- Details
- Hits: 272
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 13, No 6, 2020
Р. 58-63, Bibliography 17, English
Universal Decimal Classification: 619:616.98-078:578.842.2:577.2.08:636.4
https://doi.org/10.15407/biotech13.06.058
DEVELOPMENT OF RECOMBINANT POSITIVE CONTROL FOR AFRICAN SWINE FEVER VIRUS PCR DETECTION
M. Kit, O. Zlenko, O. Solodiankin, V. Bolotin, A.Gerilovych
National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine” of the National Academy of Agrarian Sciences of Ukraine, Kharkiv
Recombinant plasmids containing target sequences are widely used as positive controls for PCR laboratory diagnostics. The aim of the study was development of recombinant positive control containing a fragment of B646L gene of African swine fever virus. The sequence of interest encodes targets of all the PCR assays for African swine fever laboratory diagnostics recommended by World Organisation for Animal Health. A plasmid containing 1763 bp insertion was cloned in E .coli DH5? strain. After purification, the plasmid ten-fold serial dulutions were used as a positive control while PRC testing. A minimal detectable copy number was 20 copies per reaction for both conventional and real-time PCR assays. The developed plasmid could be used as a safe and effective positive control while ASF laboratory diagnostics by PCR.
Key words: African swine fever virus, molecular cloning, PCR, positive recombinant control.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. Galindo I., Alonso C. African Swine Fever Virus: A Review. Viruses. 2017, 9 (5), 103. https://doi.org/10.3390/v9050103
2. Revilla Y., P?rez-N??ez D., Richt J. A. African Swine Fever Virus Biology and Vaccine Approaches. Advances in Virus Res. 2018, V. 100, P. 41–74. https://doi.org/10.1016/bs.aivir.2017.10.002
3. Listed Diseases 2020: OIE ? World Organisation for Animal Health. Available at: https://www.oie.int/animal-health-in-the-world/oie-listed-diseases-2020/
4. Beltran-Alcrudo D., Arias M., Gallardo С., Kramer S., Penrith M. L. African Swine Fever: Detection and Diagnosis – A Manual for Veterinarians. Rome: FAO. 2017, 92 p.
5. OIE World Animal Health Department. Global situation of ASF. Report № 17 (2016?2019). Retrieved October 05, 2020. https://www.oie.int/fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/Disease_cards/ASF/Report_17._Global_situation_of_ASF.pdf
6. World Organization for Animal Health. Manual Of Diagnostic Tests And Vaccines For Terrestrial Animals, 8th edition. Chapter 3.8.1. African Swine Fever (Infection With African Swine Fever Virus). OIE . 2019, P. 1?18.
7. Aguero M., Fernandez J., Romero L., Sanchez Mascaraque C., Arias M., Sanchez-Vizcaino J. M. Highly Sensitive PCR Assay for Routine Diagnosis of African Swine Fever Virus in Clinical Samples. J. Clin. Microbiol. 2003, 41 (9), 4431–4434. https://doi.org/10.1128/jcm.41.9.4431-4434.2003
8. Fern?ndez-Pinero J., Gallardo C., Elizalde M., Robles A., G?mez C., Bishop R., Heath L., Couacy-Hymann E., Fasina F. O., Pelayo V., Soler A., Arias M. 2012. Molecular Diagnosis Of African Swine Fever By A New Real-Time PCR Using Universal Probe Library. Transboundary And Emerging Diseases. 2013, 60 (1), 48?58. https://doi.org/10.1111/j.1865-1682.2012.01317.x
9. King D. P., Reid S. M., Hutchings G. H., Grierson S. S., Wilkinson P. J., Dixon L. K., Bastos A. D. S., Drew T. W. Development of a TaqMan® PCR assay with internal amplification control for the detection of African swine fever virus. J. Virological Methods. 2003, 107 (1), 53–61. https://doi.org/10.1016/S0166-0934(02)00189-1
10. Syzykova T. Ye., Melnikova Ye. V., Manoshkin A. V., Petrov A. A., Melnikov D. G., Pantyukhov V. B., Lebedev V. N., Borisevitch S. V. The application of external and internal control objects in case of using of polymerase chain reaction and reverse transcription of polymerase chain reaction. Mikrobiologiya. 2013, Nо 3, P. 41?44. (In Russian).
11. Chan M., Jiang B., Tan T.-Y. Using Pooled Recombinant Plasmids As Control Materials For Diagnostic Real-Time PCR. Clinical Laboratory. 2016, 62 (10), 1?11. https://doi.org/10.7754/clin.lab.2016.160114
12. World Organization for Animal Health. Manual Of Diagnostic Tests And Vaccines For Terrestrial Animals, 8th edition. Chapter 2.2.3 Development and optimisation of nucleic acid detection assays. OIE. 2018, P. 195?205.
13. Qiagen. Critical factors for successful real-time PCR. Real-Time PCR Brochure. 2010, Nо 07, P. 1–63. https://www.gene-quantification.de/qiagen-qpcr-sample-assay-tech-guide-2010.pdf
14. James H. E., Ebert K., Mcgonigle R., Reid S. M., Boonham N., Tomlinson J. A., Hutchings G. H., Denyer M., Oura Ch. A. L., Dukes J. P., King D. P. Detection of African swine fever virus by loop-mediated isothermal amplification. J. Virological Methods. 2010, 164 (1?2), 68–74. https://doi.org/10.1016/j.jviromet.2009.11.034
15. Stegniy B. T., Gerilovych A. P., Goraychuk I. V., Solodyankin O. S., Bolotin V. I., Vovk S. I. Development of regulations for production of positive DNA control for the PCR diagnosis of ASF. Veterynarna medytsyna. 2012, Nо 96, P. 60?62. (In Ukrainian).
