ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
Biotechnologia Acta, V. 11, No 6, 2018
https://doi.org/10.15407/biotech11.06.067
Р. 67-72, Bibliography 21, English
Universal Decimal Classification: 616-089.843:612.419-018.4
ABILITY OF THYMIC MSCs AND THEIR DERIVATIVES TO INTERACT WITH THE CELLS OF LYMPHOID ORIGIN
State Institute of Genetic and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv
The aim of the research was to determine the ability of thymic multipotent stromal cells and their derivatives to interact with lymphocytes obtained from different sources. It was shown that a part of thymic cells from 6?8-weeks-old С57BL mice in vitro were characterized by such properties: the ability to adhere to the surfaces of cell-culture plastic, the specific fibroblast-like morphology, and the ability to directed adipogenic and osteogenic differentiation. Due to these properties, the cell populations isolated from thymus could be attributed to the multipotent mesenchymal stromal cells (MMSC) or mesenchymal stem cells (MSCs). We have shown that all types of stromal cells have an ability to interact with the lymphoid cells obtained from different sources (thymocytes, splenocytes, cells of the lymph nodes and bone marrow). The largest number of intercellular associations has been formed with the thymocytes, and the smallest one – with the lymphoid cells of bone marrow. Among differentiated forms osteogenic cells are capable to create higher number of intercellular associations, as compared to adipocytes. Thus, probably the intercellular contact interactions between the MSCs and hematopoietic cells might be used as one of the new approaches for efficient and directed modification of the cell properties.
Key words: mesenchymal stem cells from thymus, MSCs, differentiation, lymphoid cells, intercellular contacts.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Dabrowski F. A., Burdzinska A., Kulesza A., Sladowska A., Zolocinska A., Gala K. Comparison of the paracrine activity of mesenchymal stem cells derived from human umbilical cord, amniotic membrane and adipose tissue. J. Obstet Gynaecol. Res. 2017, V. 43, P. 1758–1768. https://doi.org/10.1111/jog.13432
2. Abumaree M. H., Abomaray F. M., Alshabibi M. A., AlAskar A. S., Kalionis B. Immunomodulatory properties of human placental mesenchymal stem/stromal cells. Placenta. 2017, V. 59, P. 87–95. https://doi.org/10.1016/j.placenta.2017.04.003
3. El-Kehdy H., Pourcher G., Zhang W., Hamidouche Z., Goulinet-Mainot S., Sokal E. Hepatocytic Differentiation Potential of Human Fetal Liver Mesenchymal Stem Cells: In Vitro and In Vivo Evaluation. Stem Cells Int. 2016, V. 2016, P. 6323486. https://doi.org/10.1155/2016/6323486
4. Wang S., Mundada L., Johnson S., Wong J., Witt R., Ohye R. G. Characterization and angiogenic potential of human neonatal and infant thymus mesenchymal stromal cells. Stem Cells Transl. Med. 2015, V. 4, P. 339–350. https://doi.org/10.5966/sctm.2014-0240
5. Arai F. Self-renewal and differentiation of hematopoietic stem cells. Rinsho Ketsueki. 2016, V. 57, P. 1845–1851. https://doi.org/10.11406/rinketsu.57.1845
6. Wang S., Mundada L., Colomb E., Ohye R. G., Si M-S. Mesenchymal Stem/Stromal Cells from Discarded Neonatal Sternal Tissue: In Vitro Characterization and Angiogenic Properties. Stem Cells Int. 2016, V. 2016, P. 5098747. https://doi.org/10.1155/2016/5098747
7. Banwell C. M., Partington K. M., Jenkinson E. J., Anderson G. Studies on the role of IL-7 presentation by mesenchymal fibroblasts during early thymocyte development. Eur. J. Immunol. 2000, V. 30, P. 2125–2129. https://doi.org/10.1002/1521-4141(2000)30 https://doi.org/10.1002/1521-4141(2000)30 https://doi.org/10.1002/1521-4141(2000)30 https://doi.org/10.1002/1521-4141(2000)30:8<2125::AID-IMMU2125>3.0.CO;2-H
8. Chung B., Montel-Hagen A., Ge S., Blumberg G., Kim K., Klein S. Engineering the human thymic microenvironment to support thymopoiesis in vivo. Stem Cells. 2014, V. 32, P. 2386–2396. https://doi.org/10.1002/stem.1731
9. Suniara R. K., Jenkinson E. J., Owen J. J. An essential role for thymic mesenchyme in early T cell development. J. Exp. Med. 2000, V. 191, P. 1051–1056. PMID: 10727466 https://doi.org/10.1084/jem.191.6.1051
10. Nikolskiy I. S., Nikolskaya V. V., Savinova V. O. Intravenous injection of multipotent stromal cells of thymus and immune response. J. Med. Acad. Sci. 2012, V. 4, P. 55–56. (In Russian).
