ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta V. 18, No. 5, 2025
P. 30-42, Bibliography 56, Engl.
UDC: 582.282.31.143:[577.117:543.272.31]
doi: https://doi.org/10.15407/biotech18.05.030
UDC 582.282.31.143:[577.117:543.272.31]
EVALUATION OF THE INFLUENCE OF NITROGEN SOURCES ON THE GROWTH CHARACTERISTICS AND CULTURAL-MORPHOLOGICAL CHARACTERS OF Triangularia setosa AND Sordaria fimicola IN CULTURE
Lytvynenko Yu. І. 1, Sevindik M. 2, Krupodorova T. А. 3
1Sumy State Pedagogical University named after A.S. Makarenko, Sumy, Ukraine
2University of Osmaniye Korkut Ata, Osmaniye, Türkey
3Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, Kyiv
The study of coprophilous ascomycetes is highly relevant due to their biotechnological potential, including metabolite production, biodegradation, and roles in nutrient cycling.
Aim. The introduction of Triangularia setosa and Sordaria fimicola into culture, as well as the evaluation of the effects of nitrogen sources on their growth characteristics and cultural-morphological traits.
Methods. The moist chamber method was used to detect and obtain fruiting bodies of ascomycetes. Mycelial cultures were isolated from the obtained ascocarps. Colonies were cultivated on solid agar media to assess the impact of nitrogen sources on radial growth rate and morphological characteristics. Cultural and morphological features of the mycelial colonies were described according to the classification by J.A. Stalpers.
Results. For the first time, it was found that morphogenesis and growth of T. setosa and S. fimicola significantly depend on the type of nitrogen source, which is manifested in the growth rate, expressed morphological, and strain-specific variability.
Conclusions. The revealed sensitivity to the nitrogen regime indicates these species' potential as models for studying adaptive mechanisms of metabolic regulation in coprophilous ascomycetes.
Keywords: coprophilous ascomycetes, Triangularia setosa, Sordaria fimicola, nitrogen sources, cultural characteristics, morphological traits.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2025
References
- `Bhambri, A., Srivastava, M., Mahale, V. G., Mahale, S., Karn, S. K.. (2022) Mushrooms as Potential Sources of Active Metabolites and Medicines. 13:837266. https://doi.org/10.3389/fmicb.2022.837266
- Varghese, R., Dalvi, Y. B., Lamrood, Shinde, B. P., Nair C. K. K. (2019). Historical and current perspectives on therapeutic potential of higher basidiomycetes: an overview. Biotech, 9(10), 362. https://doi.org/10.1007/s13205-019-1886-2
- Sandargo, B., Chepkirui, C., Cheng, T., Chaverra-Muñoz, L., Thongbai, B., Stadler, M., Hüttel, S. (2019). Biological and chemical diversity go hand in hand: Basidiomycota as source of new pharmaceuticals and agrochemicals. Biotechnology advances, 37(6), 107344. 10.1016/j.biotechadv.2019.01.011
- Sum, W. C., Ebaba, S. S., Matasyoh, J. C., Stadler, M. (2023). Recent progress in the evaluation of secondary metabolites from Basidiomycota. Biotechnol., 6, 100155. https://doi.org/10.1016/j.crbiot.2023.100155
- Charria-Girón,, Surup, F., Marin-Felix, Y. (2022). Diversity of biologically active secondary metabolites in the ascomycete order Sordariales. Progress, 21, 43. https://doi.org/10.1007/s11557-022-01775-3
- Lytvynenko, Yu. I. (2024). Coprophilous ascomycetes as promising producers of antimicrobial secondary metabolites [Копрофільні аскомікоти як перспективні продуценти протимікробних вторинних метаболітів]. In: Biological sciences and education in the context of European integration. Scientific monograph. Riga, Latvia : «Baltija Publishing», 34‒62. https://doi.org/10.30525/978-9934-26-443-6-3
- Calaça, S, Araújo, J. C., Silva-Neto C.M., Xavier-Santos S. (2023). Overview of the global research on dung-inhabiting fungi: trends, gaps, and biases. Current Research in Environmental & Applied Mycology, 13(1), 277‒298. https://doi.org/10.5943/cream/13/1/12
- Bills, F., Gloer, J. B., An, Z. (2013). Coprophilous fungi: antibiotic discovery and functions in an underexplored arena of microbial defensive mutualism. Current Opinion in Microbiology, 16(5), 549‒565. https://doi.org/10.1016/j.mib.2013.08.001
- Carroll, , Wiklow, D. T. (1992). The Fungal community: its organization and role in the ecosystem. New York : Marcel Dekker, Inc., 976 p.
