ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 16, No. 4, 2023
P. 5-21, Bibliography 99, Engl.
UDC: 577.151:579.22
DOI: https://doi.org/10.15407/biotech16.04.005
MICROBIAL α-L-RHAMNOSIDASES: CLASSIFICATION, DISTRIBUTION, PROPERTIES AND PRACTICAL APPLICATION
N. V. Borzova, L. D. Varbanets
Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine
One of the important problems of current biotechnology is the usage of enzymes of microbial origin for destruction of poorly soluble compounds and synthesis of new drugs. In recent years a great deal of researchers’ attention has been given to such technologically promising carbohydrases as O-glycosylhydrolases catalyzing the hydrolysis of O-glycoside links in glycosides, oligo- and polysaccharides, glycolipids, and other glycoconjugates.
Aim. The review provides data on the position of α-L-rhamnosidases in the modern hierarchical classification of glycosidases and presents data available in the literature on the features of the enzyme structure in various microorganisms.
Methods. The publications from the following databases were analyzed: PubMed (https://pubmed.nsbi.nlm.nih.gov/), the Carbohydrate-Active enZYmes (http://www.cazy.org/), the BRENDA Enzyme Database (https://www.brenda-enzymes.org/).
Results. Data on the physicochemical, catalytic, and kinetic properties of α-L-rhamnosidases in microorganisms of different taxonomic groups have been systematized. The peculiarities of the substrate specificity of the enzyme depending on the nature of the protein and the growing conditions of the producer are characterized.
Conclusions. Functional properties and specificity action of microbial α-L-rhamnosidases suggest their broad-range applicability for food and animal feed processing, as well as obtaining biologically active compounds for the pharmaceutical industry and medicine.
Key words: α-L-rhamnosidase, microorganisms, physicochemical properties, specificity, derhamnosylation, flavonoids
References
- Drula E., Garron M.-L., Dogan S., Lombard V., Henrissat B., Terrapon N. The carbohydrate-active enzyme database, functions and literature. Acids Res. 2022, 50(D1), D571–D577. https://doi.org/10.1093/nar/gkab1045
- Ichinose H., Fujimoto Z., Kaneko S. Characterization of an α-L-rhamnosidase from Streptomyces avermitilis. Biosci Biotechnol Biochem. 2013, 77, 213‒216. https://doi.org/10.1271/bbb.120735
- Manzanares P., van den Broeck H.C., de Graaff L.H., Visser J. Purification and characterization of two different α-L-rhamnosidases, RhaA and RhaB, from Aspergillus aculeatus. Appl Environ Microbiol. 2001, 67, 2230–2234. https://doi.org/10.1128/AEM.67.5.2230-2234.2001
- Tamayo-Ramos J.A., Flipphi M., Pardo E., Manzanares P., Orejas M. L-Rhamnose induction of Aspergillus nidulans α-L-rhamnosidase genes is glucose repressed via a CreA-independent mechanism acting at the level of inducer uptake. Microb Cell Fact. 2012, 11, 26. https://doi.org/10.1186/1475-2859-11-26
- Tautau A.P., Izumi M., Matsunaga E., Higuchi Y., Takegawa K. Microbial α-L-rhamnosidases of glycosyl hydrolase families GH78 and GH106 have broad substrate specificities toward α-L-rhamnosyl- and α-L-mannosyl-linkages. J Appl Glycosci. 2020, 67(3), 87‒93. https://doi.org/10.5458/jag.jag.JAG-2020_0005.
- Chen , Zhang W., Zhang T., Jiang B., Mu W. Advances in the enzymatic production of L-hexoses. Appl Microbiol Biotechnol. 2016, 100, 6971–6979. https://doi.org/10.1007/s00253-016-7694-2.