16. Wo?niakowski G., Fr?czyk M., Kowalczyk A., Pomorska-M?l M., Niemczuk K., Pejsak Z. Polymerase cross-linking spiral reaction (PCLSR) for detection of African swine fever virus (ASFV) in pigs and wild boars. Scientific Reports. 2017, V. 7, P. 42903. https://doi.org/10.1038/srep42903
17. Wang A., Jia R., Liu Y., Zhou J., Qi Y., Chen Y., Liu D., Zhao J., Shi H., Zhang J., Zhang G. Development of a novel quantitative real-time PCR assay with lyophilized powder reagent to detect African swine fever virus in blood samples of domestic pigs in China. Transbound Emerg. Dis. 2020, 67 (1), 284?297. https://doi.org/10.1111/tbed.13350
- Details
- Hits: 230
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 13, No 6, 2020
Р. 50-57, Bibliography 23, English
Universal Decimal Classification: 577.112:57.083.3
https://doi.org/10.15407/biotech13.06.050
POLYCLONAL ANTIBODIES AGAINST HUMAN PLASMINOGEN: PURIFICATION, CHARACTERIZATION AND APPLICATION
T. A. Yatsenko, S. M. Kharchenko
Palladin Institute of Biochemistry of NAS of Ukraine
The plasminogen/plasmin system plays a crucial role in fibrinolysis and regulation of cell functions in a wide range of normal and pathological processes. Investigation of plasminogen/plasmin functions requires the availability of well-characterized and effective molecular tools, such as antibodies. In the present work, the isolation and characterization of rabbit polyclonal antibodies against human plasminogen are described and approaches for the identification of plasminogen and its fragments using the purified antibodies are demonstrated. For the antibodies isolation, standard animal immunization and blood collection procedures, serum isolation, protein salting out and affinity chromatography were performed. For the antibodies characterization and application, the following methods were used: enzyme linked immunoassay (ELISA), Western blotting, FITC-protein conjugation, flow cytometry and spectrofluorometry. The obtained polyclonal rabbit anti-human plasminogen antibodies interacted with human Glu- and Lys-plasminogen, kringles 1-3 and 1-4 of plasminogen, mini-plasminogen, the heavy and light chain of plasmin. We propose the application of anti-plasminogen antibodies for the direct ELISA, Western blot analysis, and for flow cytometry and spectrofluorometric analysis of plasminogen binding with cells. The obtained anti-plasminogen antibodies are promising tools for the investigation of plasminogen/plasmin system functions, either fibrinolytic or signaling.
Key words:. plasminogen, rabbit polyclonal antibodies, affinity chromatography, ELISA, Western blotting, FITC-coupling, flow cytometry, spectrofluorometry.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. Lijnen H. R. Elements of the fibrinolytic system. Ann N Y Acad Sci. 2001, V. 936, P. 226?236. https://doi.org/10.1111/j.1749-6632.2001.tb03511.x
2. Deryugina E., Quigley J. P. Cell surface remodeling by plasmin: a new function for an old enzyme. J. Biomed. Biotechn. 2012, V. 2012, Art IDn564259, 21 p. https://doi.org/10.1155/2012/564259
3. Miles L. A., Castellino F. J., Gong Y. Critical role for conversion of glu-plasminogen to Lys-plasminogen for optimal stimulation of plasminogen activation on cell surfaces. Trends Cardiovasc. Med. 2003, 13 (1), 21?30. https://doi.org/10.1016/s1050-1738(02)00190-1
4. Tykhomyrov A. A., Shram S. I., Grinenko T. V. Role of angiostatins in diabetic complications. Biomed. Khim. 2015, 61 (1), 41?56. (In Russian). https://doi.org/10.18097/pbmc20156101041
5. Miles L. A., Parmer R. J. Plasminogen Receptors: The First Quarter Century. Semin. Thromb. Hemost. 2013, 39 (4), 329–337. https://doi.org/10.1055/s-0033-1334483
6. Suelves M., L?pez-Alemany R., Llu?s F., Aniorte G., Serrano E., Parra M., Carmeliet P., Mun?oz-Ca?noves P. Plasmin activity is required for myogenesis in vitro and skeletal muscle regeneration in vivo. Blood. 2002, 99 (8), 2835?2844. https://doi.org/10.1182/blood.v99.8.2835
7. Palumbo J. S., Talmage K. E., Liu H., La Jeunesse C. M., Witte D. P., Degen J. L. Plasminogen supports tumor growth through a fibrinogen-dependent mechanism linked to vascular patency. Blood. 2003, 102 (8), 2819?2827. https://doi.org/10.1182/blood-2003-03-0881
8. Guti?rrez-Fern?ndez A., Gingles N. A., Bai H., Castellino F. J., Parmer R. J., Miles L. A. Plasminogen enhances neuritogenesis on laminin-1. J. Neurosci. 2009, 29 (40), 12393?12400. https://doi.org/10.1523/JNEUROSCI.3553-09.2009
9. Heissig B., Salama Y., Takahashi S., Osada T., Hattori K. The multifaceted role of plasminogen in inflammation. Cell Signal. 2020, V. 75, P. 109761. https://doi.org/10.1016/j.cellsig.2020.109761
10. Petrenko O. M., Tykhomyrov A. A. Levels of angiogenic regulators and MMP-2, -9 activities in Martorell ulcer: a case report. Ukr. Biochem. J. 2019, 91(1), 100-107. https://doi.org/10.15407/ubj91.01.100
11. Deutsch D. G., Mertz E. T. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970, 170 (3962), 1095?1096. https://doi.org/10.1126/science.170.3962.1095
12. Norrman B., Wall?n P., R?nby M. Fibrinolysis mediated by tissue plasminogen activator. Disclosure of a kinetic transition. Eur. J. Biochem. 1985, 149 (1), 193?200. https://doi.org/10.1111/j.1432-1033.1985.tb08911.x
13. Tykhomyrov A. A., Yusova E. I., Diordieva S. I., Corsa V. V., Grinenko T. V. Production and characteristics of antibodies against k1-3 fragment of human plasminogen. Biotechnol. acta. 2013, 6 (1), 86?96. (In Ukrainian). https://doi.org/10.15407/biotech6.01.086
14. Guidelines for the Production of Polyclonal and Monoclonal Antibodies in Rodents and Rabbits. Research Animal Resource Center ? Memorial Sloan-Kettering Cancer Center ? Weill Cornell Medical College. 2015, 13 p.
