ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta V. 18, No. 5, 2025
P. 43-53, Bibliography 29, Engl.
UDC: 602.4+604+663.1
doi: https://doi.org/10.15407/biotech18.05.043
COMPREHENSIVE EVALUATION OF THE BIOSYNTHETIC POTENTIAL OF Lactobacillus delbrueckii STRAINS IN LACTIC ACID SYNTHESIS
Kiiv D.I. Vasylyuk S.V.
Lviv Polytechnic National University, Department of Technology of Biologically Active Substances,
Pharmacy and Biotechnology, Uktaine
Aim. To perform a comprehensive evaluation of the biosynthetic potential of Lactobacillus delbrueckii strains in lactic acid synthesis for potential industrial use.
Methods. The study examined four strains of Lactobacillus delbrueckii capable of synthesizing lactic acid (LA). The concentration of lactic acid in the fermentation broth at the end of fermentation was determined using high-performance liquid chromatography. The concentration of free reducing sugars in the nutrient medium was analyzed by a modified Bertrand method at the beginning of the process and by either the Bertrand or Somogyi-Nelson method at the end.
Results. The biosynthesis of lactic acid by four L. delbrueckii strains (PB-07, UY-2/13, BMP-92, Q-50) was studied under varying concentrations of carbon sources and nitrogen sources, as well as under optimal (40°C, without stirring) and suboptimal (30°C and 50 °C, with stirring) fermentation conditions. One strain, L. delbrueckii UY-2/13, demonstrated characteristics suitable for commercial production, achieving a biosynthesis yield of approximately 70 g/dm³ using an inexpensive nitrogen source in batch cultivation with high initial glucose concentrations. The study revealed that physical parameters have a significant influence on the process. A fermentation temperature of 50 °C strongly inhibited lactic acid biosynthesis, while the inhibitory effect at 30 °C was less pronounced. Additionally, pH adjustment and temperature control during fermentation require precise regulation to avoid adverse effects.
Conclusions. The L. delbrueckii UY-2/13 strain is a promising candidate for lactic acid production. Its cultivation on cost-effective raw materials, such as low-cost corn extract, could enhance the economic viability of the process.
Keywords: Lactobacillus delbrueckii, biosynthesis, lactic acid, fermentation, lactic acid bacteria, organic acid production, biotechnology.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2025
References
1. Castillo Martinez, F. A., Balciunas, E. M., Salgado, J. M., Domínguez González, J. M., Converti, A., Oliveira, R. P. d. S. (2013). Lactic acid properties, applications and production: A review. Trends in Food Science & Technology, 30(1), 70–83. https://doi.org/10.1016/j.tifs.2012.11.007
2. Wang, C., Chang, T., Yang, H., Cui, M. (2015). Antibacterial mechanism of lactic acid on physiological and morphological properties of Salmonella Enteritidis, Escherichia coli and Listeria monocytogenes. Food Control, 47, 231–236. https://doi.org/10.1016/j.foodcont.2014.06.034
3. Gezae Daful, A., Loridon, M., R. Chandraratne, M. (2024). Lactic Acid Production from Lignocellulosic Biomass. IntechOpen. https://doi.org/10.5772/intechopen.112739
4. Senthamaraikannan, C., Akash, K., Amanullah, S., Barath, M., Manojkumar, R., Jagadeeshwaran, J. (2020). Overview of Polylactic acid and its derivatives in medicinal applications. IOP Conference Series: Materials Science and Engineering, 988, 012003. https://doi.org/10.1088/1757-899x/988/1/012003
5. Manandhar, A., Shah, A. (2023). Techno-Economic analysis of the production of lactic acid from lignocellulosic biomass. Fermentation, 9(7), 641. https://doi.org/10.3390/fermentation9070641
6. Abedi, E., Hashemi, S. M. B. (2020). Lactic acid production – producing microorganisms and substrates sources-state of art. Heliyon, 6(10). https://doi.org/10.1016/j.heliyon.2020.e04974
7. Okhmat, O., Zhaldak, M., Mokrousov, M. (2024). The global lactic acid market. Herald of Khmelnytskyi National University. Technical Sciences. 1(6), 215–222. https://doi.org/10.31891/2307-5732-2024-343-6-33
8. Saavedra, S., Alejandro-Paredes, L., Flores-Santos, J. C., Flores-Fernández, C. N., Arellano-García, H., Zavaleta, A. I. (2021). Optimization of lactic acid production by Lactobacillus plantarum strain Hui1 in a medium containing sugar cane molasses. Agronomía Colombiana, 39(1), 98–107. https://doi.org/10.15446/agron.colomb.v39n1.89674
9. Kiiv, D., Vasylyuk, S., Lubenets, V. (2024). Lactic acid: Industrial synthesis, microorganisms-producers and substrates: A review. Chemistry & Chemical Technology, 18(2), 157–169. https://doi.org/10.23939/chcht18.02.157
10. Okano, K., Tanaka, T., Ogino, C., Fukuda, H., Kondo, A. (2009). Biotechnological production of enantiomeric pure lactic acid from renewable resources: Recent achievements, perspectives, and limits. Applied Microbiology and Biotechnology, 85(3), 413–423. https://doi.org/10.1007/s00253-009-2280-5
11. Taskila, S., Ojamo, H. (2013). The Current Status and Future Expectations in Industrial Production of Lactic Acid by Lactic Acid Bacteria. InTech. https://doi.org/10.5772/51282
12. Battula, S.K., Narayana, S.K.V., Sarva, S.N.G., Besetty, T., Gopinadh, R. (2019). Industrial production of lactic acid and its applications. International Journal of Biotech Research. 1(1), 42–54.