- Zhang R., Zhang B.L., Xie T., Li G.C., Tuo Y., Xiang Y.T. Biotransformation of rutin to isoquercitrin using recombinant α-L-rhamnosidase from Bifidobacterium breve. Biotechnol Lett. 2015, 37(6), 1257‒1264. https://doi.org/10.1007/s10529-015-1792-6
- Bang H., Hyun Y.J., Shim J., Hong S.W., Kim D.H. Metabolism of rutin and poncirin by human intestinal microbiota and cloning of their metabolizing α-L-rhamnosidase from Bifidobacterium dentium. J Microbiol Biotechnol. 2015, 25(1), 18‒25. https://doi.org/10.4014/jmb.1404.04060
- Beekwilder J., Marcozzi D., Vecchi S., de Vos R., Janssen P., Francke C., van Hylckama Vlieg J., Hall, R.D. Characterization of rhamnosidases from Lactobacillus plantarum and Lactobacillus acidophilus. Appl Environ Microbiol. 2009, 75(11), 3447‒3454. https://doi.org/10.1128/AEM.02675-08
- Avila M., Jaquet M., Moine D., Requena T., Peláez C., Arigoni F., Jankovic I. Physiological and biochemical characterization of the two alpha-L-rhamnosidases of Lactobacillus plantarum Microbiology (Reading, England). 2009, 155(Pt 8), 2739‒2749. https://doi.org/10.1099/mic.0.027789-0
- Michlmayr H, Brandes W, Eder R, Schümann C, del Hierro AM, Kulbe KD. Characterization of two distinct glycosyl hydrolase family 78 alpha-L-rhamnosidases from Pediococcus acidilactici. Appl Environ Microbiol. 2011, 77(18), 6524‒6530. https://doi.org/10.1128/AEM.05317-11
- Cui , Maruyama Y., Mikami B., Hashimoto W., Murata K.Crystal structure of glycoside hydrolase family 78 α-L-rhamnosidase from Bacillus sp. GL1. J Mol Biol. 2007, 374, 384–398. https://doi.org/10.1016/j.jmb.2007.09.003
- Wu T., Pei J., Ge L., Wang Z., Ding G., Xiao W., Zhao L. Characterization of a alpha-L-rhamnosidase from Bacteroides thetaiotaomicron with high catalytic efficiency of epimedin C. Bioorg Chem. 2018, 81, 461‒467. https://doi.org/10.1016/j.bioorg.2018.08.004
- Fujimoto Z., Jackson A., Michikawa M., Maehara T., Momma M., Henrissat B., Gilbert H.J., Kaneko S. The structure of a Streptomyces avermitilis α-L-rhamnosidase reveals a novel carbohydrate-binding module CBM67 within the six-domain arrangement. J Bio Chem. 2013, 288, 12376–12385. https://doi.org/10.1074/jbc.M113.460097
- O'Neill E.C., Stevenson C.E., Paterson M.J., Rejzek M., Chauvin A.L., Lawson D.M., Field R.A. Crystal structure of a novel two domain GH78 family α-rhamnosidase from Klebsiella oxytoca with rhamnose bound. Proteins: Struct Funct Bioinf. 2015, 83, 1742–1749. https://doi.org/10.1002/prot.24807
- Miyata , Kashige N., Satho T., Yamaguchi T., Aso Y., Miake F. Cloning, sequence analysis, and expression of the gene encoding Sphingomonas paucimobilis FP2001 alpha-L-rhamnosidase. Curr Microbiol. 2005, 51, 105–109. https://doi.org/10.1007/s00284-005-4487-8
- Terry B., Ha J., De Lise F., Mensitieri F., Izzo V., Sazinsky M.H. The crystal structure and insight into the substrate specificity of the α-L-rhamnosidase RHA-P from Novosphingobium PP1Y. Arch Biochem Biophys. 2020, 679, 108189. https://doi.org/10.1016/j.abb.2019.108189
- Xiao J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit Rev Food Sci Nutr. 2017, (9), 1874–1905. https://doi.org/10.1080/10408398.2015.1032400
- Mutter M., Beldman G., Schols H.A., Voragen A.G.J. Rhamnogalacturonan α-L-rhamnopyranohydrolase. A novel enzyme specific for the terminal nonreducing rhamnosyl unit in rhamnogalacturonan regions of pectin. Plant Physiol. 1994, 106, 241–50. https://doi.org/10.1104/pp.106.1.241
- Slamova K., Kapesova J., Valentova K. “Sweet Flavonoids”: Glycosidase-catalyzed modifications. Int J Mol Sci. 2018, 19(7), 2126. https://doi.org/10.3390/ijms19072126
