} 0.19/ 8.9 Ѓ} 0.23 /11.8 Ѓ} 0.48 points in rats injected with hWJ-MSCs/ hAD-MSCs/saline; on day 14,
these were 4.9 Ѓ} 0.15/ 5.7 Ѓ} 0.23/ 9.1 Ѓ} 0.30 points, respectively. Transplantation of esenchymal
stromal cells eliminated energy deficiency in ischemic rat brain tissue, reduced metabolic acidosis and
oxidative damage to neurons, and had a positive effect on nitric oxide metabolism, but hAD-MSCs were less effective.
Conclusions. Transplantation of hWJ-MSCs had a better therapeutic effect than transplantation of hAD-MSCs.
Key words: so matosensory cortex, ischemia-reperfusion, mesenchymal stromal cells, Wharton jelly, adipose stem cells, biochemical parameters.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2025
References
- Feske, K. (2021). Ischemic Stroke. The American journal of medicine. 134,(12):1457-1464. https://doi.org/10.1016/j.amjmed.2021.07.027
- Derakhshankhah, H., Sajadimajd, S., Jafari, S., Izadi, Z., Sarvari, S., Sharifi, M., Falahati, M., Moakedi, F., Muganda, W. C. A., Müller, M., Raoufi, M., & Presley, J., F. (2020). Novel therapeutic strategies for Alzheimer's disease: Implications from cell-based therapy and nanotherapy. Nanomedicine : nanotechnology, biology, and medicine. 24,102149. https://doi.org/10.1016/j.nano.2020.102149
- Chung, J. W., Chang, W. H., Bang, O. Y., Moon, G. J., Kim, S. J., Kim, S. K., Lee, J. S., Sohn, S. I., Kim, Y. H., & STARTING-2 Collaborators (2021). Efficacy and Safety of Intravenous Mesenchymal Stem Cells for Ischemic Stroke. Neurology. (7):e1012-e1023. https://doi.org/10.1212/WNL.0000000000011440
- Guo, Y., Peng, Y., Zeng, H., & Chen, G. (2021). Progress in Mesenchymal Stem Cell Therapy for Ischemic Stroke. Stem cells international. 2021, 9923566. https://doi.org/10.1155/2021/9923566
- Brooks, B., Ebedes, D., Usmani, A., Gonzales-Portillo, J. V., Gonzales-Portillo, D., & Borlongan, C. V. (2022). Mesenchymal Stromal Cells in Ischemic Brain Injury. Cells. 11,(6) 1013. https://doi.org/10.3390/cells11061013
- Semenova, E., Grudniak, M. P., Machaj, E. K., Bocian, K., Chroscinska-Krawczyk, M., Trochonowicz, M., Stepaniec, I. M., Murzyn, M., Zagorska, K. E., Boruczkowski, D., Kolanowski, T. J., Oldak, T., & Rozwadowska, N. (2021). Mesenchymal Stromal Cells from Different Parts of Umbilical Cord: Approach to Comparison & Characteristics. Stem cell reviews and reports. 17,(5):1780-1795. https://doi.org/10.1007/s12015-021-10157-3
- Patel, A. A., Mohamed, A. H., Rizaev, J., Mallick, A. K., Qasim, M. T., Abdulmonem, W. A., Jamal, A., Hattiwale, H. M., Kamal, M. A., & Ahmad, F. (2024). Application of mesenchymal stem cells derived from the umbilical cord or Wharton's jelly and their extracellular vesicles in the treatment of various diseases. Tissue & cell. 89, 102415. https://doi.org/10.1016/j.tice.2024.102415
- Konovalov, S., Moroz, V., Konovalova, N., Deryabina, O., Shuvalova, N., Toporova, O., Tochylovsky, A., Kordium, V. (2021). The effect of mesenchymal stromal cells of various origins on mortality and neurologic deficit in acute cerebral ischemia-reperfusion in rats. Cell Organ Transpl. 9,(2):104-108. https://doi.org/10.22494/cot.v9i2.132
- Chekman, I. S., Byelenichev, I. F., Nahorna, O. O., Horchakova, N.O., Luk'yanchuk, V. D., Bukhtiyarova, N. V., Horbachova, S. V., Syrova, H.O. Preclinical study of the specific activity of potential drugs of primary and secondary neuroprotection. Methodological recommendations. Kyiv, 2016:71-72
- Mihara, M., & Uchiyama, M. (1978). Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Analytical biochemistry. 86,(1):271-278. https://doi.org/10.1016/0003-2697(78)90342-1
