ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 16, No. 4 , 2023
P. 49-58, Bibliography 26, Engl.
UDC: 582.28:577.181
DOI: https://doi.org/10.15407/biotech16.04.050
Full text: (PDF, in English)
MOLECULAR IDENTIFICATION AND ANTIBACTERIAL ACTIVITY OF MACROFUNGUS Trametes sanguineus (L.)
Sukumar Dandapat1, Manoj Kumar2, Rohit Srivastava1, Manoranjan Prasad Sinha1
1 Department of Zoology, Ranchi University, Jharkhand, India
2 Department of Zoology, St. Xavier’s College, Ranchi, Jharkhand, India
Aim. The molecular identification of Pycnoporus sanguineus, a previously morphologically mushroom, was done to see the antibacterial activity against pathogenic bacteria Staphylococcus aureus and Salmonella typhi.
Methods. A fragment of the D2 region of 28S rDNA was amplified by PCR, sequenced, and BLAST was performed using the consensus sequence. The maximum identity score was used to build a phylogenetic tree. Agar well diffusion was used to study the antibacterial activity.
Results. Sequencing of a 700 base pair PCR amplicon was carried and a 616 base pair of D2 region of large subunit gene was generated. The 100 blast hits on the D2 region of LSU gene showed similarity to Trametes sanguineus voucher PRSC95 (GenBank Accession Number: JN164795.1) based on nucleotide homology and phylogenetic analysis. Antibacterial screening revealed that the crude extract had higher activity on Staphylococcus aureus, with a 3mm to 13mm zone of inhibition and a 100µg minimum inhibitory concentration, compared to Salmonella typhi. Salmonella typhi had a 5 mm to 15 mm zone of inhibition and a 200 µg minimum inhibitory concentration.
Conclusion. According to the obtained result, the morphologically identified mushroom Pycnoporus sanguies can be referred to as Trametes sanguine, and it can be used for producinig antibacterial agents.
Key words: macrofungi. Tramates, PCR, phylogenetic analysis, antimicrobial activity
References
- Hawksworth D. L., Lucking R. Fungal Diversity Revisited: 2.2 To 3.8 Million Species. Spectrum. 2017, 5(4), FUNK-0052-2016. https://doi.org/10.1128/microbiolspec.FUNK-0052-2016
- Kirk P. M., Cannon P. F., Minter D. W., Stalpers J. A. Dictionary of the fungi. 10th ed. 2008, Wallingford, UK, CAB International.
- Yu-Cheng D., Bao-Kai C. Fomitiporia ellipsoidea has the largest fruiting body among the fungi. Fungal Biol. 2011, 115(9), 813‒814. https://doi.org/10.1016/j.funbio.2011.06.008.
- Tellez-Tellez M., Villegas E., Rodríguez A., Acosta-Urdapilleta M. L., O’Donovan A., Díaz-Godínez G. Mycosphere essay 11: fungi of Pycnoporus: morphological and molecular identification, worldwide distribution and biotechnological potential. 2016, 7(10), 1500‒1525. https://doi.org/10.5943/mycosphere/si/3b/3.
- Mariselvi M., Earanna N. Molecular identification and screening of mushrooms for antibacterial property against Pseudomonas aeruginosa and Staphylococcus aureus. Applied Natural Sci. 2018, 10(2), 791–796. https://doi.org/10.31018/jans.v10i2.1682
- Devi S. R., Thomas A., Rebijhit K. B., Ramamurthy V. V. Biology, morphology and molecular characterization of Sitophilus oryzae and zeamais (Coleoptera: Curculionidae). J. Stored Product Res. 2017, 73, 135-141. https://doi.org/10.1016/j.jspr.2017.08.004
- Handbook NucleoporeTM. 2020. Nucleo-pore gDNA Fungal Bacterial Mini kit. Genetix Biotech Asia Pvt. Ltd., p. 5‒ http://genetixbiotech.com/product/nucleopore-fungus-bacteria-kit/
- Kwiatkowski N. P., Babiker W. M., Merz W. G., Carroll K. C., Zhang S. X. Evaluation of nucleic acid sequencing of the D1/D2 region of the large subunit of the 28S rDNA and the internal transcribed spacer region using SmartGene IDNS software for identification of filamentous fungi in a clinical laboratory. The J. Mol. Diagnos. 2012, 14(4), 393‒ https://doi.org/10.1016/j.jmoldx.2012.02.004
- Guerra A. L., Alevi K. C. C., Banho C. A., Oliveira J., Rosa J. A., Azerdo-Olivera M. T. V. D2 region of the 28s RNA gene: a too-conserved fragment for inferences on phylogeny of South American Triatomines. J. Tropical Med. Hygiene. 2016, 95(3), 610–613. https://doi.org/10.4269/ajtmh.15-0747
- Saitou N., Nei M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Biol. Evol. 1987, 4, 406‒425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
- Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985. 39,783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
- Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Molecular Evol. 1980, 16, 111‒120. https://doi.org/10.1007/BF01731581
- Tamura K., Peterson D., Peterson N., Stecher G., Nei M. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biol. Evol. 2011, 28, 2731‒27. https://org/10.1093/molbev/msr121
- Dandapat S., Kumar M., Kumar A., Sinha M. P. (2013) Antipathogenic efficacy of methanolic leaf extract of Cinnamomum tamala (Buch.-Ham.) and Aegle marmelos (L.) with their nutritional potentiality. The Bioscan. 2013, 8(2Suppl.), 635‒641.
