ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 8, No 5, 2015
https://doi.org/10.15407/biotech8.05.027
Р. 27-38, Bibliography 40, English
Universal Decimal Classification: 759.873.088.5:661.185
IMPROVEMENT OF THE TECHNOLOGY FOR SURFACTANT SYNTHESIS BY Acinetobacter calcoaceticus ІМV В-7241
National University of Food Technologies, Kyiv, Ukraine
The aim of the work was to intensify the synthesis of surfactants by Acinetobacter calcoaceticus IMV-7241 cultivated on ethanol and other carbon substrates. A. calcoaceticus IMV-7241 was grown in the medium with mono- (ethanol, glycerol, liquid paraffin, n-hexadecane, glucose) and mixed substrates in the presence of organic acids or heavy metal cations (0.1–2.0 mM Cu2+, Cd2+, Zn2+, Pb2+). The synthesis of surfactants was evaluated by emulsification index of cultural liquid, conditional concentration and concentrations of extracellular surfactants, which were determined gravimetrically after their extraction from supernatant with the mixture of methanol and chloroform. It was shown that addition of citrate and fumarate (0.01%) at the end of exponential growth phase of A. calcoaceticus ІМV В-7241 in the medium with ethanol (2%) and the maintenance of neutral pH increased the surfactants’ concentration in 3.5 times (up to 6.0 g/l). The quantity of extracellular surfactants synthesized by the strain ІМV В-7241 in the medium containing mixture of n-hexadecane and glycerol (molar ratio 1:7) and C/N 30 was increased in 2.6–3.5 times in comparison with cultivation on corresponding monosubstrates. Addition of 2.0 mM Cu2+ at the stationary growth phase of A. calcoaceticus ІМV В-7241 in medium with liquid paraffin and n-hexadecane led to the increase of surfactants’ synthesis in 2.3–2.5 times compared with those in the medium without Cu2+.
Approaches to intensification of surfactants’ synthesis by A. calcoaceticus ІМV В-7241 (including addition of biosynthesis precursors and cultivation on the mixture of substrates) can be used to increase the efficiency of microbial technologies.
Key words: surface-active substances, intensification of biosynthesis, heavy metals.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2015
References
1. Marchant R., Banat I. M. Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol. Lett. 2012, 34 (9), 1597–1605.
http://dx.doi.org/10.1007/s10529-012-0956-x
2. Banat I. M., Franzetti A., Gandolfi I., Bestetti G., Martinotti M. G., Fracchia L., Smyth T. J., Marchant R. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 2010, 87 (2), 427–444.
http://dx.doi.org/10.1007/s00253-010-2589-0
3. Banat I. M., Satpute S. K., Cameotra S. S., Patil R., Nyayanit N. V. Cost effective technologies and renewable substrates for biosurfactants' production. Front. Microbiol. 2014, 5 (697). doi: 10.3389/fmicb.2014.00697.
4. Peng F., Liu Z., Wang L., Shao Z. An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J. Appl. Microbiol. 2007, 102 (6), 1603–1611.
http://dx.doi.org/10.1111/j.1365-2672.2006.03267.x
5. Franzetti A., Gandolfi I., Bestetti G., Smyth T. J. P., Banat I. M. Production and applications of trehalose lipid biosurfactants. Europ. J. Lipid Sci. Technol. 2010, 112 (6), 617–627.
http://dx.doi.org/10.1002/ejlt.200900162
6. Tuleva B., Christova N., Cohen R., Stoev G., Stoineva I. Production and structural elucidation of trehalose tetraesters (biosurfactants) from a novel alkanothrophic Rhodococcus wratislaviensis strain. J. Appl. Microbiol. 2008, 104 (6), 1703–1710.
http://dx.doi.org/10.1111/j.1365-2672.2007.03680.x
7. Pidhorskyy V., Iutinska G., Pirog T. Intensification of microbial synthesis technologies. Кyiv: Nauk. Dumka. 2010, 327 p. (In Ukrainian).
