- Details
- Hits: 901
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 13, No 2, 2020
Р. 65-79, Bibliography 74, English
Universal Decimal Classification: 577.25: 577.23
https://doi.org/10.15407/biotech13.02.065
V. S. Nedzvetsky1, 2, C. A. Agca1, G. Baydas3
1Bing?l University, Selahaddin-i Eyyubi Mah, Merkez/Bing?l, Turkey
2Oles Honchar Dnipro National University, Dnipro, Ukraine
3Altinbash University, Mahmutbey, Ba?c?lar/?stanbul, Turkey
Peptidoglycan is a universal component of bacterial walls that exerts various biological activities, including tumoricidal effect. Anti-cancer effect of various peptidoglycan fractions and their derivates is different. Muramyl pentapeptide (MPP) is the most complete building block of peptidoglycan. MPP can stimulate cell reactivity as well as other muropeptides. In the present study, we evaluated inhibitory MPP effect on viability and migration of glioblastoma cells U373MG. As markers of cell reactivity we determined the amounts of proteins PARP1 and NF-kB. MPP exposure induced decrease in viability and migration activity of glioblastoma cells. Besides, MPP treatment increased the amounts of PARP1 and NF-kB in a dose-dependent manner. Furthermore, NADH level in exposed glioblastoma cells was depleted as compared to control. Thus, MPP exhibits tumoricidal effect in glioblastoma cells U373MG via depletion NADH content and consequently metabolic energy level. Moreover, upregulation of the amounts of PARP1 and NF-kB in glioblastoma cells could be an important mechanism of the inhibition of cell migrative capability and the progress of the tumor.
The obtained results evidenced that muramyl pentapeptide could initiate lack of migration via metabolic energy expenditure as a result of gliotypic reactivity. Further studies are actual and extremely required to clarify tumoricidal effect of this muropeptide in glia-derived tumors.
Key words: peptidoglycan, muramyl pentapeptide, PARP1, NF-kB, glioblastoma U373MG, cell reactivity.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. Fichera G. A., Fichera M., Milone G. Antitumoural activity of a cytotoxic peptide of Lactobacillus casei peptidoglycan and its interaction with mitochondrial-bound hexokinase. Anticancer Drugs. 2016, 27 (7), 609–619. https://doi.org/10.1097/CAD.0000000000000367
2. Commane D., Hughes R., Shortt C., Rowland I. The potential mechanisms involved in the anti-carcinogenic action of probiotics. Mutation Research ? Fundamental and Molecular Mechanisms of Mutagenesis. 2005, V. 91, P. 276–289. https://doi.org/10.1016/j.mrfmmm.2005.02.027
3. Salminen S., Morelli L., Marteau P., Brassart D., de Vos W. M., Fond?n R., Saxelin M., Collins K., Mogensen G., Birkeland S. E., Mattila-Sandholm T. Demonstration of safety of probiotics ? A review. Int. J. Food Microbiol. 1998, 44 (1–2), 93–106.
4. Kim J. Y., Woo H. J., Kim Y. S., Lee H. J. Screening for antiproliferative effects of cellular components from lactic acid bacteria against human cancer cell lines. Biotechnol. Lett. 2002, 24 (17), 1431–1436. https://doi.org/10.1023/A:1019875204323
5. Orlando A., Messa C., Linsalata M., Cavallini A., Russo F. Effects of Lactobacillus rhamnosus GG on proliferation and polyamine metabolism in HGC-27 human gastric and DLD-1 colonic cancer cell lines. Immunopharmacol. Immunotoxicol. 2009, 31 (1), 108–116. https://doi.org/10.1080/08923970802443631
6. Amrouche T., Boutin Y., Prioult G., Fliss I. Effects of bifidobacterial cytoplasm, cell wall and exopolysaccharide on mouse lymphocyte proliferation and cytokine production. Int. Dairy J. 2006, 16 (1), 70–80. https://doi.org/10.1016/j.idairyj.2005.01.008
7. Gonet-Sur?wka A. K., Strus M., Heczko P. B. P1250 Infiuence of Lactobacilli probiotic strains on apoptosis of colon cancer cells lines. Int. J. Antimicrob. Agents. 2007, P. 343–344. https://doi.org/10.1016/S0924-8579(07)71090-7https://doi.org/10.1016/S0924-8579(07)71090-7
8. Thirabunyanon M., Boonprasom P., Niamsup P. Probiotic potential of lactic acid bacteria isolated from fermented dairy milks on antiproliferation of colon cancer cells. Biotechnol. Lett. 2009, 31 (4), 571–576. https://doi.org/10.1007/s10529-008-9902-3
9. Tuo Y. F., Zhang L. W., Yi H. X., Zhang Y. C., Zhang W. Q., Han X., Du M., Jiao Y. H., Wang S. M. Short communication: Antiproliferative effect of wild Lactobacillus strains isolated from fermented foods on HT-29 cells. J. Dairy Sci. 2010, 93 (6), 2362–2366. https://doi.org/10.3168/jds.2010-3069
10. Ando K., Mori K., Corradini N., Redini F., Heymann D. Mifamurtide for the treatment of nonmetastatic osteosarcoma. Expert Opin. Pharmacother. 2011, 12 (2), 285–292. https://doi.org/10.1517/14656566.2011.543129
11. Wang S., Han X., Zhang L., Zhang Y., Li H., Jiao Y. Whole Peptidoglycan Extracts from the Lactobacillus paracasei subsp. paracasei M5 Strain Exert Anticancer Activity In Vitro. Biomed. Res. Int. 2018. https://doi.org/10.1155/2018/2871710
12. Fujimura T., Yamasaki K., Hidaka T., Ito Y., Aiba S. A synthetic NOD2 agonist, muramyl dipeptide (MDP)-Lys (L18) and IFN-? synergistically induce dendritic cell maturation with augmented IL-12 production and suppress melanoma growth. J. Dermatol. Sci. 2011, 62 (2), 107–115. https://doi.org/10.1016/j.jdermsci.2011.02.002
13. Yanagawa H., Haku T., Takeuchi E., Suzuki Y., Nokihara H., Sone S. Intrapleural therapy with MDP-Lys (L18), a synthetic derivative of muramyl dipeptide, against malignant pleurisy associated with lung cancer. Lung Cancer. 2000, 27 (2), 67–73. https://doi.org/10.1016/S0169-5002(99)00090-2
14. Kohashi O., Kohashi Y., Shigematsu N., Ozawa A., Kotani S. Acute and chronic polyarthritis induced by an aqueous form of 6-O-acyl and N-acyl derivatives of N-acetylmuramyl-L-alanyl-D-isoglutamine in euthymic rats and athymic nude rats. Lab. Invest. 1986, 55 (3), 337–346. http://www.ncbi.nlm.nih.gov/pubmed/3489128
15. Kong Y. C., Audibert F., Giraldo A. A., Rose N. R., Chedid L. Effects of natural or synthetic microbial adjuvants on induction of autoimmune thyroiditis. Infect. Immun. 1985, 49 (1), 40–45. https://doi.org/10.1128/IAI.49.1.40-45.1985
16. McAdam K. P., Foss N. T., Garcia C., DeLellis R., Chedid L., Rees R. J., Wolff S. M. Amyloidosis and the serum amyloid A protein response to muramyl dipeptide analogs and different mycobacterial species. Infect. Immun. 1983, 39 (3), 1147–1154. https://doi.org/10.1128/IAI.39.3.1147-1154.1983
17. Zhou C. J., Chen J., Hou J. B., Zheng Y., Yu Y. N., He H., Zhang Y. P., Feng X. L., Zheng Q. S.The Immunological Functions of Muramyl Dipeptide Compound Adjuvant on Humoral, Cellular-mediated and Mucosal Immune Responses to PEDV Inactivated Vaccine in Mice. Protein Pept. Lett. 2018, 25 (10), 908–913. https://doi.org/10.2174/0929866525666180917160926
18. Fichera G. A., Giese G. Non-immunologically-mediated cytotoxicity of Lactobacillus casei and its derivative peptidoglycan against tumor cell lines. Cancer Lett. 1994, 85 (1), 93–103. https://doi.org/10.1016/0304-3835(94)90244-5
19. Masjuk D. M., Nedzvetsky V. S. KAV. A method of enhancing the natural resistance of newborn piglets. Ukraine Patent 118400. August 10, 2017.
