- Details
- Hits: 119
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 10, No 6, 2017
https://doi.org/10.15407/biotech10.06.061
Р. 61-68, Bibliography 26 , English
Universal Decimal Classification: 604.2:661.722:63.002.8-035.4:582.28:577.152.3
OPTIMIZATION OF HYDROLYSIS CONDITIONS OF WHEAT STRAW BY ENZYME PREPARATION FROM Fennellia sp. 2806
S. O. Syrchin, А. K. Pavlychenko, L. Т. Nakonechna, O. M. Yurieva, M. Kurchenko
Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv
The aim of the work was to optimize the hydrolysis conditions of wheat straw by complex enzyme preparation from Fennellia sp. 2806 with endo-, exoglucanase, xylanase and ?-glucosidase activities. Bioconversion of wheat straw was carried out by an enzyme preparation obtained from the culture filtrate of Fennellia sp. 2806. The two methods of statistical optimization of the experiment — the Plackett-Burman (determination of significant factors) and Box-Behnken (determination of optimal values of defined significant factors) methods were used consequentially to optimize the hydrolysis conditions. Endo-, exoglucanase, xylanase and ?-glucosidase activities were assayed in enzyme preparation. Reducing sugars were determined by the modified Bertrand method. As a result of two-stage optimization of the bioconversion process of wheat straw by enzyme preparation from Fennellia sp. 2806, it was found that the highest reducing sugars values were formed at temperature 50 ºC, pH 5.0, substrate concentration 100 mg/ml, endoglucanase activity — 0.012 u/mg substrate, process duration — 18 h and pre-treatment by 4.5% alkali solution with further exposure to a microwave irradiation 6 W/g WS for 10 min. So it was established that temperature, pH, substrate concentration, pre-treatment of wheat straw by alkali solution and microwave irradiation were the significant factors for the hydrolysis process of substrate by enzyme preparation from Fennellia sp. 2806. Reducing sugars concentration was increased 1.5–2.0 times compared with the results obtained for the native wheat straw.
Key words: wheat straw, optimization of hydrolysis conditions, bioconversion, enzyme preparation.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017
References
1. Baibakova О.V. Bioconversion of lignocellulosic substrate of Miscanthus into ethanol. Fundamental Research. 2015, V. 2. P. 2783–2786. (In Russian).
2. Das A., Paul T., Jana A., Halder S.K., Ghosh K., Maity C., Das Mohapatra P.K., Pati B.R., Mondal K.C. Bioconvertion of rice straw to sugar using multizyme complex of fungal origin and subsequent production of bioethanol by mixed fermentation of Saccharomyces cerevisiae MTCC 173 and Zymomonas mobolis MTCC 2428. Industr. Crops Prod. 2013, 46, 217–225. https://doi.org/10.1016/j.indcrop.2013.02.003
3. Giordano P.C., Beccaria A.J., Goicoechea H.C. Significant factors selection in the chemical and enzymatic hydrolysis of lignocellulosic residues by genetic algorithm analysis and comparison with standard Plackett-Burman methodology. Biores. Technol. 2011, 102, 10602–10610. doi: 10.1016/j.biortech. 2011.09.015.
4. Limayem A., Ricke S.C. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Progr. Energy Combust. Sci. 2012, 38, 449–467. https://doi.org/10.1016/j.pecs.2012.03.002
5. Lopez-Linares J.C., Romero I., Cara C., Ruis E., Moya M., Castro E. Bioethanol production from rapeseed straw at high solid loading with different process configuration. Fuel. 2014, 122, 112–118. https://doi.org/10.1016/j.fuel.2014.01.024
6. Box G.E.P., Behnken D.W. Simplex-sum designs: a class of second order rotatable designs derivable from those of first order. Ann. Math. Stat. 1960, 31, 838–864.
7. Doehlert D.H. Uniform shell designs. Appl. Stat. 1970, 19, 231–239.
8. Plackett R.L., Burman J.P. The design of optimum multifactorial experiments. Biometrika. 1946, 33, 305–325.
9. Quinn G. P., Keough M.J. Experimental design and data analysis for biologists. Cambridge University Press, 2002, 537.
10. Syrchin S. O., Kharkevych O. S., Pavlychenko A. K., Yurieva O. M., Nakonechna L. T., Nekleva Yu. S., Kurchenko I. M. Extracellular cellulolytic complexes production by microscopic fungi. Biotechnologia Acta. 2015, 8(5), 78–85. https://doi.org/10.15407/biotech8.05.078
11. Methods of experimental mycology. Ed. Bilai V. I., Kyiv: Naukova dumka. 1982. 550 p. (In Russian).
12. Skalska-Kaminska A., Matysik G., Wojciak-Kosior M., Donica H., Sowa I. Thin-layer chromatograph y of sugars in plant material. Annales Universitatis Mariae Сurie-Sklodowska Lublin-Рolonia. 2009, 23(2), 17–24.
13. Ghose T. K. Measurement of cellulase activities. Pure Appl. Chem. 1987, 59(2), 257–268.
14. Zhang P.Y.H., Hong J., Ye X. Cellulase assays. Biofuels: Methods and Protocols, Methods in Molecular Biology. Jonathan R. Mielenz (ed.). Humana Press. 2009. V. 581. P. 213–231. https://doi.org/10.1007/978-1-60761-214-8_14
15. Miller G.I. Use of dinitrosalycilic acid reagent for determination of reducing sugars. Anal.Chem. 1959, 31(3), 426–428.
