ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 16, No. 1 , 2023
P. 21-39, Bibliography, 49 Engl.
UDC: 579/2
DOI: https://doi.org/10.15407/biotech16.01.021
Full text: (PDF, in English)
MICROBIAL CO-CULTIVATION: DISCOVERY OF NOVEL SECONDARY METABOLITES WITH DIFFERENT BIOLOGICAL ACTIVITIES
T.P. Pirog 1, 2, M.S. Ivanov 1
1 National University of Food Technologies, Kyiv, Ukraine
2 Institute of Microbiology and Virology of NASU, Kyiv, Ukraine
In recent decades, overuse and misuse of antibiotics as well as social and economic factors have accelerated the spread of antibiotic-resistant bacteria, making them a major problem for humanity. One of the most effective approaches to the discovery of new secondary antimicrobial metabolites is co-cultivation of microorganisms, in which the producer of the target products is grown together with competitive microorganisms (inductors), in response to the presence of which silent biosynthetic genes of the producer strain are activated and an increase in the biological activity of the synthesized secondary metabolites and/or even the synthesis of new metabolites is observed. The review summarizes the current literature data on the co-cultivation of antimicrobial substances producers with competitive microorganisms, which results in the synthesis of new metabolites with antimicrobial and cytotoxic activity, not typical for monocultures. During the co-cultivation of fungi, bacteria, and fungi with bacteria, the synthesis of new antimicrobial and anticancer metabolites, which are classified as alkaloids, phenylpropanoids, macrolides, polyketides, cyclopeptides, terpenoids, anthraquinones, and steroids, is observed. These data indicate that the mixed fermentation of microorganisms is a simple, cheap, and quite effective way to obtain new metabolites that are promising for use in medicine.
Key words: co-cultivation, antimicrobial products, anticancer agents.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2023
References
1. Nathan C. Resisting antimicrobial resistance. Nat. Rev. Microbiol. 2020, 18(5), 259-260. https://doi.org/10.1038/s41579-020-0348-5
2. Wakefield J., Hassan H.M., Jaspars M., Ebel R., Rateb M.E. Dual Induction of New Microbial Secondary Metabolites by Fungal Bacterial Co-cultivation. Front. Microbiol. 2017, 8, 1284. https://doi.org/10.3389/fmicb.2017.01284
3. Hoshino S., Onaka H., Abe I. Activation of silent biosynthetic pathways and discovery of novel secondary metabolites in actinomycetes by co-culture with mycolic acid-containing bacteria. J. Ind. Microbiol. Biotechnol. 2019, 46(3-4), 363-374. https://doi.org/10.1007/s10295-018-2100-y
4. Gomez-Escribano J.P., Bibb M.J. Heterologous expression of natural product biosynthetic gene clusters in Streptomyces coelicolor: from genome mining to manipulation of biosynthetic pathways. J. Ind. Microbiol. Biotechnol. 2014, 41(2), 425-431. https://doi.org/10.1007/s10295-013-1348-5
5. Zhang B., Tian W., Wang S. Activation of Natural Products Biosynthetic Pathways via a Protein Modification Level Regulation. ACS. Chem. Biol. 2017, 12(7), 1732-1736. https://doi.org/10.1021/acschembio.7b00225
6. Li C.-W., Xia M.-W., Cui C.-B., Peng J., Li D. A Novel Oxaphenalenone, Penicimutalidine: Activated Production of Oxaphenalenones by the Diethyl Sulphate Mutagenesis of Marine-derived Fungus Penicillium purpurogenum G59. RSC. Adv. 2016, 6(85), 82277-82281. https://doi.org/10.1039/C6RA17087K