20. Nava Catorce M., Gevorkian G. LPS-induced Murine Neuroinflammation Model: Main Features and Suitability for Pre-clinical Assessment of Nutraceuticals. Curr. Neuropharmacol. 2016, 14 (2),155–164. https://doi.org/10.2174/1570159X14666151204122017
21. Agca C. A., Tykhomyrov A. A., Baydas G., Nedzvetsky V. S. Effects of a Propolis Extract on the Viability of and Levels of Cytoskeletal and Regulatory Proteins in Rat Brain Astrocytes: an In Vitro Study. Neurophysiol. 2017, 49 (4), 261–271. https://doi.org/10.1007/s11062-017-9680-4
22. Nedzvetsky V. S., Agca C. A., Kyrychenko S. V. Neuroprotective Effect of Curcumin on LPS-activated Astrocytes Is Related to the Prevention of GFAP and NF-?B Upregulation. Neurophysiol. 2017, 49 (4), 305–307. https://doi.org/10.1007/s11062-017-9687-x
23. Morgan M. J., Liu Z. G. Crosstalk of reactive oxygen species and NF-?B signaling. Cell Res. 2011, V. 21, P. 103–115. https://doi.org/10.1038/cr.2010.178
24. Owens R., Grabert K., Davies C. L., Alfieri A., Antel J. P., Healy L. M., McColl B. W. Divergent neuroinflammatory regulation of microglial TREM expression and involvement of NF-?B. Front Cell Neurosci. 2017, V. 2, P. 11. https://doi.org/10.3389/fncel.2017.00056
25. Gibson B. A., Kraus W. L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 2012, V. 13, P. 411–424. https://doi.org/10.1038/nrm3376
26. Bock F. J., Todorova T. T., Chang P. RNA Regulation by Poly(ADP-Ribose) Polymerases. Mol. Cell. 2015, P. 959–969. https://doi.org/10.1016/j.molcel.2015.01.037
27. Bock F. J., Chang P. New directions in poly(ADP-ribose) polymerase biology. FEBS J. 2016, 283 (22), 4017–4031. https://doi.org/10.1111/febs.13737
28. Kauppinen T. M., Gan L., Swanson R. A. Poly(ADP-ribose) polymerase-1-induced NAD+ depletion promotes nuclear factor-?B transcriptional activity by preventing p65 de-acetylation. Biochim. Biophys. Acta. 2013, 1833 (8), 1985–1991. https://doi.org/10.1016/j.bbamcr.2013.04.005
29. Szab? C., Cuzzocrea S., Zingarelli B., O’Connor M., Salzman A. L. Endothelial dysfunction in a rat model of endotoxic shock: Importance of the activation of poly (ADP-ribose) synthetase by peroxynitrite. J. Clin. Invest. 1997, 100 (3), 723–735. https://doi.org/10.1172/JCI119585
30. Chiarugi A., Moskowitz M. A. Poly(ADP-ribose) polymerase-1 activity promotes NF-?B-driven transcription and microglial activation: Implication for neurodegenerative disorders. J. Neurochem. 2003, 85 (2), 306–317. https://doi.org/10.1046/j.1471-4159.2003.01684.x
31. El-Jamal N., Bahr G. M., Echtay K. S. Effect of muramyl peptides on mitochondrial respiration. Clin. Exp. Immunol. 2009, 155 (1), 72–78. https://doi.org/10.1111/j.1365-2249.2008.03794.x
32. Tang K. S., Suh S. W., Alano C. C., Shao Z., Hunt W. T., Swanson R. A., Anderson C. M. Astrocytic poly(ADP-ribose) polymerase-1 activation leads to bioenergetic depletion and inhibition of glutamate uptake capacity. Glia. 2010, 58 (4), 446–457. https://doi.org/10.1002/glia.20936
33. Vavricka S. R., Musch M. W., Chang J. E., Nakagawa Y., Phanvijhitsiri K., Waypa T. S., Merl?n D., Schneew?nd O., Chang E. B. hPepT1 transports muramyl dipeptide, activating NF-?B and stimulating IL-8 secretion in human colonic Caco2/bbe cells. Gastroenterol. 2004, 127 (5), 1401–1409. https://doi.org/10.1053/j.gastro.2004.07.024
34. Ribes S., Adam N., Sch?tze S., Regen T., Redlich S., Janova H., Borisch A., Hanisch U. K., Nau R. The nucleotide-binding oligomerization domain-containing-2 ligand muramyl dipeptide enhances phagocytosis and intracellular killing of Escherichia coli K1 by Toll-like receptor agonists in microglial cells. J. Neuroimmunol. 2012, 14, 252 (1–2),16–23. https://doi.org/10.1016/j.jneuroim.2012.07.012
35. Ma G.-G., Shi B., Zhang X.-P., Qiu Y., Tu G.-W., Luo Z. The pathways and mechanisms of muramyl dipeptide transcellular transport mediated by PepT1 in enterogenous infection. Ann. Transl. Med. 2019, 7 (18), 50. https://doi.org/10.21037/atm.2019.07.103
36. Trajkovi? V., Samard?i? T., Sto?i?-Gruji?i? S., Rami? Z., Stojkovi? M. M. Muramyl dipeptide potentiates cytokine-induced activation of inducible nitric oxide synthase in rat astrocytes. Brain Res. 2000, 10, 883 (1), 157–163. https://doi.org/10.1016/S0006-8993(00)02920-6
37. Chauhan V. S., Sterka D. G., Furr S. R., Marriott I. NOD2 plays an important role in the inflammatory responses of microglia and astrocytes to bacterial CNS pathogens. Glia. 2009, 57 (4), 414–423. https://doi.org/10.1002/glia.20770
38. Masuzzo A., Mani?re G., Viallat-Lieutaud A., Avazeri ?., Zugasti O., Grosjean Y., L?opold C., Royet J. Peptidoglycan-dependent NF-kB activation in a small subset of brain octopaminergic neurons controls female oviposition. Elife. 2019, V. 1, P. 8. https://doi.org/10.7554/eLife.50559
39. Furnari F. B., Fenton T., Bachoo R. M., Mukasa A., Stommel J. M., Stegh A., Hahn W. C., Ligon K. L., Louis D. N., Brennan C., Chin L., DePinho R. A., Cavenee W. K. Malignant astrocytic glioma: Genetics, biology, and paths to treatment. Genes and Development. 2007, V. 21, P. 2683–2710. https://doi.org/10.1101/gad.1596707
40. Pointer K. B., Clark P. A., Zorniak M., Alrfaei B. M., Kuo J. S. Glioblastoma cancer stem cells: Biomarker and therapeutic advances. Neurochem. Inter. 2014, V. 71, P. 1–7. https://doi.org/10.1016/j.neuint.2014.03.005
41. Agnihotri S., Burrell K. E., Wolf A., Jalali S., Hawkins C., Rutka J. T., Zadeh G. Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Archivum Immunologiae et Therapiae Experimentalis. 2013, V. 61, P. 25–41. https://doi.org/10.1007/s00005-012-0203-0
42. Wolf A. J., Reyes C. N., Liang W., Becker C., Shimada K., Wheeler M. L., Cho H. C., Popescu N. I., Coggeshall K. M., Arditi M., Underhill D. M. Hexokinase Is an Innate Immune Receptor for the Detection of Bacterial Peptidoglycan. Cell. 2016, V. 28, P. 624–36. https://doi.org/10.1016/j.cell.2016.05.076