15. Harlow E., Lane D. Antibodies. A Laboratory Manual. Cold Spring Harbor Laboratory. 1988, 355 p.
16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227 (5259), 680?685. https://doi.org/10.1038/227680a0
17. Tsang V. C., Peralta J. M., Simons A. R. Enzyme-linked immunoelectrotransfer blot techniques (EITB) for studying the specificities of antigens and antibodies separated by gel electrophoresis. Methods Enzymol. 1983, V. 92, P. 377?391. https://doi.org/10.1016/0076-6879(83)92032-3
18. Roka-Moya Y. M., Zhernossekov D. D., Grinenko T. V. Plasminogen/plasmin influence on platelet aggregation. Biopolym. Cell. 2012, 28 (5), 352?356. https://doi.org/10.7124/bc.000077
19. Abad M. C., Arni R. K., Grella D. K., Castellino F. J., Tulinsky A., Geiger J. H. The X-ray crystallographic structure of the angiogenesis inhibitor angiostatin. J. Mol. Biol. 2002, 318 (4), 1009?1017. https://doi.org/10.1016/S0022-2836(02)00211-5
20. Tykhomyrov A. A., Zhernosekov D. D., Grinenko T. V. Plasminogen modulates formation and release of platelet angiogenic regulators. Ukr. Biochem. J. 2020, 92(1), 31-40. https://doi.org/10.15407/ubj92.01.031
21. Radziwon-Balicka A., Moncada de la Rosa C., Zielnik B., Doroszko A., Jurasz P. Temporal and pharmacological characterization of angiostatin release and generation by human platelets: implications for endothelial cell migration. PLoS One. 2013, 8 (3), e59281. https://doi.org/10.1371/journal.pone.0059281
22. Miles L. A., Ginsberg M. H., White J. G., Plow E. F. Plasminogen interacts with human platelets through two distinct mechanisms. J. Clin. Invest. 1986, 77 (6), 2001?2009. https://doi.org/10.1172/JCI112529
23. Montague S. J., Andrews R. K., Gardiner E. E. Mechanisms of receptor shedding in platelets. Blood. 2018, 132 (24), 2535?2545. https://doi.org/10.1182/blood-2018-03-742668
24. Tangen O., Berman H. J. Gel Filtration of Blood Platelets: A Methodological Report. In: Platelet Function and Thrombosis. Advances in Experimental Medicine and Biology, vol 34. Mannucci P. M., Gorini S. (eds). Springer, New York, NY. 2012, 1 p. https://doi.org/ 10.1007/978-1-4684-3231-2_13
25. Walkowiak B., Kralisz U., Michalec L., Majewska E., Koziolkiewicz W., Ligocka A., Cierniewski C. S. Comparison of platelet aggregability and P-selectin surface expression on platelets isolated by different methods. Thromb. Res. 2000, 99 (5), 495?502. https://doi.org/10.1016/s0049-3848(00)00282-6
- Details
- Hits: 140
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 13, No 6, 2020
Р. 41-49, Bibliography 34, English
Universal Decimal Classification: 616.11
https://doi.org/10.15407/biotech13.06.041
PROSPECTS FOR APPLICATION OF BOVINE PERICARDIAL SCAFFOLD FOR CARDIAL SURGERY
State Institution "Scientific - Practical Medical Center of Pediatric Cardiology and Cardiac Surgery of the Ministry of Health of Ukraine", Kyiv
The aim of the study was to estimate the properties of the scaffold obtained by decellularization of bovine pericardium with a 0.1% solution of sodium dodecyl sulfate. The experiment included standard histological, microscopic, molecular genetic, and biomechanical methods. Scaffold was tested in vitro for cytotoxicity and in vivo for biocompatibility. A high degree of removal of cells and their components from bovine pericardium-derived matrix was shown. Biomechanical characteristics of artificial scaffold were the same as those of the native pericardium. With prolonged contact, no cytotoxic effect on human cells was observed. The biointegration of the scaffold in laboratory animals tissues was noted, which confirms the potential possibility of the implant applicationin cardiac surgery.
Key words:. scaffold, decellularization, cardioimplant, tissue engineering.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. World Health Organization: https://www.who.int/
2. Hoffman J. I. E., Kaplan S. The incidence of congenital heart disease J. Am. Coll. Cardiol. 2002, 39 (12), 1890?1900. https://doi.org/10.1016/s0735-1097(02)01886-7
3. Salameh A., Greimann W., Vondrys D., Kostelka M. Calcification or Not. This Is the Question. A 1-Year Study of Bovine Pericardial Vascular Patches (Cardio Cel) in Minipigs Semin. Thorac. Cardiovasc. Surg. 2018, 30 (1), 54?59. https://doi.org/10.1053/j.semtcvs.2017.09.013
4. Spinali K. L., Schmuck E. G. Natural Sources of Extracellular Matrix for Cardiac Repair Adv. Exp. Med. Biol. 2018, V. 1098, P. 115?130. https://doi.org/10.1007/978-3-319-97421-7_6
5. Pawan K. C., Yi Hong, Ge Zhang. Cardiac tissue-derived extracellular matrix scaffolds for myocardial repair: advantages and challenges. Regen. Biomater. 2019, 6 (4), 185?199. https://doi.org/10.1093/rb/rbz017
6. Xiu-Fang Xu, Hai-Ping Guo, Xue-Jun Ren, Da Gong, Jin-Hui Ma, Ai-Ping Wang, Hai-Feng Shi, Yi Xin, Ying Wu, Wen-Bin Li. Effect of carbodiimide cross-linking of decellularized porcine pulmonary artery valvular leaflets. Int. J. Clin. Exp. Med. 2014, 7 (3), 649–656.