- Scheckhuber, Q., Osiewacz, H. D. (2008). Podospora anserina: a model organism to study mechanisms of healthy ageing. Genet. Genomics, 280(5), 365‒374. https://doi.org/10.1007/s00438-008-0378-6
- Paoletti,, Saupe, S. J. (2008). The genome sequence of Podospora anserina, a classic model fungus. Genome Biology, 9(5), 223. https://doi.org/10.1186/gb-2008-9-5-223
- Zickler,, Espagne, E. (2016). Sordaria а model system to uncover links between meiotic pairing and recombination. Cell. Dev. Biol. 54, 149‒157. https://doi.org/10.1016/j.semcdb.2016.02.012
- Glase, C. A. (1995). Study of gene linkage and mapping using tetrad analysis in the fungus Sordaria fimicola. In: Tested studies for laboratory teaching. Vol. 16. Proceedings of the 16th Workshop/Conference of the Association for Biology Laboratory Education (ABLE) Ed. by C. A. Goldman, 1–24.
- Fogle, R., Douglas, D. R., Jumper, C. A., Straus, D. C. (2008). Growth and mycotoxin production by Chaetomium globosum is favored in a neutral pH. J. Mol. Sci., 9(12), 2357‒2365. https://doi.org/10.3390/ijms9122357
- Lopez, J., Vargas-García, M. C., Suárez-Estrella, F., Nichols, N. N., Dien, B. S., Moreno, J. (2007). Lignocellulose-degrading enzymes produced by the ascomycete Coniochaeta ligniaria and related species: application for a lignocellulosic substrate treatment. Enzyme Microb. Technol. 40(4), 794‒800. https://doi.org/10.1016/j.enzmictec.2006.06.012
- Magnelli,, Ramos, А. М., Forchiassin, F. (1996). Factors influencing cellulase production Saccobolus saccoboloides. Mycologia, 88(2), 249‒255. https://doi.org/10.1080/00275514.1996.12026650
- Magnelli,, Forchiassin, F. (1999). Regulation of the cellulase complex production by Saccobolus saccoboloides: induction and repression by carbohydrates. Mycologia, 91(2), 359‒364. https://doi.org/10.1080/00275514.1999.12061027
- Hayhoe, (2016). Coprophilous fungi from koala faeces: a novel source of antimicrobial compounds (Doctoral dissertation). Swinburne University of Technology, Melbourne, 186 p.
- Jayanetti, R., Qun, Y., Bills, G. F., Gloer, J. B. (2015). Hypocoprins A-C: New sesquiterpenoids from the coprophilous fungus Hypocopra rostrata. Nat. Prod., 78(3), 396‒401. https://doi.org/10.1021/np5007718
- Li,, Yue, Q., Krausert, N. M., An , Z., Gloer, J. B., Bills, G. F. (2016). Emestrins: anti-Cryptococcus epipolythiodioxopiperazines from Podospora australis. Nat. Prod. 79(9), 2357‒2363. https://doi.org/10.1021/acs.jnatprod.6b00498
- Mandala, M., Thornton, R. A., Frommer B. R., Cu rotto, J. E., Rozdilsky, W., Kurtz, M. B., Giacobbe, R. A., Bills, G. F., Cabello, M. A., Martín, I. (1995). The discovery of australifungin, a novel inhibitor of sphinganine N-acyltransferase from Sporormiella australis. Producing organism, fermentation, isolation, and biological activity. Antibiot., 48(5), 349–356. https://doi.org/10.7164/antibiotics.48.349
- Mudur, V., Gloer, J. B., Wicklow D. T. (2006). Sporminarins A and B: antifungal metabolites from a fungicolous isolate of Sporormiella minimoides. Antibiot., 59(8), 500–506. https://doi.org/10.1038/ja.2006.70
- Segeth, M. P., Bonnefoy, A., Brönstrup, M., Kn auf, M., Schummer, D., Toti, L., Vértesy, L., Wetzel-Raynal, M. C., Wink, J., Seibert, G. (2003). Coniosetin, a novel tetramic acid antibiotic from Coniochaeta ellipsoidea DSM 13856. Antibiot., 56(2), 114–122. https://doi.org/10.7164/antibiotics.56.114
- Wang,-J., Gloer, J. B., Scott., J. A., Ma lloch D., (1995). Coniochaetones A and B: new antifungal benzopyranones from the coprophilous fungus Coniochaeta Saccardoi. Tetrahedron Lett, 36(14), 5847- https://doi.org/10.1016/0040-4039(95)01174-G
- Farouq, A., Abdullah, D. K., Hooi-Ling, F., Abdullah, N.. (2012). Isolation and characterization of coprophilous cellulolytic fungi from asian elephant (Elephas maximus) dung. Biol. Agr. Healthc., 2(7), 44‒51.