- Manach C., Scalbert A., Morand C., Remesy C., Jimenez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004, 79, 727–747. https://doi.org/10.1093/ajcn/79.5.727
- Parhiz H., Roohbakhsh A., Soltani F., Rezaee R., Iranshahi M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother Res. 2015, 29(3), 323‒331. https://doi.org/10.1002/ptr.5256
- Pan L., Zhang Y., Zhang F., Wang Z., Zheng J. α-L-Rhamnosidase: production, properties, and applications. World J Microbiol Biotechnol. 2023, 39, 191. https://doi.org/10.1007/s11274-023-03638-9
- Mueller M., Zartl B., Schleritzko A., Stenzl M., Viernstein H., Unger F. Rhamnosidase activity of selected probiotics and their ability to hydrolyse flavonoid rhamnoglucosides. Bioprocess Biosyst Eng. 2018, 41(2), 221-228. https://doi.org/10.1007/s00449-017-1860-5
- Park C.M., Kim G.M., Cha G.S. Biotransformation of flavonoids by newly isolated and characterized Lactobacillus pentosus NGI01 strain from kimchi. Microorganisms. 2021, 9(5), 1075. https://doi.org/10.3390/microorganisms9051075
- Yadav S., Yadava S., Yadav K.D. α-L-Rhamnosidase selective for rutin to isoquercitrin transformation from Penicillium griseoroseum MTCC-9224. Bioorg Chem. 2017, 70, 222‒228. https://doi.org/10.1016/j.bioorg.2017.01.002
- Singh P., Sahota P.P., Singh R.K. Evaluation and characterization of new α-L-rhamnosidase-producing yeast strains. J Gen Appl Microbiol. 2015, 61(5), 149‒156. https://doi.org/10.2323/jgam.61.149
- Eliades L.A., Rojas N.L., Cabello M.N., Voget C.E., Saparrat M.C. α-L-rhamnosidase and β-D-glucosidase activities in fungal strains isolated from alkaline soils and their potential in naringin hydrolysis. J Basic Microbiol. 2011, 51(6), 659-665. https://doi.org/10.1002/jobm.201100163
- Yadav V., Yadav K. New fungal sources for α-L-rhamnosidase, an important enzyme used in the synthesis of drugs and drug precursors. Nat Prec. 2008, https://doi.org/10.1038/npre.2008.2560.1
- Manzanares P., Orejas M., Ibañez E., Vallés S., Ramón D. Purification and characterization of an α-L-rhamnosidase from Aspergillus nidulans. FEMS Microbiol Lett. 2000, 31, 198‒202. https://doi.org/10.1046/j.1365-2672.2000.00788.x
- Hashimoto W., Nankai H., Sato N., Kawai S., Murata K. Characterization of alpha-L-rhamnosidase of Bacillus GL1 responsible for the complete depolymerization of gellan. Arch Biochem Biophys. 1999, 368(1), 56‒60. https://doi.org/10.1006/abbi.1999.1279
- Kumar D., Yadav S., Yadava S., Yadav K.D.S. An alkali tolerant α-L-rhamnosidase from Fusarium moniliforme MTCC-2088 used in de-rhamnosylation of natural glycosides. Bioorg Chem. 2019, 84, 24‒31. https://doi.org/10.1016/j.bioorg.2018.11.027
- Borzova N.V., Gudzenko O.V., Avdiyuk K.V., Varbanets L.D., Nakonechna L.T. Thermophilic fungi with glycosidase and proteolytic activities. Mikrobiol Z. 2021, 83(3), 24‒ https://doi.org/10.15407/microbiolj83.03.024
- Borzova N.V., Gudzenko O.V., Varbanets L.D., Nakonechnaya L.T., Tugay T.I. Glycosidase and proteolytic activity of micromycetes isolated from the Chernobyl exclusion zone. Mikrobiol Z. 2020, 82(2), 51‒ https://doi.org/10.15407/microbiolj82.02.051
- Monti D., Pisvejcova A., Kren V., Lama M., Riva S. Generation of an a-L-rhamnosidase library and its application for the selective derhamnosylation of natural products. Biotechnol Bioengin. 2004, 87(6), 765‒ https://doi.org/10.1002/bit.20187
- Boyle P., Diehm C., Robertson C. Meta-analysis of clinical trials of Cyclo 3 Fort in treatment of chronic venous insuffiency. Int Angiol. 2003, 22, 250‒262.
