ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 18, No. 4, 2025
P. 28-35, Bibliography 22 , Engl.
UDC: 577.175.8, 577.25, 621.002.3:661.66, 612.8 : 577 : 57.02 : 502/504: 620.3
doi:https://doi.org/10.15407/biotech18.04.028
Full text: (PDF, in English)
SUNFLOWER SEED HUSK BIOCHAR: SYNTHESIS AND TOXICITY RISK ASSESSMENT
A. V. Terebilenko 2, N. V. Krisanova 1, N. G. Pozdnyakova 1, D. O. Mazur 2, M. V. Dudarenko 1,
M. M. Driuk 1, Ya. I. Kurys 2, M. O. Ivanytsya 2, T. A. Borisova 1, S. V. Kolotilov 2
1Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
2 Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Kyiv
Aim. Searching for efficient biocompatible sorbents that possess zero neurotoxicity is an actual task. Biochars are auspicious carbon materials for the adsorption of heavy metals in the environment, wastewater, and also in human organisms.
Methods. Biochar from sunflower seed husk (SB) was synthesized by pyrolysis at 800 OC without special functionalization. Neurotoxicity risk of SB was assessed in an animal model using resynaptic nerve terminals isolated from rat cortex (synaptosomes).
Results. It was shown in radiolabelled experiments that SB did not change the synaptosomal mbient
levels of the excitatory neurotransmitter L-[3H] glutamate and inhibitory neurotransmitter [3H] GABA within the concentration range 0.25–1.0 mg/ml. In the fluorimetric experiments using the dye JC-1, SB at a concentration of 1.0 mg/ml did not change the mitochondrial membrane potential of the nerve terminals.
Conclusions. SB demonstrated the absence of neurotoxicity signs and high biocompatibility, and therefore, SB has the potential to be used as an adsorbent in biotechnology and medicine.
Key words: agricultural waste; sunflower seed husk; biochar; non-functionalized carbon materials; neurotoxicity risk; glutamate; GABA; presynaptic terminals, brain.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2025
References
1. Omar, R. A., Talreja, N., Chuhan, D., & Ashfaq, M. (2024). Waste-derived carbon nanostructures (WD-CNs): An innovative step toward waste to treasury. Environmental Research, 246, 118096. https://doi.org/10.1016/j.envres.2023.118096
2. Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 28, e00570. https://doi.org/10.1016/J.BTRE.2020.E00570
3. Nguyen, T. K. T., Nguyen, T. B., Chen, W. H., Chen, C. W., Kumar Patel, A., Bui, X. T., Chen, L., Singhania, R. R., & Dong, C. Di. (2023). Phosphoric acid-activated biochar derived from sunflower seed husk: Selective antibiotic adsorption behavior and mechanism. Bioresource Technology, 371, 128593. https://doi.org/10.1016/J.BIORTECH.2023.128593
4. El-Gamal, E. H., Rashad, M., Saleh, M. E., Zaki, S., & Eltarahony, M. (2023). Potential bioremediation of lead and phenol by sunflower seed husk and rice straw-based biochar hybridized with bacterial consortium: a kinetic study. Scientific Reports, 13(1), 21901. https://doi.org/10.1038/s41598-023-49036-x
5. Zhao, M., Dai, Y., Zhang, M., Feng, C., Qin, B., Zhang, W., Zhao, N., Li, Y., Ni, Z., Xu, Z., Tsang, D. C. W., & Qiu, R. (2020). Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies. Science of The Total Environment, 717, 136894. https://doi.org/10.1016/J.SCITOTENV.2020.136894
6. Qasem, N. A. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. Npj Clean Water, 4(1), 36. https://doi.org/10.1038/s41545-021-00127-0
7. Ambaye, T. G., Vaccari, M., van Hullebusch, E. D., Amrane, A., & Rtimi, S. (2020). Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. International Journal of Environmental Science and Technology, 18(10), 3273–3294. https://doi.org/10.1007/S13762-020-03060-W
8. Godlewska, P., Ok, Y. S., & Oleszczuk, P. (2021). THE DARK SIDE OF BLACK GOLD: Ecotoxicological aspects of biochar and biochar-amended soils. Journal of Hazardous Materials, 403, 123833. https://doi.org/10.1016/j.jhazmat.2020.123833
9. Sunflower Seed Husk Biochar: A Sustainable Solution for Reducing Nitric Oxide Pollution – Biochar Today. (n.d.). Retrieved August 11, 2025, from https://biochartoday.com/news/science/sunflower-seed-husk-biochar-a-sustainable-solution-for-reducing-nitric-oxide-pollution/