43. Heim V. J., Stafford C. A., Nachbur U. NOD Signaling and Cell Death. Frontiers in Cell and Developmental Biology. 2019, V. 7, P. 423?444. https://doi.org/10.3389/fcell.2019.00208
44. Irazoki O., Hernandez S. B., Cava F. Peptidoglycan muropeptides: Release, perception, and functions as signaling molecules. Frontiers in Microbiology. 2019, 500 p. https://doi.org/10.3389/fmicb.2019.00500
45. Wolf A., Agnihotri S., Munoz D., Guha A. Developmental profile and regulation of the glycolytic enzyme hexokinase 2 in normal brain and glioblastoma multiforme. Neurobiol. Dis. 2011, 44 (1), 84–91. https://doi.org/10.1016/j.nbd.2011.06.007
46. Wolf A., Agnihotri S., Micallef J., Mukherjee J., Sabha N., Cairns R., Hawkins C., Guha A. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J. Exp. Med. 2011, 14, 208 (2), 313–326. https://doi.org/10.1084/jem.20101470
47. Fehr A. R., Singh S. A., Kerr C. M., Mukai S., Higashi H., Aikawa M. The impact of PARPs and ADP-ribosylation on inflammation and host-pathogen interactions. Genes and Development. 2020, V. 34, P. 341–359. https://doi.org/10.1101/gad.334425.119
48. Billot-Klein D., Legrand R., Schoot B., Van Heijenoort J., Gutmann L. Peptidoglycan structure of Lactobacillus casei, a species highly resistant to glycopeptide antibiotics. J. Bacteriol. 1997, V. 179, P. 6208–6212. https://doi.org/10.1128/JB.179.19.6208-6212.1997
49. Bahr G. M., Chedid L. Immunological activities of muramyl peptides. Fed Proc. 1986, 45 (11), 2541–2544.
50. Heinzelmann M., Polk H. C., Chernobelsky A., Stites T. P., Gordon L. E. Endotoxin and muramyl dipeptide modulate surface receptor expression on human mononuclear cells. Immunopharmacol. 2000, 20, 48 (2), 117–128. https://doi.org/10.1016/S0162-3109(00)00195-8
51. Traub S., von Aulock S., Hartung T., Hermann C. Invited review: MDP and other muropeptides — direct and synergistic effects on the immune system. J. Endotoxin. Res. 2006, 12 (2), 69–85. https://doi.org/10.1177/09680519060120020301
52. Typas A., Banzhaf M., Gross C. A., Vollmer W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 2012, V. 10, P. 123–136. https://doi.org/10.1038/nrmicro2677
53. Egan A. J. F., Cleverley R. M., Peters K., Lewis R. J., Vollmer W. Regulation of bacterial cell wall growth. FEBS J. 2017, V. 284, P. 851–867. https://doi.org/10.1111/febs.13959
54. Goldman W. E., Klapper D. G., Baseman J. B. Detection, isolation, and analysis of a released Bordetella pertussis product toxic to cultured tracheal cells. Infect. Immun. 1982, 36 (2), 782–794. https://doi.org/10.1128/IAI.36.2.782-794.1982
55. Bensaad K., Tsuruta A., Selak M. A., Vidal M. N. C., Nakano K., Bartrons R., Gottlieb E., Vousden K. H.TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis. Cell. 2006, 14, 126 (1),107–120. https://doi.org/10.1016/j.cell.2006.05.036
56. Bensaad K., Cheung E. C., Vousden K. H. Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J. 2009, 28 (19), 3015–3026. https://doi.org/10.1038/emboj.2009.242
57. Yamaguchi N., Suzuki Y., Mahbub M. H., Takahashi H., Hase R., Ishimaru Y., Sunagawa H., Watanabe R., Eishi Y., TanabeT. The different roles of innate immune receptors in inflammation and carcinogenesis between races. Environmental Health and Preventive Medicine. 2017, V. 22. https://doi.org/10.1186/s12199-017-0678-8
58. Nagao S., Tanaka A., Yamamoto Y., Koga T., Onoue K., Shiba T., Kusumoto K., Kotani S. Inhibition of macrophage migration by muramyl peptides. Infect. Immun. 1979, 24 (2), 308–312. https://doi.org/10.1128/IAI.24.2.308-312.1979
59. Ogawa T., Kotani S., Fukuda K., Tsukamoto Y., Mori M., Kusumoto S., Shiba T. Stimulation of migration of human monocytes by bacterial cell walls and muramyl peptides. Infect. Immun. 1982, 38 (3), 817–824. https://doi.org/10.1128/IAI.38.3.817-824.1982
60. Sharma P., Karian J., Sharma S., Liu S., Mongan P. D. Pyruvate ameliorates post ischemic injury of rat astrocytes and protects them against PARP mediated cell death. Brain Res. 2003, 28, 992 (1), 104–113. https://doi.org/10.1016/j.brainres.2003.08.043
61. Phulwani N. K., Kielian T. Poly (ADP-ribose) polymerases (PARPs) 1-3 regulate astrocyte activation. J. Neurochem. 2008, 106 (2), 578–590. https://doi.org/10.1111/j.1471-4159.2008.05403.x
62. Kumar S., Ingle H., Prasad D. V. R., Kumar H. Recognition of bacterial infection by innate immune sensors. Critical Rev. Microbiol. 2013, V. 39, P. 229–246. https://doi.org/10.3109/1040841X.2012.706249
63. Royet J., Dziarski R. Peptidoglycan recognition proteins: Pleiotropic sensors and effectors of antimicrobial defences. Nat. Rev. Microbiol. 2007, V. 5, P. 264–277. https://doi.org/10.1038/nrmicro1620
64. Yang Y., Yin C., Pandey A., Abbott D., Sassetti C., Kelliher M. A. NOD2 pathway activation by MDP or Mycobacterium tuberculosis infection involves the stable polyubiquitination of Rip2. J. Biol. Chem. 2007, 282, 36223–36229. https://doi.org/10.1074/jbc.M703079200 https://doi.org/10.1074/jbc.M703079200
65. Hasegawa M., Fujimoto Y., Lucas P. C., Nakano H., Fukase K., N??ez G., Inohara N. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-?B activation. EMBO J. 2008, 27 (2), 373–383. https://doi.org/10.1038/sj.emboj.7601962
66. Kameoka M., Ota K., Tetsuka T., Tanaka Y., Itaya A., Okamoto T., Yoshihara K. Evidence for regulation of NF-kappaB by poly(ADP-ribose) polymerase. Biochem. J. 2000, 346 (3), 641–649. https://doi.org/10.1042/bj3460641
67. Hassa P. O., Hottiger M. O. The functional role of poly(ADP-ribose)polymerase 1 as novel coactivator of NF-?B in inflammatory disorders. Cell. Molec. Life Sci. 2002, V. 59, P. 1534–1553. https://doi.org/10.1007/s00018-002-8527-2