7. Kubo H. Tissue engineering for pulmonary diseases: insights from the laboratory. Respirology. 2012, V. 17, P. 445–454. https://doi.org/10.1111/j.1440-1843.2012.02145
8. Vesely I. Heart valve tissue engineering. Circulation Res. 2005, V. 97, P. 743–755. https://doi.org/10.1161/01.RES.0000185326.04010.9f
9. Rippel R. A., Ghanbari H., Seifalian A. M. Tissue-engineered heart valve: future of cardiac surgery. World J. Surg. 2012, 36 (7), 1581?1591. https://doi.org/10.1007/s00268-012-1535-y
10. Naso F., Gandaglia A. Different approaches to heart valve decellularization: A comprehensive overview of the past 30 years. Xenotransplantation. 2017, 25 (1), 1?10. https://doi.org/10.1111/xen.12354
11. Ramm R., Goecke T., Theodoridis K., Hoeffler K., Sarikouch S., Findeisen K., Ciubotaru A., Cebotari S., Tudorache I., Haverich A., Hilfiker A. Decellularization combined with enzymatic removal of N-linked glycans and residual DNA reduces inflammatory response and improves the performance of porcine xenogeneic pulmonary heart valves in an ovine in vivo model. Xenotransplantation. 2020, 27 (2), 1?12, e12571. https://doi.org/10.1111 / xen.12571
12. Ott H. C., Matthiesen T. S., Goh S. K., Black L. D., Kren S. M., Netoff T. I., Taylor D. A. Perfusiondecellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med. 2008, V. 14, P. 213–221. https://doi.org/10.1038/nm1684
13. Sarig U., Au-Yeung G. C. T., Wang Y., Bronshtein T., Dahan N., Boey F. Y. C., Venkatraman S. S., Machluf M. Thick acellular heart extracellular matrix with inherent vasculature: a potential platform for myocardial tissue regeneration. Tissue Eng. Part A. 2012, V. 18, 2125–2137. https://doi.org/10.1089/ten.tea.2011.0586
14. Zhou J., Fritze O., Schleicher M., Wendel H.-P., Schenke-Layland K., Harasztosi C., Hu S., Stock U. A. Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials. 2010, 31 (9), 2549–2554. https://doi.org/10.1016/j.biomaterials.2009.11.088
15. Jank B. J., Xiong L., Moser P. T., Guyette J. P., Xi Ren, Cetrulo C. L., Leonard D. A., Fernandez L., Fagan S. P., Ott C. H. Engineered composite tissue as a bioartificial limb graft. Biomaterials. 2015, V. 61, P. 246–256. https://doi.org/10.1016/j.biomaterials.2015.04.051
16. Wang B., Borazjani A., Tahai M., Curry A., Simionescu D. T., Guan J., To F., Elder S., Liao J. Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. Journal of Biomedical Materials Research ? Part A. 2010, 94 (4), 1100–1110. https://doi.org/10.1002/jbm.a.32781
17. Schaner P. J., Martin N. D., Tulenko T. N., Shapiro I. M. Decellularized vein as a potential scaffold for vascular tissue engineering. Journal of Vascular Surgery. 2004, 40 (1), 146–153. https://doi.org/10.1016/j.jvs.2004.03.033
18. Gilpin A., Yang Y. Decellularization strategies for regenerative medicine: from processing techniques to applications. Biomed. Res. Int. 2017, V. 17. P. 1–13. https://doi.org/10.1155/2017/9831534
19. Grauss R., Hazekamp M., Oppenhuizen F., Vanmunsteren C., Gittenbergerdegroot A., Deruiter M. Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur. J. Cardiothorac. Surg. 2005, V. 27, P. 566–571. https://doi.org/10.1016/j.ejcts.2004.12.052
20. Jelev L., Surchev L. A novel simple technique for en face endothelial observations using water-soluble media-’thinned-wall’ preparations. J. Anat. Wiley-Blackwell. 2008, V. 212, P. 192–197. https://doi.org/10.1111/j.1469-7580.2007.00844.x
21. Vunjak-Novakovic G., Freshney R. Ian. Culture of Cells for Tissue Engineering. 2006, 536 p. https://doi.org/10.1002/0471741817
22. Korzhevsky D. E. Application of hematoxylin in histological technique. Morphology. 2007, 132 ( 6), 77–82. (In Russian).
23. Gilbert W. T., Sellaro L. T., Badylak F. S. Decellularization of tissues and organs. Biomaterials. 2006, V. 27, P. 3675–3683. https://doi.org/10.1016/j.biomaterials.2006.02.014
24. Rakhmatia Y. D., Ayukawa Y., Furuhashi A., Koyano K. Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. J. Prosthodont. Res. 2013, V. 57, P. 3–14. pmid: 23347794 (In Russian). https://doi.org/10.1016/j.jpor.2012.12.001
25. Rieder E., Kasimir M. T., Silberhumer G., Seebacher G., Wolner E., Simon P., Weigel G. Decellularization protocols of porcine heart valves differ significantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J. Thorac. Cardiovasc. Surg. 2004, 127 (2), 399–405. https://doi.org/10.1016 / j.jtcvs.2003.06.017
26. Hudson T. W., Zawko S., Deister C., Lundy S., Hu C. Y., Lee K., Schmidt C. E. Optimized acellular nerve graft is immunologically tolerated and supports regeneration. Tissue Eng. 2004, 10 (11–12), 1641–1651. https://doi.org/10.1089/ten.2004.10.1641
27. Grauss R. W., Hazekamp M. G., van Vliet S., Gittenberger-de Groot A. C., DeRuiter M. C. Decellularization of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling. J. Thorac. Cardiovasc. Surg. 2003, 126 (6), 2003–2010. https://doi.org/10.1016/s0022-5223(03)00956-5
28. Oswal D., Korossis S., Mirsadraee S., Wilcox H., Watterson K., Fisher J., Ingham E. Biomechanical characterization of decellularized and cross-liked bovine pericardium. J. Heart. Valve Dis. 2007, V.16, P. 165–174.
