ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta V. 18, No. 6, 2025
P. 58-67, Bibliography 37, Engl.
UDC: 579.842.2:577.1:577.4+636.085+661.7
doi: https://doi.org/10.15407/biotech18.06.058
ISOLATION AND IDENTIFICATION OF TANNASE-PRODUCING Aspergillus spp. FROM POULTRY DROPPINGS
Saheed Olatunbosun Akiode 1, Rotimi Olusanya Arise 2
1 Biotechnology Advanced Research Centre, Sheda Science and Technology Complex (SHESTCO), Abuja, Nigeria
2 Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Nigeria
Aim. Tannases have found application in many industries. Aspergillus species are moulds largely isolated
from poultry droppings and are major producers of tannase. This study aimed to isolate and identify tannase-producing Aspergillus spp. from poultry droppings.
Methods. Samples of poultry droppings were obtained from a poultry farm in Kuje Area Council, Federal Capital Territory, Abuja, Nigeria. Aspergillus spp. was isolated according to standard microbiological procedures. The ability of the isolated Aspergillus spp. to utilise tannic acid was assessed through a tannase assay using a standard method. The isolated Aspergillus spp. were identified using morphological characteristics and molecular identification methods.
Results. Twenty-one pure fungal isolates were obtained from the poultry droppings, and 17 of them were able to utilise and grow on constituted tannic acid agar with a diameter ranging from 3.5–7.0 cm. Five (5) isolates with the highest tannase activity were identified as Aspergillus fumigatus and Aspergillus flavus.
Conclusion. The study concluded that tannase-producing A. fumigatus and A. flavus can be obtained from poultry droppings and may be exploited for tannase production.
Keywords: tannase, Aspergillus spp., morphological identification, molecular identification.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2025
References
1. Ignacio, G.C. S., Romanini, D., Furlán, R. L. E., Meini, M. R. (2023). Production of gallic acid and relevant enzymes by Aspergillus niger and Aspergillus oryzae in solid-state fermentation of soybean hull and grape pomace. Biomass Conversion and Biorefinery, 13(16), 14939–14947. https://doi.org/10.1007/s13399-022-03435-8
2. Shah, N. A. A., Mansor, A., Malaysian Agricultural Research and Development Institute, Manikam, R. V. S., Universiti Teknologi MARA. (2023). Systematic Review on Characterization of Tannase from Agricultural By-Products. Industria: Jurnal Teknologi Dan Manajemen Agroindustri, 12(1), 1–14. https://doi.org/10.21776/ub.industria.2023.012.01.1
3. Dhiman, S., Mukherjee, G., Singh, A. K. (2018). Recent trends and advancements in microbial tannase-catalyzed biotransformation of tannins: A review. International Microbiology: The Official Journal of the Spanish Society for Microbiology, 21(4), 175–195. https://doi.org/10.1007/s10123-018-0027-9
4. Tang, Z., Shi, L., Liang, S., Yin, J., Dong, W., Zou, C., Xu, Y. (2024). Recent Advances of Tannase: Production, Characterization, Purification, and Application in the Tea Industry. Foods, 14(1), 79. https://doi.org/10.3390/foods14010079
5. Mutiat, A. O., Oluremi, N. O., Simeon, K. O., Mary, O. A. (2023). Isolation and molecular identification of tannase producing fungi from soil. African Journal of Biotechnology, 22(12), 322–328. https://doi.org/10.5897/ajb2022.17497
6. Ross, C. F. (1951). A case of pulmonary aspergillosis. The Journal of Pathology and Bacteriology, 63(3), 409–416. https://doi.org/10.1002/path.1700630307
7. Himanshu, G.S., Kashyap, P., Karnwal, A., Shidiki, A., Kumar, G. (2024). Bioprospecting of Aspergillus sp. as a promising repository for anti-cancer agents: A comprehensive bibliometric investigation. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1379602
8. Prospective Application of Aspergillus Species: Focus on Enzyme Production Strategies, Advances and Challenges. (2022). In M. Gholami-Shabani, M. Shams-Ghahfarokhi, F. Jamzivar, M. Razzaghi-Abyaneh, Natural Food Additives. IntechOpen. https://doi.org/10.5772/intechopen.101726
9. Rosas-Vega, F. E., Pozzan, R., Martínez-Burgos, W. J., Letti, L. A. J., De Mattos, P. B. G., Ramos-Neyra, L. C., ..., Soccol, C. R. (2025). Enzymes Produced by the Genus Aspergillus Integrated into the Biofuels Industry Using Sustainable Raw Materials. Fermentation, 11(2), 62. https://doi.org/10.3390/fermentation11020062
10. Sule, I.O., Olorunfemi, A.A., Otori, A.O. (2019). MYCOLOGICAL AND BACTERIOLOGICAL ASSESSMENT OF POULTRY DROPPINGS FROM POULTRY PENS WITHIN ILORIN, KWARA, NIGERIA. Science World Journal, 14(4), 11–18.