- Hashimoto W., Murata K. Аlpha-L-rhamnosidase of Sphingomonas R1 producing an unusual exopolysaccharide of sphingan. Biosci Biotechnol Biochem. 1998, 62(6), 1068‒1074. https://doi.org/10.1271/bbb.62.1068
- Jang I.S., Kim D.H. Purification and characterization of an α-L-rhamnosidase from Bacteroides JY-6, a human intestinal bacterium. Biol Pharm Bull. 1996, 19(12), 1546–1549. https://doi.org/10.1248/bpb.19.1546
- Zverlov VV, Hertel C, Bronnenmeier K, Hroch A, Kellermann J, Schwarz WH. The thermostable α-L-rhamnosidase RamA of Clostridium stercorarium: Mutter biochemical characterization and primary structure of a bacterial α-L-rhamnoside hydrolase, a new type of inverting glycoside hydrolase. Mol Microbiol. 2000, 35, 173–179. https://doi.org/10.1046/j.1365-2958.2000.01691.x
- Hashimoto W., Miake O., Nankai H., Murata K. Molecular identification of an α-L-rhamnosidase from Bacillus strain GL1 as an enzyme involved in complete metabolism of gellan. Arch Biochem Biophys. 2003, 415, 235–244. https://doi.org/10.1016/s0003-9861(03)00231-5
- Gudzenko O.V., Borzova N.V., Varbanets L.D. α-L-Rhamnosidase activity of antarctic strain of Pseudomonas mandelii Mikrobiol Z. 2021, 83(5), 3‒10. https://doi.org/10.15407/microbiolj83.05.011
- Orrillo A.G., Ledesma P., Delgado O.D., Spagna G., Breccia J.D. Cold-active alpha-L-rhamnosidase from psychrotolerant bacteria isolated from a sub-Antarctic ecosystem. Enzyme Microb Technol. 2007, 40, 236‒241. https://doi.org/10.1016/j.enzmictec.2006.04.002
- Varbanets L.D., Avdeeva L.V., Borzova N.V., Matseliukh E.V., Gudzenko A.V., Kiprianova E.A., Iaroshenko L.V. The Black Sea bacteria--producers of hydrolytic enzymes. Mikrobiol Z. 2011, 73(5), 9‒
- Dhaulaniya A.S., Balan B., Kumar M., Agrawal P.K., Singh D.K. Cold survival strategies for bacteria, recent advancement and potential industrial applications. Arch Microbiol. 2019, 201(1), 1‒ https://doi.org/10.1007/s00203-018-1602-3
- Rebuffet E., Groisillier A., Thompson A., Jeudy A., Barbeyron T., Czjzek M., Michel G. Discovery and structural characterization of a novel glycosidase family of marine origin. Environ Microbiol. 2011, 13(5), 1253‒1270. https://doi.org/10.1111/j.1462-2920.2011.02426.x
- Bruno S., Coppola D., di Prisco G., Giordano D., Verde C. Enzymes from marine polar regions and their biotechnological a Mar Drugs. 2019, 17(10), 544. https://doi.org/10.3390/md17100544
- Lou H., Liu X., Liu S., Chen Q. Purification and characterization of a novel α-L-rhamnosidase from Papiliotrema laurentiiZJU-L07 and its application in production of icariin from epimedin C. J Fungi (Basel). 2022, 8(6), 644. https://doi.org/10.3390/jof8060644
- Yanai T., Sato M. Purification and characterization of an alpha-L-rhamnosidase from Pichia angustaBiosci Biotechnol Biochem. 2000, 64(10), 2179‒2185. https://doi.org/10.1271/bbb.64.2179