13. Li, Z., Lu, J., Zhao, L., Xiao, K., Tan, T. (2010). Improvement of l-lactic acid production under glucose feedback controlled culture by lactobacillus rhamnosus. Applied Biochemistry and Biotechnology, 162(6), 1762–1767. https://doi.org/10.1007/s12010-010-8957-5
14. Abdel-Rahman, M. A., Tashiro, Y., Sonomoto, K. (2013). Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances, 31(6), 877–902. https://doi.org/10.1016/j.biotechadv.2013.04.002
15. Ojo, A. O., de Smidt, O. (2023). Lactic acid: A comprehensive review of production to purification. Processes, 11(3), 688. https://doi.org/10.3390/pr11030688
16. Coelho, L. F., Lima, C. J. B. d., Rodovalho, C. M., Bernardo, M. P., Contiero, J. (2011). Lactic acid production by new Lactobacillus plantarum LMISM6 grown in molasses: Optimization of medium composition. Brazilian Journal of Chemical Engineering, 28(1), 27–36. https://doi.org/10.1590/s0104-66322011000100004
17. Manandhar, A., Shah, A. (2020). Techno-Economic analysis of bio-based lactic acid production utilizing corn grain as feedstock. Processes, 8(2), 199. https://doi.org/10.3390/pr8020199
18. de Oliveira, P. M., Santos, L. P., Coelho, L. F., Avila Neto, P. M., Sass, D. C., Contiero, J. (2021). Production of L (+) lactic acid by lactobacillus casei ke11: Fed batch fermentation strategies. Fermentation, 7(3), 151. https://doi.org/10.3390/fermentation7030151
19. Garrity, G. M., De Vos, P., Jones, D., Krieg, N., Ludwig, W., Rainey, F., Schleifer, K., Whitman, W. (2010). Bergey’s manual of systematic bacteriology (Vol. 3, The Firmicutes). Springer. https://doi.org/10.1007/978-0-387-68489-5
20. Bertrand M. (1906). The dosage of reducing sugars. In Memoirs presented to the Chemical Society. Masson. 1285–1299
21. Somogyi M. (1952). Notes on sugar determination. Journal of Biological Chemistry. 195(1), 19–23 https://doi.org/10.1016/S0021-9258(19)50870-5
22. Nakano, S., Ugwu, C. U., Tokiwa, Y. (2012). Efficient production of d-(−)-lactic acid from broken rice by Lactobacillus delbrueckii using Ca(OH)2 as a neutralizing agent. Bioresource Technology, 104, 791–794. https://doi.org/10.1016/j.biortech.2011.10.017
23. Farooq, U., Anjum, F., Zahoor, T., Rahman, S., Randhawa, M., Ahmed, Dr A., Akram, K. (2012). Optimization of lactic acid production from cheap raw material: Sugarcane molasses. Pakistan Journal of Botany. 44(1), 333-338
24. Kotzamanidis, C., Roukas, T., Skaracis, G. (2002). Optimization of lactic acid production from beet molasses by Lactobacillus delbrueckii NCIMB 8130. World Journal of Microbiology and Biotechnology, 18(5), 441–448. https://doi.org/10.1023/a:1015523126741
25. Thakur, A., Panesar, P. S., Saini, M. S. (2017). L(+)-Lactic acid production by immobilized lactobacillus casei using low cost agro-industrial waste as carbon and nitrogen sources. Waste and Biomass Valorization, 10(5), 1119–1129. https://doi.org/10.1007/s12649-017-0129-1
26. Sarkar, D., Paul, G. (2019). A study on optimization of lactic acid production from whey by lactobacillus sp isolated form curd sample. Research Journal of Life Science, Bioinformatics, Pharmaceutical and Chemical Sciences. 5. 816-824. 10.26479/2019.0502.6.
27. Qin, H., Gong, S.-S., Ge, X.-Y., Zhang, W.-G. (2012). The effect of temperature on l-lactic acid production and metabolite distribution of Lactobacillus casei. Preparative Biochemistry and Biotechnology, 42(6), 564–573. https://doi.org/10.1080/10826068.2012.665114
28. Beitel, S. M., Coelho, L. F., Contiero, J. (2020). Efficient conversion of agroindustrial waste into D(-) lactic acid by lactobacillus delbrueckii using fed-batch fermentation. BioMed Research International, 2020, 1–13. https://doi.org/10.1155/2020/4194052
29. Panesar, P. S., Kennedy, J. F., Knill, C. J., Kosseva, M. (2010). Production of L(+) lactic acid using Lactobacillus casei from whey. Brazilian Archives of Biology and Technology, 53(1), 219–226. https://doi.org/10.1590/s1516-89132010000100027