68. Szab? C., Cuzzocrea S., Zingarelli B., O’Connor M., Salzman A. L. Endothelial dysfunction in a rat model of endotoxic shock: Importance of the activation of poly (ADP-ribose) synthetase by peroxynitrite. J. Clin. Invest. 1997, 100 (3), 723–735. https://doi.org/10.1172/JCI119585
69. Saenz L., Lozano J. J., Valdor R., Baroja-Mazo A., Ramirez P., Parrilla P., Aparicio P., Sumoy L., Y?lamos J.Transcriptional regulation by Poly(ADP-ribose) polymerase-1 during T cell activation. BMC Genomics. 2008, 16 (9), 171. https://doi.org/10.1186/1471-2164-9-171
70. Nasta F., Laudisi F., Sambucci M., Rosado M. M., Pioli C. Increased Foxp3 + Regulatory T Cells in Poly(ADP-Ribose) Polymerase-1 Deficiency. J. Immunol. 2010, 1 (184), 3470–3477. https://doi.org/10.4049/jimmunol.0901568
71. Loeuillet C., Martinon F., Perez C., Munoz M., Thome M., Meylan P. R. Mycobacterium tuberculosis Subverts Innate Immunity to Evade Specific Effectors. J. Immunol. 2006, 177 (9), 6245–6255. https://doi.org/10.4049/jimmunol.177.9.6245
72. Deng W., Xie J. NOD2 Signaling and Role in Pathogenic Mycobacterium Recognition, Infection and Immunity. Cell. Physiol. Biochem. 2012, 30 (4), 953–963. https://doi.org/10.1159/000341472
73. Cavallari J. F., Barra N. G., Foley K. P., Lee A., Duggan B. M., Henriksbo B. D., Anh? F. F., Ashkar A. A., Schertzer J. D. Postbiotics for NOD2 require nonhematopoietic RIPK2 to improve blood glucose and metabolic inflammation in mice. Am. J. Physiol. Metab. 2020, 1, 318 (4), 579–585. https://doi.org/10.1152/ajpendo.00033.2020
74. McCarthy J. V., Ni J., Dixit V. M. RIP2 is a novel NF-?B-activating and cell death-inducing kinase. J. Biol. Chem. 1998, 273 (27), 16968–16975. https://doi.org/10.1074/jbc.273.27.16968
- Details
- Hits: 903
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 13, No 2, 2020
Р. 56-64, Bibliography 23, English
Universal Decimal Classification: 633.11:581.16
https://doi.org/10.15407/biotech13.02.056
FATTY ACID COMPOSITION OF OIL FROM GRAIN OF SOME TETRAPLOID WHEAT SPECIES
Relina L. I., Suprun O. H., Boguslavskyi R. L., Didenko S. Yu., Vecherska L. A., Golik O. V.
Plant Production Institute named after V. Ya. Yuriev of the National Academy of Agrarian Sciences, Kharkiv, Ukraine
Although wheat has never been considered an oil crop, oil from wheat germs and bran is valuable because it contains important bioactive compounds. Most of studies in this area were conducted with traditional commercial wheat varieties. At the same time, the interest of breeders, producers and consumers is going back to ancient and underutilized wheats species. In this respect, we set the purpose to evaluate tetraploid wheat species (Triticum. dicoccoides var. pseudojordanicum, Triticum dicoccum, Triticum timofeevii, Triticum persicum var rubiginosum, Triticum durum var. falcatamelanopus, Triticum polonicum var. pseudocompactum and Triticum aethiopicum var. densimenelikii) for fatty acid composition. Grain was harvested in 2015, 2016, 2017, 2018 and 2019. Fatty acid methyl esters were prepared by the modified Peisker method. Fatty acid composition was analyzed by gas chromatography. Six major fatty acids were found in grain of tetraploid wheat species, with linoleic acid being the most abundant. The ratio of unsaturated acids to saturated ones in grain of wild emmer T. dicoccoides var. pseudojordanicum was slightly lower than in the domestic emmer varieties. T. timofeevii, emmer varieties Holikovska and Romanivska and radium wheat variety Spadschina had the most beneficial unsaturated/saturated ratios. As conclusion there was no evidence of deterioration in the grain quality in terms of unsaturated fatty acid levels, and we observed no patterns in variability of fatty acid contents across the species under investigation.
Fatty acid composition was analyzed by gas chromatography. Six major fatty acids were found in grain of tetraploid wheat species, with linoleic acid being the most abundant. The ratio of unsaturated acids to saturated ones in grain of wild emmer T. dicoccoides var. pseudojordanicum was slightly lower than in the domestic emmer varieties. T. timofeevii, emmer varieties Holikovska and Romanivska and durum wheat variety Spadschina had the most beneficial unsaturated/saturated ratios.
There was no evidence of deterioration in the grain quality in terms of unsaturated fatty acid levels. We observed no patterns in variability of fatty acid contents across the species under investigation.
Key words: tetraploid wheat species, fatty acids, oil quality, gas chromatography.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. Liu K. Comparison of lipid content and fatty acid composition and their distribution within seeds of 5 small grain species. J. Food Sci. 2011, 76 (2), 334–342. https://doi.org/10.1111/j.1750-3841.2010.02038.x
2. Mitmesser S. Octacosanol and wheat germ oil. In: Driskell J., ed. Sports Nutrition: Fats and Proteins. Boca Raton, FL: CRC Press. 2007, Р. 99–104. https://doi.org/10.1201/9781420008500.ch6
3. Ghafoor K., Ozcan M. M., Al-Juhaimi F., Babiker E. E., Sarker Z. I., Ahmed I. A. M., Ahmed M. A. Nutritional composition, extraction and utilization of wheat germ oil: A review. Eur. J. Lipid. Sci. Technol. 2017, 119 (7). https://doi.org/10.1002/ejlt.201600160
4. Kumar G. S., Krishna A. G. Studies on the nutraceuticals composition of wheat derived oils wheat bran oil and wheat germ oil. J. Food Sci. Technol. 2015, 52 (2), 1145–1151. https://doi.org/10.1007/s13197-013-1119-3
5. Go-Woon J., Md. Salim U., Kwon K. T., Chun B. S. Comparison of supercritical and near-critical carbon dioxide extraction of carotenoid enriched wheat bran oil. Afr. J. Biotechnol. 2010, V. 9, P. 7702–7709.