16. Parry N.J., Beever D.E., Owen E., Vandenberghe I., Van Beeumen J., Bhat M.K. Biochemical characterization and mechanism of action of a thermostable beta-glucosidase purified from Thermoascus aurantiacus. Biochem. J. 2001, 353(1), 117–127.
17. Borzova N.V., Varbanets L.D. The cellulose degrading systems of microorganisms: biosynthesis, properties, structural and functional characteristics. Biotekhnolohiia. 2009, 2(2), 23–41. (In Ukrainian).
18. Pavlychenko A., Syrchin S., Yurieva E., Nakonechna L., Kurchenko I. Some properties of complex enzyme preparation by Fennellia sp. 2806. Abstracts of International scientific conference «Achievements and prospects of microbiology». Lviv: Spolom, 12 —14 October 2016. P. 148–150. (In Ukrainian).
19. Pavlychenko A., Syrchin S., Yurieva E., Kurchenko I., Nakonechna L. Bioconversion of wheat straw by complex enzyme preparation from Fennellia sp. 2806. Abstracts of XII International scientific conference «Biotechnology for agriculture nd environmental protection (daRоstim 2016)». Odesa, 7 — 10 September 2016. P. 180–181. (In Ukrainian).
20. Kumar A.K., Parich B. Cellulose-degrading enzymes from Aspergillus terreus D34 and enzymatic saccharification of mild-alkali and dilute-acid pretreated lignocellulosic biomass residues. Biores. Bioprocesing. 2015, 7(2). https://doi.org/10.1186/s40643-015-0038-8
21. Narron R.H., Kim H., Chang H., Jameel H., Park S. Biomass pretreatments capable of enabling lignin valorization in a biorefinery process. Cur. Opin. Biotechnol. 2016, V. 38, P. 39–46. https://doi.org/10.1016/j.copbio.2015.12.018
22. Chekushina A.V., Dotsenko G.S., Sinitsyn A.P. Comparison of the efficiency of bioconversion processes of plant raw materials using biocatalysts based on enzyme preparations Trichoderma and Penicillium verruculosum. Catalysis in Industry. 2012, V. 6, P. 68–76. (In Russian).
23. Thongkheaw S., Pitiyont B. Enzymatic hydrolysis of acid-pretreated sugarcane shoot. World Academy of Science, Engineering and Technology. 2011, V. 60, P. 454–458.
24. Bayitse R., Hou X., Bjerre A.B., Saalia F.K. Optimisation of enzymatic hydrolysis of cassava peel to produce fermentable sugars. AMB Expr. 2015, 60(5). https://doi.org/10.1186/s13568-015-0146-z
25. Tutt M., Kikas T., Olt J. Influence of different pretreatment methods on bioethanol production from wheat straw. Agronom. Res. Biosystem. Engin. 2012, V. 1, P. 269–276.
- Details
- Hits: 116
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 10, No 6, 2017
https://doi.org/10.15407/biotech10.06.053
Р. 53-60, Bibliography 20, English
Universal Decimal Classification: 602.4+581.524.13.:549.892.1
BIOLOGICAL ACTIVITY OF SUCCINIC ACIDS
1 Gryshko National botanical garden of the National Academy of Sciences of Ukraine, Kyiv
2 Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of the National Academy of Sciences of Ukraine, Donetsk
3Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv
The aim of the research was to detect the biological activity of aqueous solutions of various samples of amber from the Trancedniestria province, and to characterize their effect on the physiological processes of higher plants. The allelopathic and cytostatic effects of amber solutions were studied using biotesting methods in open soil conditions and in culture in vitro. The test-object was the seedlings of cucumber Cucumis sativus L. It was shown that the activity and nature of the action of the samples depend on the region of origin of the amber, the degree of shredding and concentration of the solution. According to the results, fine fractions of amber show biostimulating effects on plants. Thus, amber and its aqueous solutions can be effectively used for cultivating agricultural plants in vivo and in vitro conditions. For stimulation of the increasing of the plant stem mass it is recommended to use amber B1, to increase the mass of roots - amber B4, and amber B2 - to stimulate stem growth in length.
Key words: amber, succinic acid, allelopathic and cytostatic action.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017
References
1. Trofimov V. S. The amber. Moskva: Nedra. 1974, 184 p. (In Russian).
2. Matsuy V. M. Marine stage of fossilization of resinous coniferous isolates on the path of transformation into amber-succinite. Geologiya i poleznyie iskopaemyie Mirovogo okeana. 2013, V. 2, P. 101–108. (In Russian).
3. Srebrodolskiy B. I. The amber of Ukraine. Kyiv:Naukova dumka. 1980, 124 p. (In Russian).
4. Konovalenko S. I., Bogdasarov M. A. IRspectroscopy of fossil resins of the Baltic-Dnieper and Chulym-Yenisei sub-provinces of northern Eurasia. Vestnik Tomskogo gosudarstvennogo universiteta. 2008, V. 314, P. 201–203. (In Russian).