- 26, Che, Y., Araujo, A., Gloer, J. B., Sc ott, J. A., Malloch, D. (2005). Communiols E-H: new polyketide metabolites from the coprophilous fungus Podospora communis. Nat. Prod. 68, 435–438. https://doi.org/10.1021/np049592f
- Che, Y., Gloer, J. B., Koster, B., Ma lloch, D. (2002). Decipinin A and decipienolides A and B: new bioactive metabolites from the coprophilous fungus Podospora decipiens. J .Nat. Prod., 65, 916–919. https://doi.org/10.1021/np010575p
- Che, Y., Gloer, J. B., Scott, J., Ma lloch, D. (2004). Communiols A-D: new mono- and bis-tetrahydrofuran derivatives from the coprophilous fungus Podospora communis. Tetrahedron Lett., 45, 6891‒6894. https://doi.org/10.1016/j.tetlet.2004.07.093
- Fujimoto, H., Fujimaki, T., Okuyama, E., Ya mazaki, M. (2000). Immunosuppressive constituents from an ascomycete, Sordaria gondaensis. JSM Mycotoxins, 50, 93–99. https://doi.org/10.2520/myco1975.50.93
- Matasyoh, J. C., Dittrich, B., Schueffler, A., Laatsch, H.. (2011). Larvicidal activity of metabolites from the endophytic Podospora against the malaria vector Anopheles gambiae. Res. 108, 561–566. https://doi.org/10.1007/s00436-010-2098-1
- Wang, H. J., Gloer, K. B., Gloer, J.B., Scott, J. A., Malloch, D. (1997). Anserinones A and B: new antifungal and antibacterial benzoquinones from the coprophilous fungus Podospora anserina. Nat. Prod. 60, 629–631. https://doi.org/10.1021/np970071k
- Wang, Y., Gloer, J. B., Scott, J. A., Malloch, D. (1993). Appenolides A-C: three new antifungal furanones from the coprophilous fungus Podospora appendiculata. Nat. Prod., 56, 341‒344. https://doi.org/10.1021/np50093a005
- Weber, R., Meffert A., Anke H., Sterner, O. (2005). Production of sordarin and related metabolites by the coprophilous fungus Podospora pleiospora in submerged culture and in its natural substrate. Res., 109, 619‒626. https://doi.org/10.1017/s0953756205002765
- Xie, N., Ruprich-Robert, G., Silar, P., Chapeland-Leclerc, F. (2015). Bilirubin oxidase-like proteins from Podospora anserina: promising thermostable enzymes for application in transformation of plant biomass. Microbiol., 17, 866‒875. https://doi.org/10.1111/1462-2920.12549
- Bouillant, M. L., Bernilion, J., Favre-Bonvin, J., Salin, N. (1989). New hexaketides related to sordariol in Sordaria macrospora. Naturforsch., 44, 719‒723. https://doi.org/10.1515/znc-1989-9-1001
- Bouillant, M. L., Favre-Bonvin, J., Salin, N., Bernillon, J. ( (1988). Sordariol and related compounds, hexaketides in the fungus Sordaria macrospora. Phytochemistry, 27, 1517‒1519. https://doi.org/10.1016/0031-9422(88)80227-9
37. Hyde, D., Noorabadi, M. T., Thiyagaraja, V., He, M. Q., Johnston, P. R., Wijesinghe, S. N., Armand, A., Biketova, A. Y.,…, Zvyagina E.. (2024). The 2024 Outline of Fungi and fungi-like taxa. Mycosphere, 15(1), 5146-6239. https://doi.org/10.5943/mycosphere/15/1/25
38. Marin-Felix,, Miller, A. N., Cano-Lira, J. F., Gu arro, J., García, D., Stadler, M., Huhndorf, S. M., Stchigel, A. M. (2020). Re-evaluation of the order Sordariales: delimitation of Lasiosphaeriaceae s. str., and introduction of the new families Diplogelasinosporaceae, Naviculisporaceae, and Schizotheciaceae. Microorganisms, 8, 1430. https://doi.org/10.3390/microorganisms8091430
39. Che, Y., Gloer, J. B., Wicklow, D. T. (2004). Curvicollides A-C: new polyketide-derived lactones from a sclerotium-colonizing isolate of Podospora curvicolla (NRRL 25778). Org. Lett. 6, 1249‒1252. https://doi.org/10.1021/ol0498186