- Borzova N.V., Gladka G.V., Varbanets L.D., Tashyrev O.B. β-Mannanase activity of yeasts isolated in Antarctic. Mikrobiol Z. 2018, 80(2), 28‒ https://doi.org/10.15407/microbiolj80.02.028
- Borzova N.V., Gudzenko O.V., Gladka G.V., Varbanets L.D., Tashyrev O.B. Enzymatic activity of yeast from Antarctic region. Mikrobiol Z. 2019, 81(6), 16‒ https://doi.org/10.15407/microbiolj81.06.016
- González-Barrio R., Trindade L.M., Manzanares P., de Graaff L.H., Tomás-Barberán F.A., Espín J. Production of bioavailable flavonoid glucosides in fruit juices and green tea by use of fungal alpha-L-rhamnosidases. J Agric Food Chem. 2004, 52(20), 6136‒6142. https://doi.org/10.1021/jf0490807
- Li L., Gong J., Wang S., Li G., Gao T., Jiang Z., Cheng Y.S., Ni H., Li Q. Heterologous expression and characterization of a new clade of Aspergillus α-L-rhamnosidase suitable for citrus juice processing. J Agric Food Chem. 2019, 67(10), 2926‒2935. https://doi.org/10.1021/acs.jafc.8b06932
- Terada Y., Kometani T., Nishimura T., Takii H., Okada S. Prevention of hesperidin crystal formation in canned mandarin orange syrup and clarified orange juice by hesperidin glycosides. Food Sci Technol Int. 1995, 1, 29‒33. https://doi.org/10.3136/fsti9596t9798.1.29
- Spagna G., Barbagallo R.N., Martino A., Pifferi P.G. A simple method for purifying glycosydases, a-L-rhamnopyranosidase from Aspergillus niger to increase the aroma of Moscato wine. Enzyme Microb Technol. 2000, 27, 522‒ https://doi.org/10.1016/s0141-0229(00)00236-2
- Elinbaum S., Ferreyra H., Ellenrieder G., Cuevas C. Production of Aspergillus terreus α-L-rhamnosidase by solid state fermentation. Lett Appl Microbiol. 2002, 34(1), 67‒71. https://doi.org/10.1046/j.1472-765x.2002.01039.x
- Abbate E., Palmeri R., Todaro A., Blanco R., Spagna G. Production of a a-L-rhamnosidase from Aspergillus terreus using citrus solid waste as inducer for application in juice industry. Chem Engineer Transact. 2012, 7, 253‒258. https://doi.org/10.3303/CET1227043
- Soria F., Ellenrieder G. Thermal inactivation and product inhibition of Aspergillus terreus CECT 2663 α-L-rhamnosidase and their role on hydrolysis of naringin solutions. Biosci Biotechnol Biochem. 2002, 66(7), 1442‒1449. https://doi.org/10.1271/bbb.66.1442
- Park S., Kim J., Kim D. Purification and characterization of quercitrin-hydrolyzing alpha-L-rhamnosidase from Fusobacterium K-60, a human intestinal bacterium. J Microbiol Biotechnol. 2005, 15, 519‒
- Miake F., Satho T., Takesue H., Yanagida F., Kashige N., Watanabe K. Purification and characterization of intracellular alpha-L-rhamnosidase from Pseudomonas paucimobilis Arch Microbiol 2000, 173, 65–70. https://doi.org/10.1007/s002030050009