5. Mironov O. L., Kachalova N. M., Dzyuba O. I., Bogza S. L. Complex of biologically active compounds of amber: method of obtaining, properties and applications. International Тheoretical and Practical «The modern aspects of human?s health maintenance». 2017. (In Ukrainian).
6. Gizbullin N. G. Amber acid is an effective plant growth regulator. Tsukrovi buriaky. 2009, V. 2, P. 4–5. (In Ukrainian).
7. Golovatskaya I. F. Morphogenesis of plants and its regulation. Part 1. Тomsk: ID TGU. 2016, 172 p. (In Russian).
8. Klochkova N. M. The iInfluence of succinic acid, epine and their combined effect on gas exchange of various morphotypes of peas (Pisum sativum L.) in optimal conditions and conditions of water deficiency (Doctoral dissertation). Moskva. 2004, 202 p. (РГБ ОД, 61:04-3/1129). (In Russian).
9. Margitaj M. Influence of growth regulators on rooting of Buddleja davidii Franch. cuttings. Introduktsiia ta zberezhennia riznomanittya. 2010, V. 28, P. 57–59. (In Ukrainian).
10. Shakirova F. M. Nonspecific resistance of plants to stress factors and its regulation. Ufa: Gilem. 2001, 160 p. (In Russian).
11. Kropotkina V. V., Vereshchagin A. L. Stimulating effect of the superslow doses of the mixture of organic acids to acclimatization cuttings of grapes. Book of Abstracts Posters Session 7. Hormones and synthetic plant growth regulators in agriculture. P. 136.
12. Sydorovych M. M., Kuldelchuk O. P., Kot S. Yu. Phytotesting of biological properties of a new synthetic plant growth stimulator — a spirocarbon complex with amber acid. Pryrodnychij almanakh. Ser. Biologichni nauky. 2016, V. 23, P. 108–116. (In Ukrainian).
13. Tumi?owicz P., Synoradzki L., Sobiecka A. Bioactivity of Baltic amber – fossil resin. Polimery. 2016, 61 (5), 347–356. doi: dx.doi.org/10.14314/polimery. 2016.347.
14. Zaimenko N. V., Ivanyczka B. O. Influence of organic acids on growth processes of plants of various ecomorphotypes. Introduktsiia roslyn. 2013, V. 3, P. 108–114. (In Ukrainian).
15. Chupahina G. N. The system of ascorbic acid of plants. Кaliningrad: izd-vo Kaliningradskogoun-ta. 1997, 120 p. (In Russian).
16. Rays Elroy L. Allelopathy. Moskva: Mir. 1978, 392 p. (In Russian).
17. Grodzinskiy A. M. The experimental allelopathy. Kyiv: Naukova dumka. 1987, 236 p. (In Russian).
18. Ivanov V. B., Byistrova E. N., Dubrovskiy I. G. Cucumber seedlings as a test object for the detection of effective cytotoxic agents. Fiziologiya rasteniy. 1986, 33 (1), 195–199. (In Russian).
19. Mamaeva A. S. The proliferation of plant cells and its regulators. Fiziologiya rasteniy. 2013, 60 (4), 529–536. (In Russian).
20. Matvyeyeva N. A. Creation of plantproducing biologically active compounds via Agrobakterium-mediated transformation (Doctoral dissertation). Kyiv. 2015, 361 p. (In Ukrainian).
- Details
- Hits: 113
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 10, No 6, 2017
https://doi.org/10.15407/biotech10.06.045
Р. 45-52, Bibliography 6, English
Universal Decimal Classification: 579.61
National University of Life and Environmental Science of Ukraine, Kiyv
The purpose of this study was to evaluate the optimal nutritional conditions for macromycetes micelles of the Pleurotaceae family. The factors influencing mycelium growth on the example of two species of Pleurotus were investigated.
To determine the effects of nutrient components five variants of agar medium were used, containing:potato, sweet potato, yam, oak bark and malt extractswith the addition of peptone and glucose. The pure culture of Pleurotus species, in the form of agarics blocks, was placed on the nutrient media. Hyphae germination was observed on the eighth day of incubation.
The temperature influence was evaluated in the range from 16 to 36 °C. The maximum growth of mycelium of both species was observed at a temperature of 28 °С.
It was determined that nutrient media containing potato, sweet potato, yam and malt extracts with the addition of glucose and peptone were the most favorable for growth of mycelium of oyster mushroom. They all had mandatory presence of a source of carbohydrates — glucose. At the same time, the media containing extracts of oak, yam, and partially of potato extract, were optimal for the growth of maple oyster. According to the experiment, the mycelial growth efficiency of the maple oyster was much higherin comparison to the oyster mushroom 1.
Key words: Pleurotus, nutrient media, mycelium.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017
References
1. Cheng Z. Effects of carbon sources, nitrogen sources and minerals on mycelial growth of Cryphonectria parasitica. Afr. J. Agric. Res. 2013; V. 8, P.4390–4395.