8. Pirog T. P., Antonyuk S. I., Karpenko Ye. V., Shevchuk T. A. The influence of conditions of Acinetobacter calcoaceticus K-4 strain cultivation on surface-active substances synthesis. Appl. Biochem. Microbiol. 2009, 45 (3), 272–278.
http://dx.doi.org/10.1134/S0003683809030065
9. Sadouk Z., Hacene H., Tazerouti A. Biosurfactants production from low cost substrate and degradation of diesel oil by a Rhodococcus strain. Oil Gas Sci. Technol. 2008, 63 (6), 747–753.
http://dx.doi.org/10.2516/ogst:2008037
10. Tokumoto Y., Nomura N., Uchiyama H., Imura T., Morita T., Fukuoka T., Kitamoto D. Structural characterization and surface-active properties of a succinoyl trehalose lipid produced by Rhodococcus sp. SD-74. Oleo Sci. 2009, 58(2), 97–102.
http://dx.doi.org/10.5650/jos.58.97
11. Toren A., Navon-Venezia S., Ron E. Z., Rosenberg E. Emulsifing activities of purified alasan proteins from Acinetobacter radioresistens KA53. Appl. Environ. Microbiol. 2001, 67 (3), 1102–1106.
http://dx.doi.org/10.1128/AEM.67.3.1102-1106.2001
12. Dams-Kozlowska H., Mercaldi M.P., Panilaitis B.J., Kaplan D.L. Modifications and applications of the Acinetobacter venetianus RAG-1 exopolysaccharide, the emulsan complex and its components. Appl. Microbiol. Biotechnol. 2008, 81 (2), 201–210.
http://dx.doi.org/10.1007/s00253-008-1664-2
13. Zhao Z., Wong J. W. C. Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the solubility and biodegradation of phenanthrene. Environ. Technol. 2009, 30 (3), 291–299.
http://dx.doi.org/10.1080/09593330802630801
14. Chen J., Huang P. T., Zhang K. Y., Ding F. R. Isolation of biosurfactant producers, optimization and properties of biosurfactant produced by Acinetobacter sp. from petroleum-contaminated soil. J. Appl. Microbiol. 2012. 112 (4), 660–671.
http://dx.doi.org/10.1111/j.1365-2672.2012.05242.x
15. Bao M., Pi Y., Wang L., Sun P., Li Y., Cao L. Lipopeptide biosurfactant production bacteria Acinetobacter sp. D3-2 and its biodegradation of crude oil. Environ. Sci. Process Impacts. 2014, 16 (4), 897–903.
http://dx.doi.org/10.1039/c3em00600j
16. Zou C., Wang M., Xing Y., Lan G., Ge T., Yan X., Gu T. Characterization and optimization of biosurfactants produced by Acinetobacter baylyi ZJ2 isolated from crude oil-contaminated soil sample towards microbial enhanced oil recovery applications. Biochem. Eng. J. 2014. http://dx.doi.org/10.1016/j.bej.2014.05.007.
17. Ho?kov? M., Je?d?k R., Schreiberov? O., Chudoba J., ??r M., ?ejkov? A., Mas?k J., Jirk? V., ?ezanka T. Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures. J. Biotechnol. 2015, V. 193, P. 45–51. doi: 10.1016/j.jbiotec.2014.11.014.
18. Rooney A. P., Price N. P. J., Ray K. J., Kuo T.-M. Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. FEMS Microbiol. Lett. 2009, 295 (1), 82–87.
http://dx.doi.org/10.1111/j.1574-6968.2009.01581.x
19. Pirog T. P., Shevchuk T. A., Shulyakova M. A. The influence of organic acids on biosurfactant synthesis by strain Acinetobacter calcoaceticus IMV В-7241 culture on glycerol medium. Biotekhnolohiia. 2012, 5 (4), 88–95. (In Ukrainian).
20. Cooper D. C., Goldenger B. G. Surface-active agents from two Bacillus species. Appl. Environ. Microbiol. 1987, 53 (2), 224–229.
21. Pirog Т. P., Konon А. D., Pokora K. A., Shevchuk Т. A., Іutinskaya G. A. Influence of heavy metals on surfactants synthesis by Nocardia vaccinii ІMV В-7405. Mikrobiol. Zh. 2014, 76 (4), 9–16. (In Russian).
22. Pirog T. P., Korzh Yu. V., Shevchuk T. A., Tarasenko D. O. Peculiarities of C2-metabolism and intensification of the synthesis of surface active substances in Rhodococcus erythropolis EK-1 grown in ethanol. Microbiology. 2008, 77 (6), 665?673.
http://dx.doi.org/10.1134/S0026261708060039
23. Pan Y. T., Carroll J. D., Elbein A. D. Trehalose-phosphate synthase of Mycobacterium tuberculosis. Cloning, expression and properties of the recombinant enzyme. Eur. J. Biochem. 2002, 269 (24), 6091–6100.
http://dx.doi.org/10.1046/j.1432-1033.2002.03327.x
24. Lakin G. F. Biometrics. Moskva: Vysshaha shkola. 1990, 352 p. (In Russian).
25. Ivanovskiy R. N. Bioenergy and transport of substrates in bacteria. Moskva: MAKSPress. 2001, 46 p. (In Russian).
26. De Roubin M. R., Mulligan C. N., Gibbs B. F. Correlation of enhanced surfactin production with decreased isocitrate dehydrogenase activity. Can. J. Microbiol. 1989, 35 (9), 854–859.