10. Kubaczyński, A., Walkiewicz, A., Pytlak, A., Grządziel, J., Gałązka, A., & Brzezińska, M. (2023). Application of nitrogen-rich sunflower husks biochar promotes methane oxidation and increases abundance of Methylobacter in nitrogen-poor soil. Journal of Environmental Management, 348, 119324. https://doi.org/10.1016/J.JENVMAN.2023.119324
11. Klimek-Kopyra, A., Sadowska, U., Kubó, M., Gliniak, M., Sikora, J., Di Bene, C., Francaviglia, R., Farina, R., Álvaro-Fuentes, J., Zornoza, R., & Przemysl, I. (2021). Sunflower Husk Biochar as a Key Agrotechnical Factor Enhancing Sustainable Soybean Production. Agriculture, 11(4), 305. https://doi.org/10.3390/AGRICULTURE11040305
12. Zgureva-Filipova, D., Gosheva, L., Petrova, R., & Filipov, K. (2023). Utilizing of sunflower seed husk through production of biochar and its application in systems for purification of water contaminated with cadmium. IOP Conference Series: Earth and Environmental Science, 1128(1), 012025. https://doi.org/10.1088/1755-1315/1128/1/012025
13. Kilkenny, C., Browne, W., Cuthill, I. C., Emerson, M., Altman, D. G., & NC3Rs Reporting Guidelines Working Group. (2010). Animal research: reporting in vivo experiments: the ARRIVE guidelines. British Journal of Pharmacology, 160(7), 1577–1579. https://doi.org/10.1111/j.1476-5381.2010.00872.x
14. McGrath, J. C., Drummond, G. B., McLachlan, E. M., Kilkenny, C., & Wainwright, C. L. (2010). Guidelines for reporting experiments involving animals: the ARRIVE guidelines. British Journal of Pharmacology, 160(7), 1573–1576. https://doi.org/10.1111/j.1476-5381.2010.00873.x
15. Cotman, C. W. (1974). Isolation of synaptosomal and synaptic plasma membrane fractions. Methods in Enzymology, 31, 445–452. http://www.ncbi.nlm.nih.gov/pubmed/4278474 https://doi.org/10.1016/0076-6879(74)31050-6
16. Pozdnyakova, N., Krisanova, N., Pastukhov, A., Dudarenko, M., Tarasenko, A., Borysov, A., Kalynovska, L., Paliienko, K., & Borisova, T. (2024). Multipollutant reciprocal neurological hazard from smoke particulate matter and heavy metals cadmium and lead in brain nerve terminals. Food and Chemical Toxicology, 185, 114449. https://doi.org/10.1016/j.fct.2024.114449
17. Borisova, T., Kucherenko, D., Soldatkin, O., Kucherenko, I., Pastukhov, A., Nazarova, A., Galkin, M., Borysov, A., Krisanova, N., Soldatkin, A., & El’skaya, A. (2018). An amperometric glutamate biosensor for monitoring glutamate release from brain nerve terminals and in blood plasma. Analytica Chimica Acta, 1022, 113–123. https://doi.org/10.1016/j.aca.2018.03.015
18. Krisanova, N., Pastukhov, A., Dekaliuk, M., Dudarenko, M., Pozdnyakova, N., Driuk, M., & Borisova, T. (2024). Mercury-induced excitotoxicity in presynaptic brain nerve terminals: modulatory effects of carbonaceous airborne particulate simulants. Environmental Science and Pollution Research International, 31(3), 3512–3525. https://doi.org/10.1007/S11356-023-31359-X/METRICS
19. Larson, E., Howlett, B., & Jagendorf, A. (1986). Artificial reductant enhancement of the Lowry method for protein determination. Analytical Biochemistry, 155(2), 243–248. https://doi.org/10.1016/0003-2697(86)90432-X
20. Krisanova, N., Pozdnyakova, N., Pastukhov, A., Dudarenko, M., Maksymchuk, O., Parkhomets, P., Sivko, R., & Borisova, T. (2019). Vitamin D3 deficiency in puberty rats causes presynaptic malfunctioning through alterations in exocytotic release and uptake of glutamate/GABA and expression of EAAC-1/GAT-3 transporters. Food and Chemical Toxicology, 123, 142–150. https://doi.org/10.1016/j.fct.2018.10.054
21. Borisova, T., & Borysov, A. (2016). Putative duality of presynaptic events. Reviews in the Neurosciences, 27, 377–383. https://doi.org/10.1515/revneuro-2015-0044
22. Borisova, T. (2016). Permanent dynamic transporter-mediated turnover of glutamate across the plasma membrane of presynaptic nerve terminals: arguments in favor and against. Reviews in the Neurosciences, 27(1), 71–81. https://doi.org/10.1515/revneuro-2015-0023