2. Ivanova T. V., Otkidach I. S., Kuzіomko N. O., Zarutskaya A. V., Mamontova A. A., Yuronka K. V., Melnychuk M. D. Nutrient media for a pure culture of mushroom of the genus pleurotus obtaining in vitro. Biotechnol. acta. 2016, V. 9, P. 82–86. https://doi.org/10.15407/biotech9.02.082
3. Bai Yh. Optimization for betulin production from mycelial culture of Inonotus obliquus by orthogonal design and evaluation of its antioxidant activity. J. Taiwan. Inst. Chem. Eng. 2012, V. 43, P. 663–669.
4. Ivanova T. New approaches extraction of viral RNA from edible mushrooms. Scientific Journal «ScienceRise». 2015, 1(15), 44–46.
5. Badu M. Effects of lignocellulosic in wood used as substrate on the quality and yield of mushrooms. Food. Nutr. Sci. 2011, V. 2, P. 780–784.
6. Choi I. Physiological characteristics of green mold (Trichoderma spp.) isolated from oyster mushroom (Pleurotus spp.). Mycobiology. 2003, V. 31, P. 139–144.
- Details
- Hits: 98
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 10, No 6, 2017
https://doi.org/10.15407/biotech10.06.035
Р. 35-44, Bibliography 35, English
Universal Decimal Classification: 675:665.3 (579.6)
1 Bogomolets National Medical University, Kyiv
2Ivano-Frankivsk National Medical University, Ukraine
3State Enterprise «International Center for Electron Beam Technology» of the National Academy of Sciences of Ukraine, Kyiv
The aim of our research was to investigate the influence of silver nanoparticles on the physical and chemical features of plant oils of dogrose, flax, cedar, amaranth and watermelon and their antimicrobial activity. Plant oils were saturated with silver nanoparticles using electron-beam technology for depositing a molecular stream of metal in a vacuum. To characterize the rancidity of plant oils, the acid, iodine, peroxide, ester and saponification values were determined. A sharp drop in the iodine number and an increase in the peroxide number in oils saturated with silver nanoparticles were observed, as compared to pure oils, indicating a decrease in the number of unsaturated bonds in fatty acids and the formation of peroxides in oils. All pure plant oils and a separate sample of silver nanoparticles suppressed the growth of only E. faecalis colonies. Plant oils that were saturated with silver nanoparticles delayed the growth of S. aureus, S. epidermidis, E. faecalis, E. coli, P. aeruginosa, and C. albicans; the greatest delay in the growth of colonies was caused by flaxseed oil.
Thus, the features of the plant oils under study essentially changed after they are aturated with silver nanoparticles. It can be assumed that the metal acted as a catalyst for peroxide oxidation of lipids in the investigated plant oil samples, the products of which caused toxic effects on cultures of bacteria and fungi in the experiment.
Key words: plant oils of dogrose, flax, cedar, amaranth, watermelon, nanosilver, physical and chemical features of antimicrobial activity.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017
References
1. Tolkachov M. V., Bohutska K. I., Savchuk O. M., Prylutskyi Yu. I. Nanomaterials in the diagnosis and treatment of diabetes. Biotechnol. acta. 2015, 8 (1), 19–31. (In Ukrainian). https://doi.org/10.15407/biotech8.01.009.
2. Yegorova Ye. M., Revina A. A., Rostovshchikova T. N., Kiseleva O. I. Bactericidal and catalytic properties of stable metal nanoparticles in inverse micelles. Vestnik Moskovskogo universiteta. Ser. 2. Khimiya. 2001, 42 (5), 332–338. (In Russian).
3. Jones K. E., Patel N. G., Levy M. A., Storeygard A., Balk D., Gittleman J. L., Daszak P. Global trends in emerging infectious diseases. Nature. 2008, 451 (7171), 990–993. https://doi.org/10.1038/nature06536.
4. Chernousova S., Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew. Chem. Int. Ed. Engl. 2013, 52 (6), 1636–1653. https://doi.org/ 10.1002/anie.201205923.
5. Chopra I. The increasing use of silver-based products as antimicrobial agents: useful development or cause for concern? J. Antimicrob. Chemother. 2007, 59 (4), 587–590. https://doi.org/10.1093/jac/dkm006.
6. Rizzello L., Cingolani R., Pompa P. P. Nanotechnology tools for antibacterial materials. Nanomedicine (Lond). 2013, 8 (5), 807–821. https://doi.org/10.2217/ nnm.13.63.
7. Gubin S. P., Yurkov G. Yu., Kataeva N. A. The nanoparticles of noble metals and materials on their basis. Moskva: IONKh RAN. 2006, 155 p. (In Russian).
8. Chekman I. S. Nanoscience: the prospect of science research. Nauka ta innovatsii. 2009, 5 (3), 89–93. (In Ukrainian).
9. Vazhnycha O. M., Bobrova N. O., Hancho O. V., Loban H. A. Silver nanoparticles: antibacterial and antifungal properties. Farmakolohiia ta likarska toksykolohiia. 2014, 2 (38), 3–11. (In Ukrainian).
10. Movchan B. O., Chekman I. S., Bilous S. B., Mariievskyi V. F., Vialykh Zh. E., Krolevetska N. M., Ruban N. M. Antibacterial activity of the new pharmaceutical ingredient – nanocomposite of silver. Profilaktychna medytsyna. 2014, N 1–2, P. 7–14. (In Ukrainian).
11. Tyutyunikov B. N., Bukhshtab Z. I., Gladkiy F. F. Chemistry of Fats. 3-e izd. Moskva: Kolos. 1992, 448 p. (In Russian).