29. Andre?e B., Bela K., Horvath T., Lux M., Ramm R., Venturini L., Ciubotaru A., Zweigerdt, Haverich A., Hilfiker A. Successful re-endothelialization of a perfusable biological vascularized matrix (BioVaM) for the generation of 3D artificial cardiac tissue. Basic Res. Cardiol. 2014, 109 (6), 441. https://doi.org/10.1007/s00395-014-0441-x
30. Ning Lia, Yang Lia, Dejun Gong, Cuiping Xia, Xiaohong Liu, Zhiyun Xu. Efficient decellularization for bovine pericardium with extracellular matrix preservation and good biocompatibility. Interactive CardioVascular and Thoracic Surgery. 2018, V. 26, P. 768–776. https://doi.org/10.1093/icvts/ivx416
31. Tran H. L. B., Dihn T. H., Nguyen T. N., To Q. M., Pham A. T. T. Preparation and characterization of acellular porcine pericardium for cardiovascular surgery. Turk. J. Biol. 2016, V. 40, P. 1243?1250. https://doi.org/10.3906/biy-1510-44
32. Keane T. J., Swinehart I. T., Badylak S. F. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods. 2015, V. 84, P. 25–34. https://doi.org/10.1016/j.ymeth.2015.03.005
33. Amodt J. M., Grainger D. W. Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials. 2016, V. 86, P. 68–82. https://doi.org/10.1016/j.biomaterials.2016.02.003 . Epub 2016 Feb 3
34. Oswal D., Korossis S., Mirsadraee S., Berry H. E. Biomechanical characterization of decellularized and cross-liked bovine pericardium. J. Heart Valve Dis. 2007, V. 16, P. 165–174.
- Details
- Hits: 129
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 13, No 6, 2020
Р. 30–40, Bibliography 20, English
Universal Decimal Classification: 577.21
https://doi.org/10.15407/biotech13.06.030
E. G. Fomina, E. E. Grigorieva, V. V. Zverko, A. S. Vladyko
State Institution "Republican Scientific and Practical Center for Epidemiology and Microbiology", Republic of Belarus, Minsk
A heterologous host has got a unique expression ability of each gene. Differences between the synonymous sequences play an important role in regulation of protein expression in organisms from Escherichia coli to human, and many details of this process remain unclear. The work was aimed to study the composition of codons, its distribution over the sequence and the effect of rare codons on the expression of viral nucleocapsid proteins and their fragments in the heterologous system of E.coli. The plasmid vector pJC 40 and the BL 21 (DE 3) E. coli strain were used for protein expression. The codon composition analysis was performed using the online resource (www.biologicscorp.com). 10 recombinant polypeptides were obtained encoding the complete nucleotide sequence of nucleocapsid proteins (West Nile and hepatitis C viruses) and the fragments including antigenic determinants (Lassa virus, Marburg, Ebola, Crimean-Congo hemorrhagic fever (CCHF), Puumaravala, Hantaan, and lymphocytic choriomeningitis (LHM)). Hybrid plasmid DNAs provide efficient production of these proteins in the prokaryotic system with the recombinant protein yield varying by a factor of 8: from 5 to 40 mg per 1 liter of bacterial culture. No correlation was found between the level of protein expression and the frequency of occurrence of rare codons in the cloned sequence: the maximum frequency of occurrence of rare codons per cloned sequence was observed for the West Nile virus (14.6%), the minimum was for the CCHF virus (6.6%), whereas the expression level for these proteins was 30 and 5 mg/L culture, respectively. The codon adaptation index (CAI) values, calculated on the basis of the codon composition in E. coli, for the cloned viral sequences were in the range from 0.50 to 0.58, which corresponded to the average expressed proteins. The analysis of the distribution profiles of CAI in the cloned sequences indicated the absence of clusters of rare codons that could create difficulties in translation. A statistically significant difference between the frequencies of the distribution of amino acids in the cloned sequences and their content in E. coli was observed for the nucleocapsid proteins of the Marburg, Ebola, West Nile, and hepatitis C viruses.
Key words: recombinant nucleocapsid proteins, expression, rare codons, codon adaptation index.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. Bo?l G., Letso R., Neely H., Price W. N., Wong K. H., Su M., Luff J., Valecha M., Everett J. K., Acton T. B., Xiao R., Montelione G. T., Aalberts D. P., Hunt J. F. Codon influence on protein expression in E. coli correlates with mRNA levels. Nature. 2016, V. 529, P. 358?363. https://doi.org/10.1038/nature16509
2. Robinson M., Lilley R., Little S., Emtage J. S., Yarranton G., Stephens P., Millican A., Eaton M., Humphrey G. Codon usage can affect efficiency of translation of genes in Escherichia coli. Nucleic Acids Res. 1984, V. 12, P. 6663–6671.