6. Durante M., Lenucci M. S., Rescio L., Mita G., Caretto S. Durum wheat by-products as natural sources of valuable nutrients. Phytochem. Rev. 2012, V. 11, P. 255–262. https://doi.org/10.1007/s11101-012-9232-x
7. Beleggia R., Rau D., Laid? G., Platani C., Nigro F., Fragasso M., De Vita P., Scossa F., Fernie A. R., Nikoloski Z., Papa R. Evolutionary metabolomics reveals domestication-associated changes in tetraploid wheat kernels. Mol. Biol. Evol. 2016, 33 (7), 1740–1753. https://doi.org/10.1093/molbev/msw050
8. Gabrovsk? D., Fiedlerov? V., Holasov? M., Maskov? E., Smrcinov H., Rysov? J., Winterov? R., Michalov? A., Hutar M. The nutritional evaluation of underutilized cereals and buckwheat. Food Nutr. Bull. 2002, 23 (3 Suppl), 246–249. https://doi.org/10.1177/15648265020233S148
9. Nakov Gj., Stamatovska V., Ivanova N., Damyanova S., Necinova Lj. Nutritional properties of einkorn wheat (Triticum monococcum L.) – review. Proceeding of 55th Science Conference of Ruse University. Bulgaria. 2016, P. 381–384.
10. Hidalgo A., Brandolini A. Nutritional properties of einkorn wheat (Triticum monococcum L.). J. Sci. Food Agric. 2014, 94 (4), 601–612. https://doi.org/10.1002/jsfa.6382
11. Ziegler J. U., Wahl S., W?rschum T., Longin C.F., Carle R., Schweiggert R. M. Lutein and lutein esters in whole grain flours made from 75 genotypes of 5 triticum species grown at multiple sites. J. Agric. Food Chem. 2015, 63 (20), 5061–5071. https://doi.org/10.1021/acs.jafc.5b01477
12. Peisker K. V. A rapid semi-micro method for preparation of methyl esters from triglycerides using chloroform, methanol, sulphuric acid. J. Am. Oil. Chem. Sci. 1964, V. 41, P. 87–88. https://doi.org/10.1007/BF02661915
13. Prokhorova M. I. Methods of biochemical studies (lipid and energy metabolism). Lenynhrad: Leninhradskyi universytet. 1982, 272 p. (In Russian).
14. Narducci V., Finotti E., Galli V., Carcea M. Lipids and fatty acids in Italian durum wheat (Triticum durum Desf.) cultivars. Foods. 2019, 8 (6), 223, 1–9. https://doi.org/10.3390/foods8060223
15. Bottari E., De Acutis R., Festa M. R. On the lipid constituents of wheat of different species, variety, origin and crop year. Ann. Chim. 1999, V. 89, P. 849–862.
16. Beleggia R., Platani C., Nigro F., De Vita P., Cattivelli L., Papa R. Effect of genotype, environment and genotype-by-environment interaction on metabolite profiling in durum wheat (Triticum durum Desf.) grain. J. Cereal. Sci. 2013, V. 57, P. 183–192. https://doi.org/10.1016/j.jcs.2012.09.004
17. Zarroug Y., Mejri J., Dhawefi N., Ali S. B. S., El Felah M., Hassouna M. Comparison of chemical composition of two durum wheat (Triticum durum L.) and bread wheat (Triticum aestivum L.) germ oils. EKIN J. Crop. Breed Genet. 2015, V. 1, P. 69–76.
18. G?ven M., Kara H. H. Some chemical and physical properties, fatty acid composition and bioactive compounds of wheat germ oils extracted from different wheat cultivars. J. Agric. Sci. 2016, V. 22, P. 433–443. https://doi.org/10.1501/Tarimbil_0000001401
19. Lafiandra D., Masci S., Sissons M., Dornez E., Delcour J. A., Courtin C. M., Caboni M. F. Kernel components of technological value. In: Sissons M., Marchylo B., Abecassis J. et al., editors. Durum Wheat Chemistry and Technology. 2nd ed. AACC International Inc.; St. Paul, MN, USA. 2012, P. 85–124. https://doi.org/10.1016/B978-1-891127-65-6.50011-8
20. Mih?likD., Kl?ov? L., Ondrei?kov? K., Hudcovicov? V., Gubi?ov? M., Klempov? T., ?ert?k M., Pauk J., Kraic J. Biosynthesis of essential polyunsaturated fatty acids in wheat triggered by expression of artificial gene. Int. J. Mol. Sci. 2015, 16 (12), 30046–30060. https://doi.org/10.3390/ijms161226137
21. Chatzav M., Peleg Z., Ozturk L., Yazici A., Fahima T., Cakmak I., Saranga Y. Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement. Ann Bot. 2010, 105 (7), 1211–1220. https://doi.org/10.1093/aob/mcq024
22. Willemot C., Hope H. J., Williams R. J., Michaud R. Changes in fatty acid composition of winter wheat during frost hardening. Cryobiol. 1977, 14 (1), 87–93. https://doi.org/10.1016/0011-2240(77)90126-2
23. Chernova A., Gubaev R., Mazin P., Goryunova S., Demurin Y., Gorlova L., Vanushkina A., Mair W., Anikanov N., Martynova E., Goryunov D., Garkusha S., Mukhina Z., Khaytovich P. UPLC?MS triglyceride profiling in sunflower and rapeseed seeds. Biomolecules. 2018, 9 (1). https://doi.org/10.3390/biom9010009
The work was supported by NAAS project 24.01.03.01.Ф. (State Registration Number 0116U001070). The authors declare that they have no conflicts of interest. Signed Authorship Form was attached.
- Details
- Hits: 785
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 13, No 2, 2020
Р. 48-55, Bibliography 24, English
Universal Decimal Classification: 579.222.7
https://doi.org/10.15407/biotech13.02.048
OPTIMIZATION OF THE CULTIVATION CONDITIONS OF THE RIBOFLAVIN STRAIN PRODUCER
Radchenko M. M., Andriiash H. S., Beiko N. Ye., Tigunova О. О., Shulga S. M.
SE “Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine”, Kyiv
The aim of the study was to establish the optimal cultivation conditions for increasing accumulation of riboflavin by the producer strain Bacillus subtilis. As an object of the study there were used strains of B. subtilis from “Collection of strains of microorganisms and plant lines for food and agricultural biotechnology” of the State Enterprise “Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine”. The percentage (10%) and the period of cultivation (16 hours) of the seed material necessary for accumulation of riboflavin were determined. The effect of the carbon source on the accumulation of riboflavin was studied and it was shown that the greatest accumulation (5.2 g/dm3) was with the use of glucose. The dynamics parameters of riboflavin accumulation over time were investigated and the optimal cultivation period was determined (68 hours). The optimal cultivation conditions were selected, which increased the accumulation of riboflavin in the culture fluid (glucose concentration — 120 g/dm3, temperature — 38 oC, and pH of the medium — 7.0) more than twice. It was concluded that the accumulation of riboflavin could be increased by changing the cultivation conditions.