11. Abdulmageed, L. H. (2023). Study of Morphological and Physiological Characteristics of Some Types of Fungus. Aspergillus Spp. Anbar Journal of Agricultural Sciences, 21(2), 386–395. https://doi.org/10.32649/ajas.2024.143268.1083
12. Atallah, O. O., Mazrou Y.S.A., Atia, M.M., Nehela, Y., Abdelrhim, A.S., Nader, M.M. (2022). Polyphasic Characterization of Four Aspergillus Species as Potential Biocontrol Agents for White Mold Disease of Bean. Journal of Fungi (Basel, Switzerland), 8(6). https://doi.org/10.3390/jof8060626
13. Jing, R., Yang, W.-H., Xiao, M., Li, Y., Zou, G.-L., Wang, C.-Y., ..., Hsueh, P.-R. (2022). Species identification and antifungal susceptibility testing of Aspergillus strains isolated from patients with otomycosis in northern China. Journal of Microbiology, Immunology and Infection, 55(2), 282–290. https://doi.org/10.1016/j.jmii.2021.03.011
14. Rodrigues, T. H. S., Dantas, M. A. A., Pinto, G. A. S., Gonçalves, L. R. B. (2007). Tannase production by solid state fermentation of cashew apple bagasse. Applied Biochemistry and Biotechnology, 137–140(1–12), 675–688. https://doi.org/10.1007/s12010-007-9088-5
15. Manikandan, P., Varga, J., Kocsubé, S., Revathi, R., Anita, R., Dóczi, I., ..., Kredics, L. (2010). Keratitis caused by the recently described new species Aspergillus brasiliensis: two case reports. Journal of Medical Case Reports, 4(1), 68.
16. Tam, E. W. T., Chen, J. H. K., Lau, E. C. L., Ngan, A. H. Y., Fung, K. S. C., Lee, K.-C., ..., Woo, P. C. Y. (2014). Misidentification of Aspergillus nomius and Aspergillus tamarii as Aspergillus flavus: Characterization by Internal Transcribed Spacer, β-Tubulin, and Calmodulin Gene Sequencing, Metabolic Fingerprinting, and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry. Journal of Clinical Microbiology, 52(4), 1153–1160. https://doi.org/10.1128/jcm.03258-13
17. Al-Temimay, I. A., & Hasan, A. M. (2016). Isolation and identification of fungi from the droppings of some poultry and some detergents effect on some of them. 57.
18. Pinto, G. A. S., Leite, S. G. F., Terzi, S. C., & Couri, S. (2001). Selection of tannase-producing Aspergillus niger strains. Brazilian Journal of Microbiology, 32, 24–26. https://doi.org/10.1590/S1517-8382200100010000619. Gaddeyya G, Bharathi P, Niharika PS, Kumar PKR. Isolation and identification of soil mycoflora in different crop fields at Salur Mandal. Adv Appl Sci Res. 2012;3(4):2020–6.