12. Avaiable at http://www.elitphito.com/.
13. Movchan B. A., Gornostay A. V. Liquid-phase colloids of silver and copper, obtained by electron-beam evaporation of metals in a vacuum. Vestnik farmatsii. 2016, 3 (73), 22–29. (In Russian).
14. Kovalev V. N., Popova N. V., Kislichenko V. S. Workshop on Pharmacognosy: Ucheb. Posobie dlya studentov vuzov. Kharkiv: Izd-vo NFaU, Zolotye stranitsy. 2003, 512 p. (In Russian).
15. Kutsyk R. V. Screening study of antimicrobial activity of medicinal plants of the Carpathian region with respect to polyantibiotic resistant clinical strains of staphylococci. Message 1. Halytskyi likarskyi visnyk. 2004, 11 (4), 44–48. (In Ukrainian).
16. Chrubasik C., Roufogalis B., M?ller-Ladner U., Chrubasik S. A systematic review on the Rosa canina effect and efficacy profiles. Phytother. Res. 2008, 22 (6), 725–733. https://doi.org/10.1002/ptr.2400.
17. Dudra A., Strugaіa P., Pyrkosz-Biardzka K., Sroka Z., Gabrielska J. A Study on Biological Activity of the Polyphenol Fraction from Fruits of Rosa Rugosa Thunb. J. Food Biochem. 2016, 40 (4), 411–419. https://doi.org/10.1111/ jfbc.12228.
18. Winther K., Vinther Hansen A. S., Campbell-Tofte J. Bioactive ingredients of rose hips (Rosa canina L.) with special reference to antioxidative and anti-inflammatory properties: in vitro studies. Botanics: Targets and Therapy. 2016, V. 2016:6, P. 11–23. https://doi.org/10.2147/BTAT.S91385.
19. Gavrilin M. V., Markova O. M., Likhota T. T. Basic physical and chemical properties of amaranth oil. Razrabotka, issledovanie i marketing novoy farmatsevticheskoy produktsii: Sb. nauch. tr. Pyatigorsk. 2008, Vyp. 63, P. 270–272. (In Russian).
20. Qureshi A. A., Lehmann J. W., Peterson D. M. Amaranth and its oil inhibit cholesterol biosynthesis in 6-Week-old female chickens. J. Nutrit. (USA). 1996, 126 (8), 1972–1978.
21. Yarnykh T. Н., Levachkova Yu. V., Chushenko V. M., Pushok S. M. Study of antibacterial ctivity of combined vaginal pessaries with fluconazole and amaranth oil. Farmatsevtychnyi zh. 2016, N 2, P. 60–64. (In Ukrainian).
22. Rhafouri R., Strani B., Zair T., Ghanmi M., Aafi A., El Omari M., Bentayeb A. Chemical composition, antibacterial and antifungal activities of the Cedrus atlantica (Endl.) Manettiex Carri?re seeds essential oil. Mediter. J. Chemistry. 2014, 3 (5), 1034–1043.
23. Peter H. M. Hoet, Irene Br?ske-Hohlfeld, Oleg V. Salata. Nanoparticles — known and unknown health risks. J. Nanobiotechno. 2004, N 2, Р. 1–15. https://doi.org/10.1186/1477-3155-2-12.
24. Pharmaceutical Encyclopedia/Holova red. rady ta avtor peredmovy V. P. Chernykh. 2-hevyd., pererobl. i dopovn. Kiyv: Morion. 2010, 1632 p. (In Ukrainian).
25. Wells T. N., Scully P., Paravicini G., Proudfoot A. E., Payton M. A. Mehanism of irreversible inactivation of phoshomannose isomerases by silver ions and flamazie. Biochemistry. 1995, 34 (24), 7896–7903.
26. Hwang I. S., Lee J., Hwang J. H., Kim K. J., Lee D. G. Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. FEBS J. 2012, 279 (7), 1327–1338.
27. Bondarenko O., Ivask A., Kаkinen A., Kurvet I., Kahru A. Particle-cell contact enhances antibacterial activity of silver nanoparticles. PLoS One. 2013, 8 (5), e64060. URL: http://www.ncbi.nlm.nih.gov/pmc/ articles/PMC3667828/.
28. Martinez-Gutierrez F., Boegli L., Agostinho A., S?nchez E. M., Bach H., Ruiz F., James G. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling. 2013, 29 (6), 651–660. https://doi.org/10.1080/ 08927014.2013.794225.
29. Sadeghi B., Jamali M., Kia Sh., Amininia A., Ghafari S. Synthesis and characterization of silver nanoparticles for antibacterial activity. Int. J. Nano. Dim. 2010, 1 (2), 119–124. https://doi.org/10.7508/ijnd.2010.02.004.
30. Serdіuk A. M., Mykhyenkova A. Y., Surmasheva E. V. Antimicrobial activity of silver nanoparticles in stabilized solutions and in a composite system based on highly disperse silica. Profilaktychna medytsyna. 2009, N 4, P. 12–17. (In Russian).