Key words: strain producer, riboflavin, microbiological synthesis, Bacillus subtilis.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. Gassmann B. Requirements of vitamin A, thiamine, riboflavine and niacin (FAO Food and Nutrition Series No. 8, FAO Nutrition Meetings Report Series No. 41, World Health Organization Technical Report Series No. 362). Food and Agriculture Organization of the United Nations, Food / Nahrung. 1979, 23 (6), 664–664. https://doi.org/10.1002/food.19790230628
2. Northrop-Clewes C. A., Thurnham D. I. The discovery and characterization of ribo?avin. Ann. Nutr. Metab. 2012, V. 61, P. 224–230. https://doi.org/10.1159/000343111
3. McCormick D. B. Vitamin/mineral supplements: of questionable benefit for the general population. Nutr. Rev. 2010, 68 (4), 207?213. https://doi.org/10.1111/j.1753-4887.2010.00279.x
4. Agte V. V., Paknikar K. M., Chiplonkar S. A. Effect of ribo?avin supplementation on zinc and iron absorption and growth performance in mice. Biol. Trace Elem. Res. 1998, 65 (2), 109–115. https://doi.org/10.1007/BF02784263
5. Mazur-Bialy A., Pochec? E., Plytycz B. Immunomodulatory e?ect of ribo?avin de?ciency and enrichment-reversible pathological response versus silencing of in?ammatory activation. Physiol. Pharmacol. 2015, 66 (6), 793–802.
6. Udhayabanu T., Karthi S., Mahesh A., Varalakshmi P., Manole A., Houlden H., Ashokkumar B. Adaptive regulation of ribo?avin transport in heart: E?ect of dietary ribo?avin de?ciency in cardiovascular pathogenesis. Mol. Cell. Biochem. 2018, 440 (1?2), 147–156. https://doi.org/10.1007/s11010-017-3163-1
7. Mensink G. B. M., Fletcher R., Gurinovic M., Huybrechts I., Lafay L., Serra-Majem L., Szponar L., Tetens I., Verkaik-Kloosterman J., Baka A., Stephen A. M. Mapping low intake of micronutrients across Europe. Br. J. Nutr. 2013, 110 (4), 755–773. https://doi.org/10.1017/S000711451200565X
8. Revuelta J. L., Ledesma-Amaro R., Lozano-Martinez P., D?az-Fern?ndez D., Buey R. M., Jim?nez A. Bioproduction of ribo?avin: A bright yellow history. J. Ind. Microbiol. Biotechnol. 2017, 44 (4?5), 659–665. https://doi.org/10.1007/s10295-016-1842-7
9. Vitorino L. C., Bessa L. A. Technological Microbiology: Development and Applications. Front Microbiol. 2017, 8 (827), 1?23. https://doi.org/10.3389/fmicb.2017.00827
10. Schwechheimer S. K., Park E. Y., Revuelta J. L., Becker J., Wittmann C. Biotechnology of riboflavin. Appl. Microbial. Biotechnol. 2016, 100 (5), 11?13. https://doi.org/10.1007/s00253-015-7256-z
11. Suwannasom N., Kao I., Pru? A., Georgieva R., B?umler H. Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. Int. J. Mol. Sci. 2020, 21 (950), 1?22. https://doi.org/10.3390/ijms21030950
12. Abbas C. A., Sibirny A. A. Genetic control of biosynthesis and transport of ribo?avin and ?avin nucleotides and construction of robust biotechnological producers. Microbiol. Mol. Biol. Rev. 2011, 75 (2), 321–360. https://doi.org/10.1128/MMBR.00030-10
13. Bretzel W., Schurter W., Ludwig B., Kupfer E., Doswald S., P?ster M., van Loon A. P. G. M. Commercial ribo?avin production by recombinant Bacillus subtilis: Down-stream processing and comparison of the composition of ribo?avin produced by fermentation or chemical synthesis. J. Ind. Microbiol. Biotechnol. 1999, V. 22, P. 19–26. https://doi.org/10.1038/sj.jim.2900604
14. Liu S., Hu W., Wang Z., Chen T. Production of riboflavin and related cofactors by biotechnological processes. Microb. Cell. Fact. 2020, 19 (31), 1?16.https://doi.org/10.1186/s12934-020-01302-7
15. Wang J., Wang W., Wang H., Yuan F., Xu Z., Yang K., Li Z., Chen Y., Fan K. Improvement of stress tolerance and riboflavin production of Bacillus subtilis by introduction of heat shock proteins from thermophilic bacillus strains. Appl. Microbiol. Biotechnol. 2019, 103 (11), 4455?4465. https://doi.org/10.1007/s00253-019-09788-x
16. Gingichashvili S., Duanis-Assaf D., Shemesh M., Featherstone J. D. B., Feuerstein O., Steinberg D. The Adaptive Morphology of Bacillus subtilis Biofilms: A Defense Mechanism against Bacterial Starvation. Microorganisms. 2020, 8 (62), 1?13 https://doi.org/10.3390/microorganisms8010062
17. Ge Y.-Y., Zhang J.-R., Corke H., Gan R.-Y. Screening and Spontaneous Mutation of Pickle-Derived Lactobacillus plantarum with Overproduction of Riboflavin, Related Mechanism, and Food Application. Foods. 2020, 9 (88), 1?12. https://doi.org/10.3390/foods9010088
18. Bartzatt R., Wol T. Detection and assay of vitamin b-2 (riboflavin) in alkaline borate buffer with UV/visible spectrophotometry. Int. Sch. Res. Notices. 2014, V. 2, P. 1?7. https://doi.org/10.1155/2014/453085
19. Jamily A. S., Koyama Y., Win T. A., Toyota K., Chikamatsu S., Shirai T., Uesugi T., Murakami H., Ishida T., Yasuhara T. Effects of inoculation with a commercial microbial inoculant Bacillus subtilis C-3102 mixture on rice and barley growth and its possible mechanism in the plant growth stimulatory effect. J. Plant Prot. Res. 2019, 59 (2), 193?205. https://doi.org/10.24425/jppr.2019.129284
20. Yusupova Y. R., Skripnikova V. S., Kivero A. D., Zakataeva N. P. Expression and purification of the 5?-nucleotidase YitU from Bacillus species: its enzymatic properties and possible applications in biotechnology. Appl. Microbiol. Biotechnol. 2020, V. 104, P. 2957–2972. https://doi.org/10.1007/s00253-020-10428-y
21. Jang J. H., Kim S., Khaine I., Kwak M. J., Lee H. K., Lee T. Y., Lee W. Y., Woo S. Y. Physiological changes and growth promotion induced in poplar seedlings by the plant growth-promoting rhizobacteria Bacillus subtilis JS. Photosynthetica. 2018, V. 56, P. 1188–1203. https://doi.org/10.1007/s11099-018-0801-0
22. Oraei M., Razavi S. H., Khodaiyan F. Optimization of Effective Minerals on Riboflavin Production by Bacillus subtilis subsp. subtilis ATCC 6051 Using Statistical Designs. Avicenna J. Med. Biotechnol. 2018, 10 (1), 49?55.