https://doi.org/10.1093/nar/12.17.6663
3. Goodman D. B., Church G. M., Kosuri S. Causes and effects of N-terminal codon bias in bacterial genes. Science. 2013, 342 (6157), 475?479. https://doi.org/10.1126/science.1241934
4. Castillo-Mendez M. A., Jacinto-Loeza E., Olivares-Trejo J. J., Guarneros-Pena G., Hernandez-Sanchez J. Adenine-containing codons enhance protein synthesis by promoting mRNA binding to ribosomal 30S subunits provided that specific tRNAs are not exhausted. Biochimie. 2012, V. 94, P. 662–672. https://doi.org/10.1016/ j.biochi.2011.09.019
5. Bentele K., Saffert P., Rauscher R., Ignatova Z., Bluthgen N. Efficient translation initiation dictates codon usage at gene start. Mol. Syst. Biol. 2013, V. 9, P. 675. https://doi.org/10.1038/msb.2013.32
6. Cannarozzi G., Schraudolph N., Mahamadou_Faty, Peter von Rohr, Friberg M., Roth A., Gonnet P., Gonnet G., Barral Y. A role for codon order in translation dynamics. Cell. 2010, V. 141, P. 355–367. https://doi.org/10.1016/j.cell.2010.02.036
7. Vivanco-Dominguez S., Bueno-Mart?nez J., Le?n-Avila G., Nobuhiro Iwakura, Kaji A., Kaji H., Guarneros G. Protein synthesis factors (RF1, RF2, RF3, RRF, and tmRNA) and peptidyl-tRNA hydrolase rescue stalled ribosomes at sense codons. J. Mol. Biol. 2012, V. 417, P. 425–439. https://doi.org/10.1016/j.jmb.2012.02.008
8. Li G. W., Burkhardt D., Gross C., Weissman J. S. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell. 2014, V. 157, P. 624–635. https://doi.org/10.1016/j.cell.2014.02.033
9. Sato T., Terabe M., Watanabe H., Gojobori T., Hori-Takemoto C., Miura K. Codon and base biases after initiation codon of the open reading frames in the Escherichia coli genome and their influence on translation efficiency. J. Biochem. 2001, V. 129, P. 851–860. https://doi.org/10.1093/oxfordjournals.jbchem.a002929
10. Gonzalez de Valdivia E. I., Isaksson L. A. A codon window in mRNA downstream of the initiation codon where NGG codons give strongly reduced gene expression in Escherichia coli. Nucleic Acids Res. 2004, V. 32, P. 5198–5205. https://doi.org/10.1093/nar/gkh857
11. Ude S., Lassak S., Starosta A., Kraxenberger T., Wilson D., Jung K. Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science. 2013, V. 339, P. 82–85. https://doi.org/10.1126/science.1228985
12. Clos J., Brandau S. pJC20 and pJC40 – two high-copy-number vectors for T7 RNA polymerase-dependent expression of recombinant genes in Escherichia coli. Protein Expr. Purif. 1994, V. 5, P. 133–137. https://doi.org/10.1006/prep.1994.1020
13. Lee S., Weon S., Kang C. Relative codon adaptation index, a sensitive measure of codon usage bias. Evol. Bioinform. Online. 2010, V. 6, P. 47–55. https://doi.org/10.4137/ebo.s4608
14. Vladimirov N. V., Likhoshvai V. A., Matushkin Yu. G. Correlation of codon biases and potential secondary structures with mRNA translation efficiency in unicellular organisms. Mol. Biol. 2007, 41 (5), 843?850. (In Russian).
https://doi.org/10.1134/S0026893307050184
15. Kirienko N. V., Lepikhov K. A., Zheleznaya L. A., Matvienko N. I. Significance of codon usage and irregularities of rare codon distribution in genes for expression of BspLU11III methyltransferases. Biochem. 2004, 69 (5), 647–657. (In Russian).
https://doi.org/10.1023/B:BIRY.0000029851.96180.92
16. Tyulko J. S., Yakimenko V. V. Strategy of synonymous codon usage in encoding sequences of the Thick-borne encephalitis virus. Voprosy virusologii. 2015, 60 (6), 37–41. (In Russian).
17. Kaur J., Kumar A. Strategies for optimization of heterologous protein expression in E. coli: roadblocks and reinforcements. Int. J. Biol. Macromol. 2018, V. 106, P. 803–822. https://doi.org/10.1016/j.ijbiomac.2017.08.080
18. Kane J. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 1995, V. 6, P. 494?500. https://doi.org/10.1016/0958-1669(95)80082-4
19. Jia B., Jeon C. O. High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biol. 2016. V. 6, P. 160?196. https://doi.org/10.1098/rsob.160196
20. Gopal G., Kumar A. Strategies for the production of recombinant protein in Escherichia coli. Protein J. 2013, 32 (6), 419?425. https://doi.org/10.1007/s10930-013-9502-5
- Details
- Hits: 259
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 13, No 6, 2020
Р. 24-29, Bibliography 46, English
Universal Decimal Classification: 612.17
https://doi.org/10.15407/biotech13.06.024
GASOMEDIATOR H2S IN THROMBOSIS AND HEMOSTASIS
Department of Pediatrics, University of Texas Medical Branch, Galveston, USA
This review was aimed to briefly summarize current knowledge of the biological roles of gasomediator H2S in hemostasis and cardiovascular diseases. Since the discovery that mammalian cells are enzymatically producing H2S, this molecule underwent a dramatic metamorphosis from dangerous pollutant to a biologically relevant mediator. As a gasomediator, hydrogen sulfide plays a role of signaling molecule, which is involved in a number of processes in health and disease, including pathogenesis of cardiovascular abnormalities, mainly through modulating different patterns of vasculature functions and thrombotic events. Recently, several studies have provided unequivocal evidence that H2S reduces blood platelet reactivity by inhibiting different stages of platelet activation (platelet adhesion, secretion and aggregation) and thrombus formation. Moreover, H2S changes the structure and function of fibrinogen and proteins associated with fibrinolysis. Hydrogen sulfide regulates proliferation and apoptosis of vascular smooth muscle cells, thus modulating angiogenesis and vessel function. Undoubtedly, H2S is also involved in a multitude of other physiological functions. For example, it exhibits anti-inflammatory effects by inhibiting ROS production and increasing expression of antioxidant enzymes. Some studies have demonstrated the role of hydrogen sulfide as a therapeutic agent in various diseases, including cardiovascular pathologies. Further studies are required to evaluate its importance as a regulator of cell physiology and associated cardiovascular pathological conditions such as myocardial infarction and stroke.
Key words:. hydrogen sulfide, gasomediator, hemostasis, thrombosis, fibrinolysis, platelets, cardiovascular diseases.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol. Rev. 2012, V. 92, P. 791?896. https://doi.org/10.1152/physrev.00017.2011