11. Barda-Saad M., Rozenszajn L. A., Globerson A., Zhang A. S., Zipori D. Selective adhesion of immature thymocytes to bone marrow stromal cells: relevance to T cell lymphopoiesis. Exp. Hematol. 1996, V. 24, P. 386–391. PMID:8641370
12. Lotfinegad P., Shamsasenjan K., Movassaghpour A., Majidi J., Baradaran B. Immunomodulatory nature and site specific affinity of mesenchymal stem cells: a hope in cell therapy. Adv. Pharm. Bull. 2014, V. 4, P. 5–13. https://doi.org/10.5681/apb.2014.002
13. Li W., Ren G., Huang Y., Su J., Han Y., Li J. Mesenchymal stem cells: a double-edged sword in regulating immune responses. Cell Death Differ. 2012, V. 19, P. 1505–1513. https://doi.org/10.1038/cdd.2012.26
14. Le Blanc K., Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat. Rev. Immunol. 2012, V. 12, P. 383–396. https://doi.org/10.1038/nri3209
15. Nikolskiy I. S., Nikolskaya V. V., Demchenko D. L., Zubov D. O. Potentiation of directed osteogenic differentiation of thymic multipotent stromal cells by prior co-cultivation with thymocytes. Cell Organ Transplantol. 2016, V. 4. https://doi.org/10.22494/cot.v4i2.59
16. Prockop D. J., Bunnell B. A., Phinney D. G., editors. Mesenchymal Stem Cells. Totowa, NJ: Humana Press. 2008. https://doi.org/10.1007/978-1-60327-169-1
17. Vikulin I. M., Gorbachev V. E., Korobitsin B. V. Assessing the suitability measurements and elimination of abnormal values. Naukovі Pratsі ONAZ Іm O. S. Popova – Proceedings of the O. S. Popov ОNAT. 2007, V. 2, P. 106–111. (In Ukrainian).
18. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006, V. 8, P. 315–317. https://doi.org/10.1080/14653240600855905
19. Pittenger M. F., Mackay A. M., Beck S. C., Jaiswal R. K., Douglas R., Mosca J. D. Multilineage potential of adult human mesenchymal stem cells. Science. 1999, V. 284, P. 143–147. PMID: 10102814 https://doi.org/10.1126/science.284.5411.143
20. Siepe M., Thomsen A. R., Duerkopp N., Krause U., F?rster K., Hezel P. Human neonatal thymus-derived mesenchymal stromal cells: characterization, differentiation, and immunomodulatory properties. Tis. Eng. Part A. 2009, V. 15, P. 1787–1796. https://doi.org/10.1089/ten.tea.2008.0356
21. Nikolska K. I. Peculiarities of Culture and In vitro Contact Interaction of Cryopreserved Thymic Multipotent Stromal Cells and Hemopoietic Cells. Probl. Cryobiol. Cryomed. 2018, V. 28, P. 005–0013. https://doi.org/10.15407/cryo28.01.005