- Dandapat S., Kumar M., Ranjan R., Sinha M. P. Toxicity of silver nanoparticles loaded with Pleurotus tuber-regium extract on rats. Biotechnologia acta. 2019, 12(3), 24‒40. https://doi.org/10.15407/biotech12.03.024
- Valgas C., De Souza S. M., Smania E. F. A. Screening methods to determine antibacterial activity of natural products. J. Microbiol. 2007, 38(2), 369–380. https://doi.org/10.1590/S1517-83822007000200034
- Arora D. (1986) Mushroom Demystified: A comprehensive guide to the fleshy fungi, 2nd ed., New York, USA: Ten Speed Press, Crown Publishing Group.
- Hillis D. M., Dixon M. T. Ribosomal DNA: molecular evolution and phylogenetic inference. The Quertly Revi. Biol. 1991, 66, 411– https://doi.org/10.1086/417338
- Schoch L. C., Seifert K. A., Huhndorf , Robert V., Spouge J. L., Relevesque C., Chen W., Bol-Chacova E., Voigt K., Crous P. W., Miller A. N. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proceed. The Nat. Acad. Sci. 2012, 109(16), 6241‒6246. https://doi.org/10.1073/pnas.1117018109
- Savolainen V., Cowan R. S., Vogler A. P., Roderick G. K., Lane V. Towards writing the encyclopedia of life: an introduction to DNA barcoding. Trans. The Royal Soci B: Biol. Sci.2005, 360, 1805–1811. https://doi.org/10.1098/rstb.2005.1730
- Olusegun O. V. Molecular identification of Trametes species collected from Ondo and Oyo states, Nigeria. Jordan J. Biol. Sci. 2014, 7(3), 165 https://doi.org/10.12816/0008234
- Bal C. 2019. Biological potentials of Trametes Paper presented at: 3rd International zeugma conference on scientific researches. Gaziantep, Turkey, 616‒621 P..
- Adongbede E. M., Jaiswal Y. S., Davis S. S., Randolph P. D., Huo L. N., Williams, L. L. Antioxidant and antibacterial activity of Trametes polyzona(Pers.) Justo. Food Sci.Biotechnol. 2019, 29(1), 27‒ https://doi.org/10.1007/s10068-019-00642-4.
- Alves M. J., Ferreira I. C., Dias J., Teixeira V., Martins A., Pintado M. A review on antimicrobial activity of mushroom (Basidiomycetes) extracts and isolated compounds. Planta Medica. 2012, 78(16), 1707‒ . htps://doi.org/10.1055/s-0032-1315370.
- Landingin H. R. R., Francisco B. E., Dulay R. M. R., Kalaw S. P., Reyes R. G. Mycochemical screening, proximate nutritive composition and radical scavenging activity of Cyclocybe cylindracea and Pleurotus cornucopiae. Current Res. Environ. Applied Mycol. 2021, 11(1), 37–50. https://doi.org/10.1093/ecam/neh107
- Lindequist U., Niedermeyer T. H., Jülich W. D. The Pharmacological potential of mushrooms. Evid-Based Complement. Alternative Med. 2005, 2(3), 285‒299. https://doi.org/10.1093/ecam/neh107
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2023