- Koseki T., Mese Y., Nishibori N., Masaki K., Fujii T., Handa T., Yamane Y., Shiono Y., Murayama T., Iefuji H. Characterization of an alpha-L-rhamnosidase from Aspergillus kawachii and its gene. Appl Microbiol Biotechnol. 2008, 80(6), 1007‒ https://doi.org/10.1007/s00253-008-1599-7
- Guillotin L., Kim H., Traore Y., Moreau P., Lafite P., Coquoin V., Nuccio S., de Vaumas R., Daniellou R. Biochemical characterization of the alpha-L-rhamnosidase DtRha from Dictyoglomus thermophilum, application to the selective derhamnosylation of natural flavonoids. ACS Omega. 2019, 4(1), 1916‒1922. https://doi.org/10.1021/acsomega.8b03186
- Mensitieri F., De Lise F., Strazzulli A., Moracci M., Notomista E., Cafaro V., Bedini E., Sazinsky M. H., Trifuoggi M., Di Donato A., Izzo V. Structural and functional insights into RHA-P, a bacterial GH106 α-L-rhamnosidase from Novosphingobium sp. PP1Y. Arch Biochem Biophys. 2018, 648, 1‒11. https://doi.org/10.1016/j.abb.2018.04.013
- Birgisson H., Hreggvidsson G.O., Fridjonsson O.H., Mort A., Kristjánsson J.K., Mattiasson B. Two new thermostable alpha-L-rhamnosidases from a novel thermophilic bacterium. Enzyme Microb Technol. 2004, 34, 561‒571. https://doi.org/10.1016/j.enzmictec.2003.12.012
- Ge L., Xie J., Wu T., Zhang , Zhao L., Ding G., Wang Z., Xiao W. Purification and characterisation of a novel alpha-L-rhamnosidase exhibiting transglycosylating activity from Aspergillus oryzae. Int J Food Sci Technol. 2017, 52, 2596‒2603. https://doi.org/10.1111/ijfs.13546
- Zhang T., Yuan W., Li M., Miao M., Mu W. Purification and characterization of an intracellular α-L-rhamnosidase from a newly isolated strain, Alternaria alternata001. Food Chem. 2018, 269, 63‒69. https://doi.org/10.1016/j.foodchem.2018.06.134
- Rojas N.L., Voget C.E., Hours R.A., Cavalitto S.F. Purification and characterization of a novel alkaline α-L-rhamnosidase produced by Acrostalagmus luteo albus. J Ind Microbiol Biotechnol. 2011,38(9), 1515‒1522. https://doi.org/10.1007/s10295-010-0938-8
- Magario I., Neumann A., Oliveros E., Syldatk C. Deactivation kinetics and response surface analysis of the stability of alpha-L-rhamnosidase from Penicillium decumbens. Appl Biochem Biotechnol. 2009, 152(1), 29‒41. https://doi.org/10.1007/s12010-008-8204-5
- Romero C., Manjón A., Bastida J., Iborra J.L. A method for assaying the rhamnosidase activity of naringinase. Anal Biochem. 1985, 149(2), 566‒ https://doi.org/10.1016/0003-2697(85)90614-1
- Borzova, Gudzenko O., Varbanets L. α-L-Rhamnosidase from Penicillium tardumand its application for biotransformation of citrus rhamnosides. Appl Biochem Biotechnol. 2022, 194, 4915‒4929. https://doi.org/10.1007/s12010-022-04008-1
- Varbanets L.D., Gudzenko O.V., Borzova N.V. α-L-Rhamnosidase from Eupenicillium erubescens, purification and characterization. Nauka i Studia. 2013, 41(109), 11–23.