7. Yu M., Li Y., Banakar S.P. New Metabolites from the Co-culture of Marine-Derived Actinomycete Streptomyces rochei MB037 and Fungus Rhinocladiella similis 35. Front. Microbiol. 2019, 10, 915. https://doi.org/10.3389/fmicb.2019.00915
8. Abdel-Wahab N.M., Scharf S., Оzkaya F.C., Kurtаn T., Mаndi A., Fouad M.A., Kamel M.S. Induction of secondary metabolites from the marine-derived fungus Aspergillus versicolor through co-cultivation with Bacillus subtilis. Planta. Med. 2019, 85 (6), 503-512. https://doi.org/10.1055/a-0835-2332
9. Pishchany G., Mevers E., Ndousse-Fetter S. Amycomicin is a potent and specific antibiotic discovered with a targeted interaction screen. Proc. Natl. Acad. Sci. USA. 2018, 5 (1), 1-6. https://doi.org/10.1073/pnas.1807613115
10. Wu Q., Ni M., Dou K. Co-culture of Bacillus amyloliquefaciens ACCC11060 and Trichoderma asperellum GDFS1009 enhanced pathogen-inhibition and amino acid yield. Microb. Cell. Fact. 2018, 17(1), 155. https://doi.org/10.1186/s12934-018-1004-x
11. Stierle A.A., Stierle D.B., Decato D. The Berkeleylactones, Antibiotic Macrolides from Fungal Coculture. J. Nat. Prod. 2017, 80(4), 1150-1160. https://doi.org/10.1021/acs.jnatprod.7b00133
12. Zhu F., Chen G., Chen X., Huang M., Wan X. Aspergicin, a new antibacterial alkaloid produced by mixed fermentation of two marine-derived mangrove epiphytic fungi. Chem. Nat. Compd. 2011, 47 (4), 767–769. https://doi.org/10.1007/s10600-011-0053-8
13. Ding W., Lu Y., Feng Z., Luo S., Li C. A New Nonadride Derivative from the Co-Culture Broth of Two Mangrove Fungi. Chem. Nat. Compd. 2017, 53, 691–693. https://doi.org/10.1007/s10600-017-2092-2.
14. Yang S.-Q., Li X.-M., Li X., Li H.-L., Meng L.-H., Wang B.-G. New citrinin analogues produced by coculture of the marine algal-derived endophytic fungal strains Aspergillus sydowii EN-534 and Penicillium citrinum EN-535. Phytochemistry Letters. 2018, 25, 191–195. https://doi.org/10.1016/j.phytol.2018.04.023
15. Yu G., Sun Z., Peng J. Secondary Metabolites Produced by Combined Culture of Penicillium crustosum and a Xylaria sp. J. Nat. Prod. 2019, 82(7), 2013-2017. https://doi.org/10.1021/acs.jnatprod.9b00345
16. Nonaka K., Abe T., Iwatsuki M. Enhancement of metabolites productivity of Penicillium pinophilum FKI-5653, by co-culture with Trichoderma harzianum FKI-5655. J. Antibiot. 2011, 64(12), 769-774. https://doi.org/10.1038/ja.2011.91
17. Li H.L., Li X.M., Yang S.Q. Induced terreins production from marine red algal-derived endophytic fungus Aspergillus terreus EN-539 co-cultured with symbiotic fungus Paecilomyces lilacinus EN-531. J. Antibiot. 2020, 73, 108–111. https://doi.org/10.1038/s41429-019-0242-4
18. Meng L.H., Li X.M., Li H.L., Wang B.G. Chermebilaenes A and B, New Bioactive Meroterpenoids from Co-Cultures of Marine-Derived Isolates of Penicillium bilaiae MA-267 and Penicillium chermesinum EN-480. Mar. Drugs. 2020, 18(7), 339. https://doi.org/10.3390/md18070339
19. Thissera B., Alhadrami H.A., Hassan M.H.A. Induction of Cryptic Antifungal Pulicatin Derivatives from Pantoea agglomerans by Microbial Co-Culture. Biomolecules. 2020, 10(2), 268. https://doi.org/10.3390/biom10020268
20. Moussa M., Ebrahim W., Bonus M., Gohlke H. Co-culture of the fungus Fusarium tricinctum with Streptomyces lividans induces production of cryptic naphthoquinone dimers. RSC Advances. 2019, 9(3), 1491–1500. https://doi.org/10.1039/c8ra09067j
21. Wang Z.-R., Li G., Ji L.-X., Wang H.-H., Gao H., Peng P. Induced production of steroids by co-cultivation of two endophytes from Mahonia fortunei. Steroids. 2019, 145 (1), 1-4. https://doi.org/10.1016/j.steroids.2019.02.005.