2. Mol.Cancer Res. 2006, V. 4, P. 9?14.
3. Nicholson R. A., Roth S. H., Jian Zheng A. Z. Inhibition of respiratory and bioenergetic mechanisms by hydrogen sulfide in mammalian brain. J. Toxicol. Environ. Health. 1998, V. 54, P. 491?507. https://doi.org/10.1080/009841098158773
4. Khan A. A., Schuler M. M., Prior M. G., Young S., Coppock R. W., Florence L. Z. Effects of hydrogen sulfide exposure on lung mitochondrial respiratory chain enzymes in rats. Toxicol. Appl. Pharmacol. 1990, V. 103, P. 482?490. https://doi.org/10.1016/0041-008x(90)90321-k
5. Dorman D. C., Moulin F. J. M., McManus B. E., Mahle K. C., James R. A., Struve M. F. Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: correlation with tissue sulfide concentration in the rat brain, liver, lung, and nasal epithelium. Toxicol. Sci. 2002, V. 65, P. 18?25. https://doi.org/10.1093/toxsci/65.1.18
6. Li L., Rose P., Moore P. K. Hydrogen sulfide and cell signaling. Annu. Rev. Pharmacol. Toxicol. 2011, V. 51, P. 169?187. https://doi.org/10.1146/annurev-pharmtox-010510-100505
7. Mustafa A. K., Gadalla M. M., Snyder S. H. Signaling by gasotransmitters. Sci. Signal. 2009, 2 (68), re2. https://doi.org/10.1126/scisignal.268re2
8. Wallace J. L., Wang R. Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat. Rev. Drug Discov. 2015, 14 (5), 329?345. https://doi.org/10.1038/nrd4433
9. Kabil O., Banerjee R. Enzymology of H2S biogenesis, decay and signaling. Antioxid. Redox Signal. 2014, V. 20, V. 770?782. https://doi.org/10.1089/ars.2013.5339
10. Kimura H. Production and physiological effects of hydrogen sulfide. Antioxid. Redox Signal. 2014, V. 20, P. 783?793. https://doi.org/10.1089/ars.2013.5309
11. Xia M., Chen L., Muh R. W., Li P. L., Li N. Production and actions of hydrogen sulfide, a novel gaseous bioactive substance, in the kidneys. J. Pharmacol. Exp. Ther. 2009, V. 329, P. 1056?1062. https://doi.org/10.1124/jpet.108.149963
12. Geng B., Yang J., Qi Y., Zhao J., Pang Y., Du J., Tang C. H2S generated by heart in rat and its effects on cardiac function. Biochem. Biophys. Res. Commun. 2004, V. 313, P. 362?368. https://doi.org/10.1016/j.bbrc.2003.11.130
13. Yang G., Wu L., Jiang B., Yang W., Qi J., Cao K., Meng Q., Mustafa A. K., Mu W., Zhang S., Snyder S. H., Wang R. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science. 2008, V. 322, P. 587?590. https://doi.org/10.1126/science.1162667
14. Zhao W., Zhang J., Lu Y., Wang R. The vasorelaxant effect of H2S as a novel endogenous gaseous K-ATP channel opener. EMBO J. 2001, V. 20, P. 6008?6016. https://doi.org/10.1126/science.1162667
15. Abe K., Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 1996, V. 16, P. 1066?1071. https://doi.org/10.1523/JNEUROSCI.16-03-01066.1996
16. Kimura H. Signaling molecules: hydrogen sulfide and polysulfide. Antioxid. Redox Signal. 2015, V. 22, P. 362?376. https://doi.org/10.1089/ars.2014.5869
17. Li Q., Lancaster Jr. J. R. Chemical foundations of hydrogen sulfide biology. Nitric Oxide. 2013, V. 35, P. 21?34. https://doi.org/10.1016/j.niox.2013.07.001
18. Riahi S., Rowley C. N. Why can hydrogen sulfide permeate cell membranes? J. Am. Chem. Soc. 2014, V. 136, P. 15111?15113. https://doi.org/10.1021/ja508063s
19. Paul B. D., Snyder S. H. H2S: a novel gasotransmitter that signals by sulfhydration. Trends Biochem. Sci. 2015, V. 40, P. 687?700. https://doi.org/10.1016/j.tibs.2015.08.007
20. Whiteman M., Moore P. K. Hydrogen sulfide and the vasculature: a novel vasculoprotective entity and regulator of nitric oxide. J. Cell. Mol. Med. 2009, V. 13, P. 488?507. https://doi.org/10.1111/j.1582-4934.2009.00645.x
21. Hogg P. J. Contribution of allosteric disulfide bonds to regulation of hemostatsis. J. Thromb. Haemost. 2009, 7 (Suppl. 1), 13?16. https://doi.org/10.1111/j.1538-7836.2009.03364.xhttps://doi.org/10.1111/j.1538-7836.2009.03364.xhttps://doi.org/10.1111/j.1538-7836.2009.03364.xhttps://doi.org/10.1111/j.1538-7836.2009.03364.xhttps://doi.org/10.1111/j.1538-7836.2009.03364.xhttps://doi.org/10.1111/j.1538-7836.2009.03364.xhttps://doi.org/10.1111/j.1538-7836.2009.03364.xhttps://doi.org/10.1111/j.1538-7836.2009.03364.xhttps://doi.org/10.1111/j.1538-7836.2009.03364.x
22. D’Emmanuele di Villa Bianca R., Mitidieri E., Donnarumma E., Tramontano T., Brancaleone V., Cirino G., Bucci M., Sorrentino R. Hydrogen sulfide-induced dual vascular effect involves arachidonic acid cascade in rat mesenteric arterial bed. J. Pharmacol. Exp. Ther. 2011, V. 337, P. 59?64. https://doi.org/10.1124/jpet.110.176016
23. Hosoki R., Matsuki N., Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem. Biophys. Res. Commun. 1997, V. 237, P. 527?531. https://doi.org/10.1006/bbrc.1997.6878
24. Mustafa A. K., Sikka G., Gazi S. K., Steppan J., Jung S. M., Bhunia A. K., Barodka V. M., Gazi F. K., Barrow R. K., Wang R., Amzel L. M., Berkowitz D. E., Snyder S. H. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ. Res. 2011, V. 109, P. 1259?1268. https://doi.org/10.1161/CIRCRESAHA.111.240242
25. Tang G., Yang G., Jiang B., Ju Y., Wu L., Wang R. H2S is an endothelium-derived hyperpolarizing factor. Antioxid. Redox. Signal. 2013, V. 19, P. 1634?1646. https://doi.org/10.1089/ars.2012.4805