40. Geris, R., Simpson, T. J. (2009). Secondary metabolites from the fungus Podospora anserina. Nat. Prod. Rep., 26(8), 1066‒1094. https://doi.org/10.1039/b819070p https://doi.org/10.1039/b820413f
41. Wang, H. (2023). Characterization of secondary metabolites in the filamentous fungus Podospora anserina: For a better understanding of fungal physiology and the isolation of new bioactive metabolites. Microbiology and Parasitology. Université Paris Cité. English. NNT, 2023UNIP5113. https://theses.hal.science/tel-04777786v1
42, Ferrari, R., Lacaze, I., Le Faouder, P., Bertrand-Michel, J., Oger, C., Galano, J. M., Durand, T., Moularat, S., …, Silar, P. (2018). Cyclooxygenases and lipoxygenases are used by the fungus Podospora anserina to repel nematodes. Biochimica et biophysica acta. General subjects, 1862(10), 2174‒2182. https://doi.org/10.1016/j.bbagen.2018.07.012
43. Li,, Wang, X., Luo, J. Ya ng, M., Kong, L.. (2016). Antioxidant sordariol dimers from Sordaria macrospora and the absolute configuration determinations of their two simultaneous linear 1,2-diols. Tetrahedron Lett., 57, 2754‒2757. https://doi.org/10.1016/j.tetlet.2016.05.014
44. Keyworth, S. (1951). A Petridish moist chamber. Trans. Brit. Mycol. Soc., 34, 291‒292. https://doi.org/10.1016/S0007-1536(51)80054-8
45. Buhalo, A. S., Dzygun, L. P., Linovytska, V. M. (2013). Isolation of higher basidiomycetes, promising producers of biologically active substances, in pure culture and their long-term preservation. KPI Science News, 3, 12‒17.
- Stalpers, A. (1978). Identification of wood-inhabiting Aphyllophorales in pure culture. Mycol., 16, 1‒248.
- Alsohaili,A., Bani-Hasan, B. M. (2018). Morphological and molecular identification of fungi isolated from different environmental sources in the northern eastern desert of Jordan. Jordan J. Biol. Sci., 11(3), 329‒337.
48. Krupodorova, T., Barshteyn, V., Sekan A. (2021). Review of the basic cultivation conditions influence on the growth of basidiomycetes. CREAM (Current Research in Environmental & Applied Mycology), 1, 494‒531. https://doi.org/10.5943/cream/11/1/34
49. Dzhagan, V., Krupodorova, T., Atamanchuk, A., Lytvynenko, Y., Dzhagan, V.. (2023). Growth and morphological characteristics of some pyrophilous discomycetes in culture. Biosystems Diversity, 31(3), 282‒289. https://doi>.org/10.15421/012332
- Tudzynski, B. (2014). Nitrogen regulation of fungal secondary metabolism in fungi. Microbiol., 5:656. https://doi.org/10.3389/fmicb.2014.00656
- Carlile, M. J., Watkinson, S. C., Gooday, G. W. (2001). The Fungi. 2nd ed. London: Academic Press, 608 p.
- Moore, D., Robson, G. D., Trinci. A. P. J. (2011). 21st Century Guidebook to Fungi. Cambridge: Cambridge University Press, 610 p.
- Jellison, J., Goodell, B. (2002). Fungal Bioremediation. Boca Raton: CRC Press, 610 p.
54. Devi, K. S., Misra, D. K., Saha, J. K., Devi, Ph. S., Sinha, B. (2018). Screening of suitable culture media for growth, cultural and morphological characters of Pycnidia forming fungi. Inter. J. Curr. Microbiol. Appl. Sci., 7, 4207‒4214. https://doi.org/10.20546/ijcmas.2018.708.440
55. Gwon, J., Park, H., Eom, A. (2022). Effect of temperature, pH, and media on the mycelial growth of Tuber koreanum. Mycobiology, 50(4), 238‒243. https://doi.org/10.1080/12298093.2022.2112586
56. Suvanwita L., Moumita C., Sreeja N., Surekha, K. (2024). Differential colony growth and morphology of Colletotrichum capsici under different culture conditions and photoperiods. J. Mycopathol. Res., 62(4), 735‒739. https://doi.org/10.57023/JMycR.62.4.2024.735a