- Baylyak, M. M., Semchyshyn, H. M., Lushchak, V. I. (2006) The participation of catalase and superoxide dismutase in the response of Saccharomyces cerevisiae to the action of hydrogen peroxide in the exponential growth phase. Ukr. biochem. journal. 78,(2):79-85
- Gula, N. M., Kosyakova, G. V., Berdyshev, A. G.(2007) The effect of N-stearoylethanolamine on the NO-synthase pathway of nitric oxide generation in the aorta and heart of rats with streptozotocin-induced. Ukr. biochem. journal. 79,(5):153-158
- Han, M., Cao, Y., Xue, H., Chu, X., Li, T., Xin, D., Yuan, L., Ke, H., Li, G., & Wang, Z. (2020). Neuroprotective Effect of Mesenchymal Stromal Cell-Derived Extracellular Vesicles Against Cerebral Ischemia-Reperfusion-Induced Neural Functional Injury: A Pivotal Role for AMPK and JAK2/STAT3/NF-κB Signaling Pathway Modulation. Drug design, development and therapy. 14:2865-2876. https://doi.org/10.2147/DDDT.S248892
- Tang, W., Lv, X., Huang, J., Wang, B., Lin, L., Shen, Y., & Yao, Y. (2022). Neuroprotective Effect of Stroke Pretreated Mesenchymal Stem Cells Against Cerebral Ischemia/Reperfusion Injury in Rats. World neurosurgery. 165:e1-e11. https://doi.org/10.1016/j.wneu.2021.04.114
- Pan, K., Peng, Q., Huang, Z., Dong, Z., Lin, W., & Wang, Y. (2023). Temporal patterns and distribution of pyroptosis-related molecules and effects of human mesenchymal stem cells on pyroptosis following cerebral ischemia/reperfusion in rats. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association. 32,(8):107199. https://doi.org/10.1016/j.jstrokecerebrovasdis.2023.107199
- Wu, K. J., Yu, S. J., Chiang, C. W., Lee, Y. W., Yen, B. L., Tseng, P. C., Hsu, C. S., Kuo, L. W., & Wang, Y. (2018). Neuroprotective Action of Human Wharton's Jelly-Derived Mesenchymal Stromal Cell Transplants in a Rodent Model of Stroke. Cell transplantation. 27,(11):1603-1612. https://doi.org/10.1177/0963689718802754
- Cao, H., Cheng, Y., Zhang, J., Xu, M., & Ge, L. (2020). The Effect of Umbilical Cord Mesenchymal Stem Cells Combined with Tetramethylpyrazine Therapy on Ischemic Brain Injury: A Histological Study. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association. 29,(12):105298. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105298
- Ju, F., Ran, Y., Zhu, L., Cheng, X., Gao, H., Xi, X., Yang, Z., & Zhang, S. (2018). Increased BBB Permeability Enhances Activation of Microglia and Exacerbates Loss of Dendritic Spines After Transient Global Cerebral Ischemia. Frontiers in cellular neuroscience. 12, 236. https://doi.org/10.3389/fncel.2018.00236
- Liu, Q., & Sorooshyari, S. K. (2021). Quantitative and Correlational Analysis of Brain and Spleen Immune Cellular Responses Following Cerebral Ischemia. Frontiers in immunology. 12, 617032. https://doi.org/10.3389/fimmu.2021.617032
- Inderhees, J., & Schwaninger, M. (2024). Liver Metabolism in Ischemic Stroke. Neuroscience. 550:62-68. https://doi.org/10.1016/j.neuroscience.2023.12.013
- Song, K., Li, Y., Zhang, H., An, N., Wei, Y., Wang, L., Tian, C., Yuan, M., Sun, Y., Xing, Y., & Gao, Y. (2020). Oxidative stress-mediated blood-brain barrier (BBB) disruption in neurological diseases. Oxidative Medicine and Cellular Longevity. ID 4356386, 1-27. https://doi.org/10.1155/2020/4356386
- Chavda, V., & Lu, B. (2023). Reverse Electron Transport at Mitochondrial Complex I in Ischemic Stroke, Aging, and Age-Related Diseases. Antioxidants (Basel, Switzerland). 12,(4):895. https://doi.org/10.3390/antiox120408