23. Hu J., Lei P., Mohsin A,. Liu X., Huang M., Li L., Hu J., Hang H., Zhuang Y., Guo M. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production. Microb. Cel.l Fact. 2017, 16 (150), 1?16 https://doi.org/10.1186/s12934-017-0764-z
- Details
- Hits: 774
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 13, No 2, 2020
Р. 38-47, Bibliography 22, English
Universal Decimal Classification: 579.63:577.29
https://doi.org/10.15407/biotech13.02.038
DETECTION OF SULFATE-REDUCING BACTERIA FROM VARIOUS ECOTOPES BY REAL-TIME PCR
D. R. Abdulina1, G. O Iutynska1, A. I. Aniskina2, M. M. Nikitin2
1D.K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv
2GenBit LLC, Moscow, Russia
The study of detection effectiveness of sulfate-reducing bacteria (SRB) in the samples from various ecotopes by microbiological (cultural by serial dilutions) and molecular biological (by real-time PCR) methods with designed test-systems lyophilized on the silicon microchip was performed. The developed DSRM and SRB2 test-systems for detection of the functional gene dsrA presence, encoding one of the key enzyme of dissimilatory sulphate-reduction pathway — dissimilatory sulfite reductase were used. It was found that the minimal determined SRB titres in water samples were 104 cells/ml and in soil samples they were 102–105 cells/g of absolutely dry soil. In natural and man-caused samples, the amount of SRB detected by the microbiological method was correlated with calculated values determined by the molecular biological method, Pearson’s indexes were r = 0.41–0.69 (k = 11, P ≤ 0.01–0.05). Thus, real-time PCR assay with designed test systems lyophilized on the silicon microchips is a high-quality and rapid method for the detection of SRB in various natural and man-caused ecotopes.
Key words: dsrA gene, test-systems, sulfate-reducing bacteria, biocorrosion, real-time PCR.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. Koch G. H., Brongers M. P. H., Thompson N. G., Virmani Y. P., Payer J. H. Corrosion cost and preventive strategies in the United States. NACE Inter. 2002, 773 p.
2. Li X., Liu Z.Y., Zhang D., Du C. Materials science: share corrosion data. Nature. 2015, V. 527, P. 441?442. https://doi.org/10.1038/527441a
3. Larsen K. R. A closer look at microbiologically influenced corrosion. Materials performance roundtable Q & A. NACE Inter. 2014, V. 53, P. 32?40.
4. NACE Standard TM0212-2012. “Detection, testing and evaluation of microbiologically influenced corrosion on internal surfaces of pipelines”. (Houston, TX, USA: NACE, 2012).
5. Kip N., van Veen J. A. The dual role of microbes in corrosion. ISME J. 2015, 9 (3), 542–551. https://doi.org/10.1038/ismej.2014.169
6. Barton L. L., Hamilton W. A. Sulphate-Reducing Bacteria. Environmental and Engineered Systems. Cambridge Univer. Press. 2010, 553 p. ISBN: 9780521854856
7. Andreyuk K. I., Kozlova I. P., Kopteva Zh. P., Pilyashenko-Novokhatny A. I., Zanina V. V., Purish L. M. Microbial corrosion of underground structures. Kyiv: Naukova dumka. 2005, 258 p. (In Ukrainian).
8. Iutynska G. A., Purish L. M., Abdulina D. R. Corrosive-relevant sulfidogenic microbial communities of man-caused ecotopes. Lambert Academic Publishing. 2014, 173 p. (In Russian).
9. Guan J., Zang B. L., Mbadinga S. M., Liu J. F., Gu J. D., Mu B. Z. Functional genes (dsr) approach reveals similar sulphidogenic prokaryotes diversity but different structure in saline waters from corroding high temperature petroleum reservoirs. Appl. Microbiol. Biotechnol. 2014, 98 (4), 1871?1882. https://doi.org/10.1007/s00253-013-5152-y
10. DSTU 3291-95 Unified system of corrosion and ageing protection. The methods of estimate of soil biocorrosion activity and determination of microbial corrosion sites on the surface of the underground metallic constructions. Derzhstandart, Kyiv. 28 p. (In Ukrainian).
11. GOST 34597-2019 Anodic earthing of the electrochemical protective installations against corrosion of underground metal constructions. Methods for determining the biocorrosion aggressiveness of soils and their impact on underground metal constructions. EASC, Minsk. 42 p. (In Russian).
12. Nikitin M. M., Stasyuk N. V., Franrsuzov P. A., Dzhavakhiya V. G., Golikov A. G. Matrix approach to the simultaneous detection of multiple potato pathogens by real-time PCR. J. Appl. Microbiol. 2018, V. 124, P. 797?809. https://doi.org/10.1111/jam.13686
13. Slyadnev M. N. Microchip-based systems for molecular genetic analysis. Rus. J. Gen. Chem. 2012, V. 82, P. 2154?2169. https://doi.org/10.1134/S1070363212120353
14. Shi Z., Yin H., Van Nostrand J. D., Voordeckers J.W., Tu Q. et al. Functional gene array-based ultrasensitive and quantitative detection of microbial populations in complex communities. mSystems. 2019, 4 (4) e00296-19. https://doi.org/10.1128/mSystems.00296-19
15. Abdulina D. R., Purish L. M., Iutynska G. A., Nikitin M. M., Golikov A. G. Test-systems for monitoring of corrosion-relevant sulfate-reducing bacteria using real-time PCR assay. Biotechnol. acta. 2016, 9 (1), 48?54. https://doi.org/10.15407/biotech9.01.048
16. Postgate J. R. The sulphate-reducing bacteria. Cambridge Univer. Press. 1984, 208 p.
17. Netrusov A. I., Egorova M. A., Zakharchuk L. M., Kolotilova N. N. Practice in microbiology. Moscow: Academia Publishing. 2005, 608 p. (In Russian).
18. Аndronov Е. Е., Pinaev А. G., Pershyna Е. V., Chizhevskaya Е. P. Metodical recommendations. DNA isolation from soils. [Metodycheskie rekomendacii. Videlenie DNK iz obrazcov pochv]. ARRIAM. Saint-Petersburg. 2011, 27 p. (In Russian).
19. Zaporozhenko E. V., Slobodova N. V., Boulygina E. S., Kuznetsov B. B., Kravchenko I. K. Method for rapid DNA extraction from bacterial communities of different soils. Microbiol. (Mikrobiologiya). 2006, 75 (1), 105?111. https://doi.org/10.1134/S0026261706010188
20. Nazina T. N., Feng Q., Kostryukova N. K., Shestakova N. M., Babich T. L., Ni Fangtian, Wang Jianqiang, Min Liu, Ivanov M. V. Microbiological and production characteristics of the Dagang High-temperature heavy oil reservoir (block no. 1) during trials of biotechnology for enhanced oil recovery. Microbiol. (Mikrobiologiya). 2017, 86 (5), 636?650. https://doi.org/10.1134/S0026261717050162
21. Vigneron A., Head I. M., Tsesmetzis N. Damage to offshore production facilities by corrosive microbial biofilms. Appl. Microbiol. Biotechnol. 2018, V. 102, P. 2525–2533. https://doi.org/10.1007/s00253-018-8808-9
22. Xu D., Jia R., Li Y. et al. Advances in the treatment of problematic industrial biofilms. World J. Microbiol. Biotechnol. 2017. V. 33, P. 97. https://doi.org/10.1007/s11274-016-2203-4
- Details
- Hits: 991
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 13, No 2, 2020
Р. 32-37, Bibliography 22, English
Universal Decimal Classification: 577.113.3:681.785.58
https://doi.org/10.15407/biotech13.02.032
Krysiuk I. P., Horak I. R., Shandrenko S. G.
Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
It is known that nicotinamide adenine dinucleotide (NADH/NAD+) serves as a cofactor for many enzymes involved in the cell metabolism, redox control, signaling, biodegradation and other processes. Thereby determination of NADH/NAD+ production is commonly used for the measurement of NADH/NAD+-dependent enzymes activities. However, NADH may be oxidized spontaneously to NAD+ form, so the aim of this study was to develop new approach for spectrometric determination of real NADH content in a sample.