http://dx.doi.org/10.1139/m89-143
27. Pirog T. P., Shulyakova M. O., Shevchuk T. A. Mixed substrates in environment and biotechnological processes. Biotechnol. Acta. 2013, 6 (6), 28–44. (In Ukrainian).
http://dx.doi.org/10.15407/biotech6.06.028
28. Pirog T. P., Konon A. D., Shevchuk T. A., Bilets I. V. Intensification of biosurfactant synthesis by Acinetobacter calcoaceticus IMV B-7241 on a hexadecane–glycerol mixture. Microbiology. 2012, 81 (5), 565–572.
http://dx.doi.org/10.1134/S0026261712050128
29. Daverey A., Pakshirajan K. Sophorolipids from Candida bombicola using mixed hydrophilic substrates: production, purification and characterization. Colloids Surf. B. Biointerfaces. 2010, 79 (1), 246–253.
http://dx.doi.org/10.1016/j.colsurfb.2010.04.002
30. Konishi M., Morita T., Fukuoka T., Imura T., Kakugawa K., Kitamoto D. Efficient production of mannosylerythritol lipids with high hydrophilicity by Pseudozyma hubeiensis KM-59. Appl. Microbiol. Biotechnol. 2008, 78 (1), 37–46.
http://dx.doi.org/10.1007/s00253-007-1292-2
31. Borisova O. Iu., Gruber I. M., Egorova N. B., Ignatova O. M., Astashkina E. A. Genetic characteristics of Staphylococcus aureus No 6. strain – producer of secreted protein-containing compounds possessing protective properties. Zh. Mikrobiol. Epidemiol. Immunobiol. 2014, V. 6, P. 43–47. (In Russian).
32. Pirog T. P., Konon A. D., Sofilkanich A. P., Shevchuk T. A., Parfeniuk S. A. Effect of Cu2+ on synthesis of biosurfactants of Acinetobacter calcoaceticus IMV B-7241 and Rhodococcus erythropolis IMV Ac-5017. Mikrobiol. Zh. 2013, 75 (1), 3–13. (In Russian).
33. Mao X., Jiang R., Xiao W., Yu J. Use of surfactants for the remediation of contaminated soils: a review. J. Hazard. Mater. 2015, V. 285, P. 419–435. doi: 10.1016/j.jhazmat.2014.12.009.
34. Zhang H. O., Zhou W. Z., Ma Y. H., Zhao H. X., Zhang Y. Z. FTIR spectrum and detoxication of extracellular polymeric substances secreted by microorganism. Guang. Pu. Xue. Yu. Guang. Pu. Fen. Xi. 2013, 33 (11), 3041–3043.
35. Zhou W., Zhang H., Ma Y., Zhou J., Zhang Y. Bio-removal of cadmium by growing deep-sea bacterium Pseudoalteromonas sp. SCSE709-6. Extremophiles. 2013, 17 (5), 723–731.
http://dx.doi.org/10.1007/s00792-013-0554-4
36. Sriram M. I., Kalishwaralal K., Deepak V., Gracerosepat R., Srisakthi K., Gurunathan S. Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Coll. Surf. B. Biointerf. 2011, 85 (2), 174?181.
http://dx.doi.org/10.1016/j.colsurfb.2011.02.026
37. Neilson J. W., Zhang L., Veres-Schalnat T. A., Chandler K. B., Neilson C. H., Crispin J. D., Pemberton J. E., Maier R. M. Cadmium effects on transcriptional expression of rhlB/rhlC genes and congener distribution of monorhamnolipid and dirhamnolipid in Pseudomonas aeruginosa IGB83. Appl. Microbiol. Biotechnol. 2010, 88 (4), 953–963.
http://dx.doi.org/10.1007/s00253-010-2808-8
38. Singh A. K., Dhanjal S., Cameotra S. S. Surfactin restores and enhances swarming motility under heavy metal stress. Coll. Surf. B. Biointerf. 2014, V. 116, P. 26–31. doi: 10.1016/j.colsurfb.2013.12.035.
39. Pirog T. P., Shulyakova M. O., Shevchuk T. А., Sofylkanich A. Р. Biotechnological potential of bacteria of Rhodococcus strain and their metabolites. Biotekhnolohiia. 2012, 5 (2), 51–68. (In Ukrainian).
40. Pirog T. Р., Konon A. D. Microbial surf actants. I. Glycolipids. Biotechnol. Acta. 2014, 7 (1), 9–30. (In Ukrainian). doi: 10.15407/biotech7.01.009