31. Lamont R. Dzh., Lantts M. S., Berne R. A., Leblank D. Dzh. Microbiology and Immunology for Dentists/Pod red. V. K. Leonteva; per. sangl. I. V. Smirnova. Moskva: Prakticheskaya meditsina. 2010, 504 p. (In Russian).
32. Sondi I., Salopek-Sondi B. Silver nano partic les as antimicrobial agent: a case study on E. Coli. as a model for Gram-negative bacteria. J. Colloid Interface Sc. 2004, 275 (1), 177–182. https://doi.org/10.1016/j.jcis.2004.02.012.
33. Barua S., Konwarh R., Bhattacharya S. S. Non-hazardous anticancerous and antibacterial colloidal ‘green’ silver nanoparticles. Colloid. Surfaces B: Biointerfaces. 2013, V. 105, P. 37–42.
34. Gopinath V., Mubarak Ali D., Priyadarshini S., Priyadharsshini N. M., Thajuddin N., Velusamy P. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloid. Surfaces B: Biointerfaces. 2012, V. 96, P. 69?74. https://doi.org/10.1016/j.
35. Ali K., Ahmed B., Dwivedi S., Saquib Q., Al-Khedhairy A. A., Musarrat J. Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS One. 2015, 10 (7). https://doi.org/10.1371/journal.pone.0131178.
- Details
- Hits: 145
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 10, No 6, 2017
https://doi.org/10.15407/biotech10.06.028
Р. 28-34, Bibliography 11, English
Universal Decimal Classification: 577.11:576.311.31:57.086]:606:628.3
WASTEWATER COMPONENTS EFFECT ON METACHROMASIA REACTION OF VOLUTIN GRANULES in vitro
Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine
Microorganisms that contain the polyphosphates volutin granules take active part in phosphorus and heavy metals removal from the wastewater. The metachromatic reaction is a simple cytochemical method for the detection of these granules. The objective of current research was to study the metachromatic reaction of inorganic polyphosphate with Methylene Blue dye in combination with other components of wastewater (proteins, carbohydrates, metal ions) in vitro. It was demonstrated that manifestation of metachromatic coloration depends on the polyphosphate concentration and to a lesser extent, on its chain length. Glucose did not influence metachromasy reaction. At the same time, calcium ions and bovine serum albumin, depending on their concentration, stimulated or inhibited the metachromatic color of the test solutions. Bovine serum albumin, in contrast to calcium ions, had a lesser effect on metachromasy. Thus, the abundant accumulation of polyphosphates and metal cations (as we demonstrated with of Ca2+ ions), in microorganisms of activated sludge not always accompanied by a pronounced reaction of metachromasy of the volutin granules. In this regard, the use of other cytochemical methods for the identification of polyphosphate granules is recommended, for example, staining with fluorescent dye 4’,6-diamidino-2-phenylindole (DAPI).
Key words: volutin granules, polyphosphate-accumulating organisms, polyphosphates, metachromasia reaction, wastewater treatment.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2017
References
1. Lieberman F. Glioblastoma update: molecular biology, diagnosis, treatment, response assessment, and translational clinical trials. F1000Res. 2017, V. 6, P. 1892.
2. Pearson J. R. D., Regad T. Targeting cellular pathways in glioblastoma multiforme. Signal Transduct. Target Ther. 2017, V. 2, P. 17040.
3. Lara-Velazquez M., Al-Kharboosh R., Jeanneret S., Vazquez-Ramos C., Mahato D., Tavanaie pour D., Rahmathulla G., Quinones-Hinojosa A. Advances in brain tumor surgery for glioblastoma in adults. Brain Sci. 2017, 7(12), 166.
4. Vald?s-Rives S. A., Casique-Aguirre D., Germ?n-Castel?n L., Velasco-Vel?zquez M. A., Gonz?lez-Arenas A. Apoptotic signaling pathways in glioblastoma and therapeutic implications. Biomed. Res. Int. 2017, V. 2017, P. 7403747.
5. Moenner M., Pluquet O., Bouchecareilh M., Chevet E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 2007, V. 67, P. 10631–10634.
6. Galmiche A., Sauzay C., Chevet E., Pluquet O. Role of the unfolded protein response in tumor cell characteristics and cancer outcome. Curr. Opin. Oncol. 2017, 29 (1), 41–47.
7. Obacz J., Avril T., Le Reste P. J., Urra H., Quillien V., Hetz C., Chevet E. Endoplasmic reticulum proteostasis in glioblastoma. From molecular mechanisms to therapeutic perspectives. Sci. Signal. 2017, 10 (470), eaal2323.
8. Avril T., Vaul?on E., Chevet E. Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis. 2017, 6 (8), e373.
9. Auf G., Jabouille A., Delugin M., Gu?rit S., Pineau R., North S., Platonova N., Maitre M., Favereaux A., Vajkoczy P., Seno M., Bikfal vi A., Minchenko D., Minchenko O., Moenner M. High epiregulin expression in human U87 glioma cells relies on IRE1alpha and promotes autocrine growth through EGF receptor. BMC Cancer. 2013, V. 13, P. 597.
10. Minchenko O. H., Tsymbal D. O., Minchenko D. O. IRE-1alpha signaling as a key target for suppression of tumor growth. Single Cell Biology. 2015, 4 (3), 118.