22. Stroe M.C., Netzker T., Scherlach K. Targeted induction of a silent fungal gene cluster encoding the bacteria-specific germination inhibitor fumigermin. Elife. 2020, 9. https://doi.org/10.7554/eLife.52541
23. Ola A.R., Thomy D., Lai D., Brötz-Oesterhelt H., Proksch P. Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. J. Nat. Prod. 2013, 76(11), 2094-2099. https://doi.org/10.1021/np400589h
24. Shi Y., Pan C., Wang K. Synthetic multispecies microbial communities reveals shifts in secondary metabolism and facilitates cryptic natural product discovery. Environ. Microbiol. 2017, 19(9), 3606-3618. https://doi.org/10.1111/1462-2920.13858
25. Romano S., Jackson S.A., Patry S., Dobson A.D.W. Extending the "One Strain Many Compounds" (OSMAC) Principle to Marine Microorganisms. Mar. Drugs. 2018, 16(7), 244. https://doi.org/10.3390/md16070244
26. Anjum K., Sadiq I., Chen L., Kaleem S., Li X.-C., Zhang Z., Lian X.-Y. Novel Antifungal Janthinopolyenemycins A and B from a Co-Culture of Marine-Associated Janthinobacterium Spp. ZZ145 and ZZ148. Tetrahedron Lett. 2018, 59, 3490–3494. https://doi.org/10.1016/j.tetlet.2018.08.022.
27. Hoshino S., Wong C. P., Ozeki M., Zhang H. Umezawamides, new bioactive polycyclic tetramate macrolactams isolated from a combined-culture of Umezawaea sp. and mycolic acid-containing bacterium. The Journal of Antibiotics. 2018, 71(7), 653–657. https://doi.org/10.1038/s41429-018-0040-4
28. Hoshino S., Ozeki M., Wong C. P., Zhang H., Hayashi, F., Awakawa T. Mirilactams C–E, novel polycyclic macrolactams isolated from combined-culture of Actinosynnema mirum NBRC 14064 and mycolic acid-containing bacterium. Chemical and Pharmaceutical Bulletin. 2018, 66(6), 660–667. https://doi.org/10.1248/cpb.c18-00143
29. Adnani N., Chevrette M.G., Adibhatla S.N., Zhang F., Yu Q. Coculture of marine invertebrate-associated bacteria and interdisciplinary technologies enable biosynthesis and discovery of a new antibiotic, keyicin. ACS Chemical Biology. 2017, 12(12), 3093–3102. https://doi.org/10.1021/acschembio.7b00688
30. Sugiyama R., Nishimura S., Ozaki T., Asamizu S., Onaka H. Discovery and тotal synthesis of streptoaminals: antimicrobial [5,5]-spirohemiaminals from the combined-culture of Streptomyces nigrescens and Tsukamurella pulmonis. Angew. Chem. Int. Ed. Engl. 2016, 55(35), 10278-10282. https://doi.org/10.1002/anie.201604126
31. Onaka H., Mori Y., Igarashi Y., Furumai T. Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl. Environ. Microbiol. 2011, 77(2), 400-406. https://doi.org/10.1128/AEM.01337-10
32. Afiyatullov S.S., Zhuravleva O.I., Antonov A.S. Prenylated indole alkaloids from co-culture of marine-derived fungi Aspergillus sulphureus and Isaria felina. J. Antibiot. 2018, 71(10), 846-853. https://doi.org/10.1038/s41429-018-0072-9
33. Bao J., Wang J., Zhang X.Y., Nong X.H., Qi S.H. New Furanone Derivatives and Alkaloids from the Co-Culture of Marine-Derived Fungi Aspergillus sclerotiorum and Penicillium citrinum. Chem. Biodivers. 2017, 14(30). https://doi.org/10.1002/cbdv.201600327.