- Scaroni E., Cuevas C., Carrillo L., Ellenrieder G. Hydrolytic properties of crude alpha-L-rhamnosidases produced by several wild strains of mesophilic fungi. Lett Appl Microbiol. 2002, 34(6), 461‒465. https://doi.org/10.1046/j.1472-765x.2002.01115.x
- Borzova, Gudzenko O., Varbanets L. Purification and characterization of a naringinase from Cryptococcus albidus. Appl Biochem Biotechnol. 2018, 184(3), 953–969. https://doi.org/10.1007/s12010-017-2593-2
- Gudzenko O.V., Borzova N.V., Varbanets L.D. The thermal inactivation of Eupenicillium erubescens α-L-rhamnosidase. Biotechnologia Acta. 2014, 7(6), 23‒ https://doi.org/10.15407/biotech7.06.023
- Gudzenko V., Borzova N.V., Varbanets L.D. Thermal stability of Cryptococcus albidus α-L-rhamnosidase. Ukr Biochem J. 2015, 87(3), 23‒30. https://doi.org/10.15407/ubj87.03.023
- Kudoh A., Okawa Y., Shibata Significant structural change in both O- and N-linked carbohydrate moieties of the antigenic galactomannan from Aspergillus fumigatusgrown under different culture conditions. Glycobiology. 2015, 25(1), 74–87. https://doi.org/10.1093/glycob/cwu091
- Alvarenga A.E., Amoroso M.J., Illanes A., Castro G.R. Cross-linked α-L-rhamnosidase aggregates with potential application in food industry. Eur Food Res Technol. 2014, 238, 797‒ https://doi.org/10.1007/s00217-014-2157-4
- Michon F., Pozsgay V., Brisson J.R., Jennings H.J. Substrate spicifity of naringinase, an α-L-rhamnosidase from Penicillium decumbens. Carbohyd Res. 1989, 194(1), 321‒324. https://doi.org/10.1016/0008-6215(89)85033-5
- Yadav V., Yadav P.K., Yadav S. α-L-rhamnosidase, A review. Process Biochem. 2010, 45(8), 1226‒1235. https://doi.org/10.1016/j.procbio.2010.05.025
- Kurosawa Y., Ikeda K., Egami F. α-L-rhamnosidases of the liver of Turbo cornutus and Aspergillus niger. J Biochem. 1973, 73, 31‒37.
- Yu H., Gong J., Zhang C., Jin F. Purification and characterization of ginsenoside-α-L-rhamnosidase. Chem Pharm Bull. 2002, 50, 175‒178. https://doi.org/10.1248/cpb.50.175
- Kamiya S., Esaki S., Tanaka R.I. Synthesis of certain disaccharides containing α- or β-L-rhamnopyranosidic group and the substrate specificity of α-L-rhamnosidase from Aspergillus niger. Agric Biol Chem. 1985, 49(8), 2351–2358. https://doi.org/10.1080/00021369.1985.10867071
- Guo X., Guo A., Li E. Biotransformation of two citrus flavanones by lactic acid bacteria in chemical defined medium. Bioprocess Biosyst Eng. 2021, 44(2), 235‒ https://doi.org/10.1007/s00449-020-02437-y
- Orejas M., Ibanez E., Ramon D. The filamentous fungus Aspergillus nidulans produces an α-L-rhamnosidase of potential oenological interest. Lett Appl Microbiol. 1999, 28, 383‒388. https://doi.org/10.1046/j.1365-2672.1999.00539.x
- Huang J.J., Hu H.X., Lu Y.J., Bao Y.D., Zhou J.L., Huang M. Computer-aided design of α-L-rhamnosidase to increase the synthesis efficiency of icariside I. Front Bioeng Biotechnol. 2022, 10, 926829. https://doi.org/10.3389/fbioe.2022.926829