11. Lhomond S., Avril T., Dejeans N., Voutetakis K., Doultsinos D., McMahon M., Pineau R., Obacz J., Papadodima O., Jouan F., Bourien H., Logotheti M., J?gou G., Pallares-Lupon N., Schmit K., Le Reste P. J., Etcheverry A., Mosser J., Barroso K., Vaul?on E., Maurel M., Samali A., Patterson J. B., Pluquet O., Hetz C., Quillien V., Chatziioannou A., Chevet E. Dual IRE1 RNase functions dictate glioblastoma development. EMBO Mol. Med. 2018, V. 8, P. e7929. doi: 10.15252/emmm.201707929 [Epub ahead of print].
12. Chevet E., Hetz C., Samali A. Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis. Cancer Discov. 2015, 5 (6), 586–597.
13. Obacz J., Avril T., Le Reste P. J., Urra H., Quillien V., Hetz C., Chevet E. Endoplasmic reticulum proteostasis in glioblastoma — From molecular mechanisms to therapeutic perspectives.
Sci. Signal. 2017, 10 (470), eaal2323.
14. Auf G., Jabouille A., Guerit S., Pineau R., Delugin M., Bouchecareilh M., Magnin N., Favereaux A, Maitre M., Gaiser T., von Deimling A., Czabanka M., Vajkoczy P., Chevet E., Bikfalvi A., Moenner M. Inositolrequiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc. Natl. Acad. Sci. USA. 2010, V. 107, P. 15553–15558.
15. Minchenko O. H., Tsymbal D. O., Moenner M., Minchenko D. O., Kovalevska O. V., Lypova N. M. Inhibition of the endoribonuclease of ERN1 signaling enzyme affects the expression of proliferation-related genes in U87 glioma cells. Endoplasm. Reticul. Stress Dis. 2015, 2 (1), 18–29.
16. Minchenko D. O., Riabovol O. O., Ratushna O. O., Minchenko O. H. Hypoxic regulation of the
expression of genes encoded estrogen related proteins in U87 glioma cells: effect of IRE1 inhibition. Endocr. Regul. 2017, 51 (1), 8–19.
17. Yang S., Hwang S., Kim M., Seo S. B., Lee J. H., Jeong S. M. Mitochondrial glutamine metabolism via GOT2 supports pancreatic cancer growth through senescence inhibition. Cell Death Dis. 2018, 9 (2), 55.
18. Alberghina L., Gaglio D. Redox control of glutamine utilization in cancer. Cell Death Dis. 2014, V. 5, P. e1561.
19. Ma L., Tao Y., Duran A., Llado V., Galvez A., Barger J. F., Castilla E. A., Chen J., Yajima T.,
Porollo A., Medvedovic M., Brill L. M., Plas D. R., Riedl S. J., Leitges M., Diaz- Meco M. T., Richardson A. D., Moscat J. Control of nutrient stress-induced metabolic reprogramming by PKC? in tumorigenesis. Cell. 2013, 152 (3), 599–611.
20. Polet F., Corbet C., Pinto A., Rubio L. I., Martherus R., Bol V., Drozak X., Gr?goire V., Riant O., Feron O. Reducing the serine availability complements the inhibition of the glutamine metabolism to block leukemia cell growth. Oncotarget. 2016, 7 (2), 1765–1776.
21. Tsymbal D. O., Minchenko D. O., Kryvdiuk I. V., Riabovol O. O., Halkin O. V., Ratushna O. O., Minchenko O. H. Expression of proliferation related transcription factor genes in U87 glioma cells with IRE1 knockdown upon glucose and glutamine deprivation. Fiziol. Zh. 2016, 62 (1), 3–15.
22. Tsymbal D. O., Minchenko D. O., Riabovol O. O., Ratushna O. O., Minchenko O. H. IRE1 knockdown modifies glucose and glutamine deprivation effects on the expression of proliferation related genes in U87 glioma cells. Biotechnol. acta. 2016, V. 9, P. 26–37.
23. Riabovol O. O., Tsymbal D. O., Minchenko D. O., Ratushna O. O., Minchenko O. H. IRE1 knockdown modifies the effect of glutamine and glucose deprivations on the expression level of nuclear genes encoding mitochondrial proteins in U87 glioma cells. Biotechnol. acta. 2016, 9 (2), 37–47.
24. Minchenko O. H., Kharkova A. P. Expression of IGFBP6, IGFBP7, NOV, CYR61, WISP1 and WISP2 in U87 glioma cells upon glutamine deprivation condition. Ukr. Biochem. J. 2016, 88 (3), 66–77.
25. Halkin O. V., Riabovol O. O., Minchenko D. O., Kuznetsova A. Y., Ratushna O. O., Minchenko O. H. IRE1 knockdown modifies the effect of glutamine deprivation on the expression of a subset of proteases in U87 glioma cells. Biotechnol. acta. 2017, 10 (4), 34–43. https://doi.org/10.15407/biotech10.04.034.
26. Minchenko O. H., Luzina O. Y., Hnatiuk O. S., Minchenko D. O., Garmash Y. A., Ratushna O. O. Expression of tumor growth related genes in IRE1 knockdown U87 glioma cells: effect of hypoxia. Ukr. Biochem. J. 2017, 89 (5), 40–51.