34. Li H.T., Tang L.H., Liu T. Protoilludane-type sesquiterpenoids from Armillaria sp. by co-culture with the endophytic fungus Epicoccum sp. associated with Gastrodia elata. Bioorg. Chem. 2020, 95. https://doi.org/10.1016/j.bioorg.2019.103503
35. Zhang Z., He X., Zhang G. Inducing Secondary Metabolite Production by Combined Culture of Talaromyces aculeatus and Penicillium variabile. J. Nat. Prod. 2017, 80(12), 3167-3171. https://doi.org/10.1021/acs.jnatprod.7b00417
36. Pettit R.K., Pettit G.R., Xu J.P., Weber C.A., Richert L.A. Isolation of human cancer cell growth inhibitory, antimicrobial lateritin from a mixed fungal culture. Planta Med. 2010, 76(2), 500–501. https://doi.org/10.1055/s-0029-1240617
37. Zhuravleva O.I., Kirichuk N.N., Denisenko V.A., Dmitrenok P.S., Yurchenko E.A., Min′ko E.M., Ivanets E.V., Afyatullov S.S. New diorcinol J produced by co-cultivation of marine fungi Aspergillus sulphureus and Isaria felina. Chem. Nat. Compd. 2016, 52, 227–230. https://doi.org/10.1007/s10600-016-1601-z
38. Knowles S.L., Raja H.A., Isawi I.H. Wheldone: Characterization of a Unique Scaffold from the Coculture of Aspergillus fischeri and Xylaria flabelliformis. Org. Lett. 2020, 22(5), 1878-1882. https://doi.org/10.1021/acs.orglett.0c00219
39. El-Hawary S.S., Sayed A.M., Mohammed R., Khanfar M.A., Rateb M.E. New Pim-1 kinase inhibitor from the co-culture of two sponge-associated actinomycetes. Front. Chem. 2018, 6(1), 538-549. https://doi.org/10.3389/fchem.2018.00538
40. Zhang L., Niaz S.I., Wang Z. α-Glucosidase inhibitory and cytotoxic botryorhodines from mangrove endophytic fungus Trichoderma sp. 307. Nat. Prod. Res. 2018, 32(24), 2887-2892. https://doi.org/10.1080/14786419.2017.1385023
41. Abdel-Wahab N.M., Scharf S., Özkaya F.C. Induction of Secondary Metabolites from the Marine-Derived Fungus Aspergillus versicolor through Co-cultivation with Bacillus subtilis. Planta Med. 2019, 85(6), 503-512. https://doi.org/10.1055/a-0835-2332
42. Frank M., Özkaya F.C., Müller W.E.G. Cryptic Secondary Metabolites from the Sponge-Associated Fungus Aspergillus ochraceus. Mar. Drugs. 2019, 17(2), 99. https://doi.org/10.3390/md17020099
43. Kamdem R.S.T., Wang H., Wafo P. Induction of new metabolites from the endophytic fungus Bionectria sp. through bacterial co-culture. Fitoterapia. 2018, 124, 132-136. https://doi.org/10.1016/j.fitote.2017.10.021
44. Maglangit F., Fang Q., Kyeremeh K., Sternberg J.M., Ebel R., Deng H. A Co-Culturing Approach Enables Discovery and Biosynthesis of a Bioactive Indole Alkaloid Metabolite. Molecules (Basel, Switzerland). 2020, 25(2), 256. https://doi.org/10.3390/molecules25020256
45. Dashti Y., Grkovic T., Abdelmohsen U.R., Hentschel U., Quinn R.J. Production of induced secondary metabolites by a co-culture of sponge-associated actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163. Mar. Drugs. 2014, 12(5), 3046-3059. https://doi.org/10.3390/md12053046
46. Shin D., Byun W.S., Moon K. Coculture of Marine Streptomyces sp. With Bacillus sp. Produces a New Piperazic Acid-Bearing Cyclic Peptide. Front. Chem. 2018, 6, 498. https://doi.org/10.3389/fchem.2018.00498
47. Hoshino S., Ozeki M., Awakawa T., Morita H., Onaka H., Abe I. Catenulobactins A and B, Heterocyclic Peptides from Culturing Catenuloplanes sp. with a Mycolic Acid-Containing Bacterium. J. Nat. Prod. 2018, 81(9), 2106-2110. https://doi.org/10.1021/acs.jnatprod.8b00261
48. Hoshino S., Wakimoto T., Onaka H., Abe I. Chojalactones A-C, cytotoxic butanolides isolated from Streptomyces sp. cultivated with mycolic acid containing bacterium. Org. Lett. 2015, 17(6), 1501-1504. https://doi.org/10.1021/acs.orglett.5b00385
49. Park H.B., Park J.S., Lee S.I., Shin B., Oh D.C., Kwon H.C. Gordonic Acid, a Polyketide Glycoside Derived from Bacterial Coculture of Streptomyces and Gordonia Species. J. Nat. Prod. 2017, 80(9), 2542-2546. https://doi.org/10.1021/acs.jnatprod.7b00293