- Feng B., Kang L., Ma B., Quan B., Zhou W., Wang Y., Qian X.H. The substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata. 2007, 63, 6796–6812. https://doi.org/10.1007/s00253-007-1117-3
- Feng B., Ma B., Kang L., Xiong C., Wang S. The microbiological transformation of steroidal saponins by Curvularia lunata. Tetrahedron. 2005, 61, 11758–11763. https://doi.org/10.1016/j.tet.2005.08.115
- Stancheva S.L., Alova L.G. Ginsenoside Rg-1 inhibits the brain cAMP phosphodiesterase activity in young and aged rats. Gener Pharmac. 1993, 24(6), 1459‒ https://doi.org/10.1016/0306-3623(93)90435-z
- Owczarek-Januszkiewicz A., Magiera A., Olszewska M. Enzymatically modified isoquercitrin, production, metabolism, bioavailability, toxicity, pharmacology, and related molecular mechanisms. Int J Mol Sci. 2022, 23(23), 14784. https://doi.org/10.3390/ijms232314784
- Li Y., Chu Q., Liu Y., Ye X., Jiang Y., Zheng X. Radix Tetrastigma flavonoid ameliorates inflammation and prolongs the lifespan of Caenorhabditis elegans through JNK, p38 and Nrf2 pathways. Free Radical Res. 2019, 53 (5), 562–573. https://doi.org/10.1080/10715762.2019.1613534
- Erlund I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res. 2004, 24, 851–874. https://doi.org/10.1016/j.nutres.2004.07.005
- Alcaraz M.J., Ferrandiz M.L. Modification of arachidonic metabolism by flavonoids. J Ethnopharmacol. 1987, 21, 209‒ https://doi.org/10.1016/0378-8741(87)90101-2
- Sankyo Co. Ltd. Preparation of antibiotic chlorosporin C. Canadian Patent 1,318,630, 1988.
- Kaul T.N., Middleton E., Ogra P.L. Antiviral effect of flavonoids on human viruses. J Med Virol. 1985, 15, 71–79. https://doi.org/10.1016/j.biopha.2021.111596
- Puri M., Kaur A., Singh R.S., Schwarz W.H., Kaur A. One-step purification and immobilization of His-tagged rhamnosidase for naringin hydrolysis. Proc Biochem. 2010, 45(4), 451‒ https://doi.org/10.1016/j.procbio.2009.11.001
- Şekeroğlu G., Fadıloğlu S., Göğüş F. Immobilization and characterization of naringinase for the hydrolysis of naringin. Eur Food Res Technol. 2006, 224, 55–60. https://doi.org/10.1007/s00217-006-0288-y
- Soria F., Ellenrieder G., Oliveira G.B., Cabrera M., Carvalho L.B. α-L-Rhamnosidase of Aspergillus terreus immobilized on ferromagnetic supports. Appl Microbiol Biotechnol. 2012, 93, 1127–1134. https://doi.org/10.1007/s00253-011-3469-y
- Busto M.D., Meza V., Ortega N., Perez-Mateos M. Immobilization of naringinase from Aspergillus niger CECT 2088 in poly(vinyl alcohol) cryogels for the debittering of juices. Food Chem. 2007, 104(3), 1177‒1182. https://doi.org/10.1016/j.foodchem.2007.01.033
- Liu Q., Lu L., Xiao M. Cell surface engineering of α-l-rhamnosidase for naringin hydrolysis. Bioresource Technol. 2012, 123, 144–149. https://doi.org/10.1016/j.biortech.2012.05.083
- Ribeiro M.H.L., Rabaça M. Cross-linked enzyme aggregates of naringinase: novel biocatalysts for naringin hydrolysis. Enzyme Res. 2011, ID 851272. https://doi.org/10.4061/2011/851272
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2023