26. Szabo C. Hydrogen sulfide and its therapeutic potential. Nat. Rev. Drug Discov. 2007, V. 6, P. 917?935. https://doi.org/10.1038/nrd2425
27. Roy A., Khan A. H., Islam M. T., Prieto M. C., Majid D. S. Interdependency ofcystathioneg-lyase and cystathioneb-synthase in hydrogen sulfide-induced blood pressure regulation in rats. Am. J. hypertens. 2012, V. 25, P. 74?81. https://doi.org/10.1038/ajh.2011.149
28. Cai W. J., Wang M. J., Moore P. K., Jin H. M., Yao T., Zhu Y. C. The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc. Res. 2007, V. 76, P. 29?40. https://doi.org/10.1016/j.cardiores.2007.05.026
29. Coletta C., Papapetropoulos A., Erdelyi K., Olah G., Modis K., Panopoulos P., Asimakopoulou A., Gero D., Sharina I., Martin E., Szabo C. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation Proc. Natl. Acad. Sci. USA. 2012, V. 109, P. 9161?9166. https://doi.org/10.1073/pnas.1202916109
30. Jang H., Oh M.-Y., Kim Y.-J., Choi I.-Y., Yang H. S., Ryu W. S., Lee S. H., Yoon B. W. Hydrogen sulfide treatment induces angiogenesis after cerebral ischemia. J. Neorosci. Res. 2014, V. 92, P. 1520?1528. https://doi.org/10.4103/1673-5374.158353
31. Ono K., Akaike T., Sawa T., Kumagai Y., Wink D. A., Tantillo D. J., Hobbs A. J., Nagy P., Xian M., Lin J., Fukuto J. M. Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: implications of their possible biological activity and utility. Free Radic. Biol. Med. 2014, V. 77, P. 82?94. https://doi.org/10.1016/j.freeradbiomed.2014.09.007
32. Predmore B. L., Lefer D. J., Gojon G. Hydrogen sulfide in biochemistry and medicine. Antioxid. Redox. Signal. 2012, V. 17, P. 119?140. https://doi.org/10.1089/ars.2012.4612
33. Xie Z. Z., Liu Y., Bian J. S. Hydrogen sulfide and cellular redox homeostasis. Oxid. Med. Cell Longev. 2016, P. 6043038. https://doi.org/10.1155/2016/6043038
34. Yang G., Wu R., Wang R. Pro-apoptotic effect of endogenous H2Son human aorta smooth muscle cells. FASEB J. 2006, V. 20, P. 553?555. https://doi.org/10.1096/fj.05-4712fje
35. Grambow E., Mueller-Graf F., Delyagina E., Frank M., Kuhla A., Vollmar B. Effect of the hydrogen sulfide donor GYY4137 on platelet activation and microvascular thrombus formation in mice. Platalets. 2014, V. 25, P. 166?174.https://doi.org/10.3109/09537104.2013.786823https://doi.org/10.3109/09537104.2013.786823https://doi.org/10.3109/09537104.2013.786823https://doi.org/10.3109/09537104.2013.786823
36. Zagli G., Patacchini R., Trevisani M., Abbate R., Cinotti S., Gensini G. F., Masotti G., Geppetti P. Hydrogen sulfide inhibits human platelet aggregation. Eur. J. Pharmacol. 2007, V. 559, P. 65?68. https://doi.org/10.1016/j.ejphar.2006.12.011https://doi.org/10.1016/j.ejphar.2006.12.011
37. Nishikawa H., hayashi H., Kubo S., Tsubota-Matsunami M., Sekiguchi F., Kawabata A. Inhibition by hydrogen sulfide of rabbit platelet aggregation and calcium mobilization. Biol. Pharm. Bull. 2013, V. 36, P. 1278?1282. https://doi.org/10.1248/bpb.b13-00018
38. Morel A., Malinowska J., Olas B. Antioxidative properties of hydrogen sulfide may involve in its antiadhesive action on blood platelets. Clin. Biochem. 2012, 45 (18), 1678?1682. https://doi.org/10.1016/j.clinbiochem.2012.08.025
39. Morel A., Malinowska J., Olas B. Hydrogen sulfide changes adhesive properties of fibrinogen and collagen in vitro. Platelets. 2014, V. 25, P. 147?149. https://doi.org/10.3109/09537104.2012.737490
40. Pircher J., Fochler F., Czermak T., Kraemer B. F., Worne M., Sparatore A., Del Soldato P., Pohl U., Krotz E. Hydrogen sulfide-releasing aspirin derivative ACS14 exerts strong antithrombotic effects in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol. 2012, 32 (12), 2884?2891. https://doi.org/10.1161/ATVBAHA.112.300627
41. Kram L., Grambow E., Mueller-Graf F., Sorg H., Vollmar B. The antithrombotic effect of hydrogen sulfide is partly mediated by an upregulation of nitric oxide synthase. Thromb. Res. 2013, V. 132, e112-e117. https://doi.org/10.1016/j.thromres.2013.07.010
42. Olas B., Kontek B. The possible role of hydrogen sulfide as a modulator of hemostatic parameters of plasma. Chem. Biol. Interact. 2014, V. 220, P. 20?24. https://doi.org/10.1016/j.cbi.2014.06.001
43. Marchi R., Carvajal Z., Weasel J. W. Comparison of the effect of different homocysteine concentrations on clot formation using human plasma and purified fibrinogen. Thromb. Haemost. 2008, V. 99, P. 451?452. https://doi.org/10.1046/j.1538-7836.2003.00053.x.
44. Quintana L. L., Oberholzer M. V., Kordich L., Lauricella A. M. Impaired fibrin gel permeability by high homocysteine levels. Thromb. Res. 2011, V. 127, P. 35?38. https://doi.org/10.1097/01.mbc.0000187264.02317.e3https://doi.org/10.1097/01.mbc.0000187264.02317.e3
45. Predmore B. L., Lefer D. J. Development of hydrogen sulfide-based therapeutics for cardiovascular diseases. J. Cardiovasc. Transl. Res. 2010, V. 3, P. 487?498. https://doi.org/10.1007/s12265-010-9201-y
46. Chuah S. C., Moore P. K., Zhu Y. Z. S-allylcystein mediates cardioprotection on an acute myocardial infarction rat model via hydrogen sulfide- mediated pathway. Am. J. Physiol. Heart Circ. Physiol. 2007, V. 293, H2693?H2701. https://doi.org/10.1152/ajpheart.00853.2007