27. Vogl U. M., Ohler L., Rasic M., Frischer J. M., Modak M., Stockl J. Evaluation of prognostic immune signatures in patients with breast, colorectal and pancreatic cancer receiving chemotherapy. Anticancer Res. 2017, 37 (4), 1947–1955.
28. Wang H., Luo J., Liu C., Niu H., Wang J., Liu Q., Zhao Z., Xu H., Ding Y., Sun J., Zhang Q. Investigating microRNA and transcription factor co-regulatory networks in colorectal cancer. BMC Bioinformatics. 2017, 18 (1), 388.
29. Zhao Z., Liu H., Hou J., Li T., Du X., Zhao X., Xu W., Xu W., Chang J. Tumor protein D52 (TPD52) inhibits growth and metastasis in renal cell carcinoma cells through the PI3K/Akt signaling pathway. Oncol. Res. 2017, 25 (5), 773–779.
30. Fujita A., Sato J. R., Festa F., Gomes L. R., Oba-Shinjo S. M., Marie S. K., Ferreira C. E., Sogayar M. C. Identification of COL6A1 as a differentially expressed gene in human astrocytomas. Genet. Mol. Res. 2008, 7 (2), 371–378.
31. Aust G., Zhu D., Van Meir E. G., Xu L. Adhesion GPCRs in tumorigenesis. Handb. Exp. Pharmacol. 2016, V. 234, P. 369–396.
32. Wang Y., Chen C. L., Pan Q. Z., Wu Y. Y., Zhao J. J., Jiang S. S., Chao J., Zhang X. F., Zhang H. X., Zhou Z. Q., Tang Y., Huang X. Q., Zhang J. H., Xia J. C. Decreased TPD52 expression is associated with poor prognosis in primary hepatocellular carcinoma. Oncotarget. 2016, 7 (5), 6323–6334.
33. Jin Y., Zhu H., Cai W., Fan X., Wang Y., Niu Y., Song F., Bu Y. B-Myb Is Up-Regulated and Promotes Cell Growth and Motility in Non-Small Cell Lung Cancer. Int. J. Mol. Sci. 2017, 18 (6), E860.
34. Yu H., Yue X., Zhao Y., Li X., Wu L., Zhang C., Liu Z., Lin K., Xu-Monette Z. Y., Young K. H., Liu J., Shen Z., Feng Z., Hu W. LIF negatively regulates tumour-suppressor p53 through Stat3/ID1/MDM2 in colorectal cancers. Nat. Commun. 2014, V. 5, P. 5218.
35. Liu J., Yu H., Hu W. LIF is a new p53 negative regulator. J. Nat. Sci. 2015, 1 (7), e131.
36. Yue X., Zhao Y., Zhang C., Li J., Liu Z., Liu J., Hu W. Leukemia inhibitory factor promotes EMT through STAT3-dependent miR-21 induction. Oncotarget. 2016, 7 (4), 3777–3790.
37. Minchenko O. H., Opentanova I. L., Minchenko D. O., Ogura T., Esumi H. Hypoxia induces transcription of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 gene via hypoxia-inducible factor-1alpha activation. FEBS Lett. 2004, 576 (1–2), 14–20.
38. Bochkov V. N., Philippova M., Oskolkova O., Kadl A., Furnkranz A., Karabeg E., Breuss J., Minchenko O. H., Mechtcheriakova D., Hohensinner P., Rychli K., Wojta J., Resink T., Binder B. R., Leitinger N. Oxidized phospholipids stimulate angiogenesis via induction of VEGF, IL-8, COX-2 and ADAMTS-1 metalloprotease, implicating a novel role for lipid oxidation in progression and destabilization of atherosclerotic lesions. Circ. Res. 2006, V. 99, P. 900–908.
39. Mani? S. N., Lebeau J., Chevet E. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 3. Orchestrating the unfolded protein response in oncogenesis: an update. Am. J. Physiol. Cell. Physiol. 2014, V. 307, P. C901–C907.
40. Hetz C., Chevet E., Harding H. P. Targeting the unfolded protein response in disease. Nat. Rev. Drug Discov. 2013, V. 12, P. 703–719.
41. Chen L., Cui H. Targeting glutamine induces apoptosis: a cancer therapy approach. Int. J. Mol. Sci. 2015, 16 (9), 22830–22855.
42. Yang S., Hwang S., Kim M., Seo S. B., Lee J. H., Jeong S. M. Mitochondrial glutamine metabolism via GOT2 supports pancreatic cancer growth through senescence inhibition. Cell Death Dis. 2018, 9 (2), 55.
43. Alberghina L., Gaglio D. Redox control of glutamine utilization in cancer. Cell Death Dis. 2014, V. 5, P. e1561.
- GLUTAMINE DEPRIVATION EFFECT ON DEK, TPD52, BRCA1, ADGRE5, LIF, GNPDA1, AND COL6A1 GENE EXPRESSIONS IN IRE1 KNOCKDOWN U87 GLIOMA CELLS A. P. Kharkova, Y. A. Garmash, O. S. Hnatiuk, O. Y. Luzina, S. V. Danilovskyi, A.Y. Kuznetsova, O. H. Minchenko
- TECHNOLOGIES OF BRAIN IMAGES PROCESSING O.M. Klyuchko