20. Zymo. (2016). Highlights DNA Preservation and Purification technology. zymoresearch.com
21. Welsh, J., McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 18(24), 7213–7218. https://doi.org/10.1093/nar/18.24.7213
22. Byrd, J. A., Caldwell, D. Y., Nisbet, D. J. (2017). The identification of fungi collected from the ceca of commercial poultry. Poultry Science, 96(7), 2360–2365. https://doi.org/10.3382/ps/pew486
23. Farha, A. K., Yang, Q.-Q., Kim, G., Li, H.-B., Zhu, F., Liu, H.-Y.,..., Corke, H. (2020). Tannins as an alternative to antibiotics. Food Bioscience, 38, 100751. https://doi.org/10.1016/j.fbio.2020.100751
24. Hari, A., Echchgadda, G., Darkaoui, F.-A., Taarji, N., Sahri, N., Sobeh, M., ..., Lahlali, R. (2024). Chemical composition, antioxidant properties, and antifungal activity of wild Origanum elongatum extracts against Phytophthora infestans. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1278538
25. Chhokar, V., Sangwan, M., Beniwal, V., Nehra, K., Nehra, K. S. (2010). Effect of additives on the activity of tannase from Aspergillus awamori MTCC9299. Applied Biochemistry and Biotechnology, 160(8), 2256-2264. https://doi.org/10.1007/s12010-009-8813-7
26. Saad, M. M., Saad, A. M., Hassan, H. M., Ibrahim, E. I., Abdelraof, M., Ali, B. A. (2023). Optimization of tannase production by Aspergillus glaucus in solid-state fermentation of black tea waste. Bioresources and Bioprocessing, 10(1), 73. https://doi.org/10.1186/s40643-023-00686-9
27. EL-Shaer, H., Shoukry, A., Youness, H. (2021). Detection aflatoxin production by local isolates of Aspergillus spp. And molecular characterization. Archives of Agriculture Sciences Journal, July 24, 45–63. https://doi.org/10.21608/aasj.2021.101616.1091
28. Abdelaziz, A. M., El-Wakil, D. A., Attia, M. S., Ali, O. M., AbdElgawad, H., Hashem, A. H. (2022). Inhibition of Aspergillus flavus Growth and Aflatoxin Production in Zea mays L. Using Endophytic Aspergillus fumigatus. Journal of Fungi, 8(5), 482. https://doi.org/10.3390/jof8050482
29. Arifah, F., Aini, L. Q., Muhibuddin, A. (2023). Molecular and morphological characterization of fungi isolated from nutmeg (Myristica fragrans) in North Sulawesi, Indonesia. Biodiversitas Journal of Biological Diversity, 24(1). https://doi.org/10.13057/biodiv/d240151
30. Diba, K., Kordbacheh, Mirhendi SH, Rezaie, S., Mahmoudi, M. (2007). Identification of Aspergillus Species Using Morphological Characteristics. Pakistan Journal of Medical Science, 23(6), 867–872
31. Toju, H., Tanabe, A. S., Yamamoto, S., Sato, H. (2012). High-Coverage ITS Primers for the DNA-Based Identification of Ascomycetes and Basidiomycetes in Environmental Samples. PLoS ONE, 7(7), e40863. https://doi.org/10.1371/journal.pone.0040863
32. Samson, R. A., Visagie, C. M., Houbraken, J., Hong, S.-B., Hubka, V., Klaassen, C. H. W., ..., Frisvad, J. C. (2014). Phylogeny, identification and nomenclature of the genusAspergillus. Studies in Mycology, 78(1), 141–173. https://doi.org/10.1016/j.simyco.2014.07.004
33. Zarrin, M., Erfaninejad, M. (2016). Molecular variation analysis of Aspergillus flavus using polymerase chain reaction-restriction fragment length polymorphism of the internal transcribed spacer rDNA region. Experimental and Therapeutic Medicine, 12(3), 1628–1632. https://doi.org/10.3892/etm.2016.3479
34. Ezeonuegbu, B. A., Abdullahi, M. D., Whong, C. M. Z., Sohunago, J. W., Kassem, H. S., Yaro, C. A., ..., Batiha, G. E.-S. (2022). Characterization and phylogeny of fungi isolated from industrial wastewater using multiple genes. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-05820-9
35. Raja, H. A., Miller, A. N., Pearce, C. J., Oberlies, N. H. (2017). Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community. Journal of Natural Products, 80(3), 756–770. https://doi.org/10.1021/acs.jnatprod.6b01085
36. Patwardhan, A., Ray S, Roy, A. (2014). Molecular markers in phylogenetic studies-a review. Journal of Phylogenetics & Evolutionary Biology, 2(2), 131.
37. Fagbohun, E. D., Ayantola, K. J., Toyin-Famoroti, A. J. (2020). Isolation and Molecular Characterization of Aspergillus fumigatus and Aspergillus flavus Isolated from Poultry Birds in Ado- Ekiti, Nigeria. Asian Journal of Biotechnology and Bioresource Technology, 31–44. https://doi.org/10.9734/ajb2t/2020/v6i230078