There had been used optical absorbance intensities at wavelengths 234, 260, 290, 340, and 400 nm in order to calculate the percent of NADH in a sample.
An original formula for the calculation of NADH percent in a sample was figure out, and the example of its application was presented.
The proposed calculation method could be applied for quick and routine NADH content determination at any laboratory equipped with spectrometer. Proposed method may be used for quick and routine determination of NADH content in any laboratory equipped with spectrometer.
Key words: NADH content determination, ultraviolet (UV) spectrometry.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. Pollak N., D?lle C., Ziegler M. The power to reduce: pyridine nucleotides – small molecules with a multitude of functions. Biochem. J. 2007, 402 (2), 205–218. https://doi.org/10.1042/BJ20061638
2. Nikiforov A., Kulikova V., Ziegler M. The human NAD metabolome: Functions, metabolism and compartmentalization. Crit. Rev. Biochem. Mol. Biol. 2015, 50 (4), 284–297. https://doi.org/10.3109/10409238.2015.1028612
3. David L. Nelson, Michael M. Cox. Lehninger Principles of Biochemistry. New York: W. H. Freeman. 2005, 1198 p.
4. Berger F., Ramirez-Hernandez M. H., Ziegler M. The new life of a centenarian: signalling functions of NAD(P). Trends Biochem. Sci. 2004, V. 29, P. 111–118. https://doi.org/10.1016/j.tibs.2004.01.007
5. Sell?s Vidal L., Kelly C. L., Mordaka P. M., Heap J. T. Review of NAD(P)H-dependent oxidoreductases: Properties, engineering and application. Biochim. Biophys. Acta Proteins Proteom. 2018, 1866 (2), 327–347. https://doi.org/10.1016/j.bbapap.2017.11.005
6. Grolla A. A., Miggiano R., Di Marino D., Bianchi M., Gori A., Orsomando G., Gaudino F., Galli U., Del Grosso E., Mazzola F., Angeletti C., Guarneri M., Torretta S., Calabr? M., Boumya S., Fan X., Colombo G., Travelli C., Rocchio F., Aronica E., Wohlschlegel J. A., Deaglio S., Rizzi M., Genazzani A. A., Garavaglia S. A nicotinamide phosphoribosyltransferase-GAPDH interaction sustains the stress-induced NMN/NAD+ salvage pathway in the nucleus. J. Biol. Chem. 2020 [Epub ahead of print] pii: jbc.RA119.010571. https://doi.org/10.1074/jbc.RA119.010571
7. Cohen M. S. Interplay between compartmentalized NAD+ synthesis and consumption: a focus on the PARP family. Genes. Dev. 2020 [Epub ahead of print]. https://doi.org/10.1101/gad.335109.119
8. Lees J. G., Gardner D. K., Harvey A. J. Nicotinamide adenine dinucleotide induces a bivalent metabolism and maintains pluripotency in human embryonic stem cells. Stem. Cells. 2020 [Epub ahead of print]. https://doi.org/10.1002/stem.3152
9. Girotra M., Naveiras O., Vannini N. Targeting mitochondria to stimulate hematopoiesis. Aging (Albany NY). 2020, 12 (2), 1042–1043. https://doi.org/10.18632/aging.102807
10. Fjeld C. C., Birdsong W. T., Goodman R. H. Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor. Proc. Natl. Acad. Sci. USA. 2003, 100 (16), 9202–9207. https://doi.org/10.1073/pnas.1633591100
11. Harlan B. A., Killoy K. M., Pehar M., Liu L., Auwerx J., Vargas M. R. Evaluation of the NAD+ biosynthetic pathway in ALS patients and effect of modulating NAD+ levels in hSOD1-linked ALS mouse models. Exp. Neurol. 2020, V. 327, P. 113219. https://doi.org/10.1016/j.expneurol.2020.113219
12. Cuny H., Rapadas M., Gereis J., Martin E., Kirk R. B., Shi H., Dunwoodie S. L. NAD deficiency due to environmental factors or gene-environment interactions causes congenital malformations and miscarriage in mice. Proc. Natl. Acad. Sci. USA. 2020, pii: 201916588. https://doi.org/10.1073/pnas.1916588117
13. Chiang S., Kalinowski D. S., Dharmasivam M., Braidy N., Richardson D. R., Huang M. L. The Potential of the Novel NAD+ Supplementing Agent, SNH6, as a Therapeutic Strategy for the Treatment of Friedreich's Ataxia. Pharmacol. Res. 2020, V. 4, P. 104680. https://doi.org/10.1016/j.phrs.2020.104680
14. Ye C., Qi L., Li X., Wang J., Yu J., Zhou B., Guo C., Chen J., Zheng S. Targeting the NAD+ salvage pathway suppresses APC mutation-driven colorectal cancer growth and Wnt/?-catenin signaling via increasing Axin level. Cell. Commun. Signal. 2020, 18 (1), 16. https://doi.org/10.1186/s12964-020-0513-5
15. Kang J. H., Lee S. H., Hong D., Lee J. S., Ahn H. S., Ahn J. H., Seong T. W., Lee C. H., Jang H., Hong K. M., Lee C., Lee J. H., Kim S. Y. Aldehyde dehydrogenase is used by cancer cells for energy metabolism. Exp. Mol. Med. 2016, 48 (11), e272. https://doi.org/10.1038/emm.2016.103
16. Sharma N., Okere I. C., Brunengraber D. Z., McElfresh T. A., King K. L., Sterk J. P., Huang H., Chandler M. P., Stanley W. C. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation. J. Physiol. 2005, 562 (Pt 2), 593–603. https://doi.org/10.1113/jphysiol.2004.075713
17. Fontaine J. X., Terc?-Laforgue T., Armengaud P., Cl?ment G., Renou J. P., Pelletier S., Catterou M., Azzopardi M., Gibon Y., Lea P. J., Hirel B., Dubois F. Characterization of a NADH-dependent glutamate dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism. Plant Cell. 2012, 24 (10), 4044–4065. https://doi.org/10.1105/tpc.112.103689
18. Irimia A., Madern D., Zacca? G., Vellieux F. M. Methanoarchaeal sulfolactate dehydrogenase: prototype of a new family of NADH-dependent enzymes. EMBO J. 2004, 23 (6), 1234–1244. https://doi.org/10.1038/sj.emboj.7600147
19. Hentall P. L., Flowers N., Bugg T. D. Enhanced acid stability of a reduced nicotinamide adenine dinucleotide (NADH) analogue. Chem. Commun. (Camb). 2001, V. 20, P. 2098–2099. https://doi.org/10.1039/b107634p
20. Fukazawa K., Ishihara K. Enhanced stability of NADH/dehydrogenase mixture system by water-soluble phospholipid polymers. Biomaterials and Biomechanics in Bioengineering. 2016, 3 (1), 37–46. https://doi.org/10.12989/bme.2016.3.1.037
21. Ince C., Coremans J. M. C. C., Bruining H. A. In Vivo NADH Fluorescence. In: Erdmann W., Bruley D. F. (eds). Oxygen Transport to Tissue XIV. 1992. Advances in Experimental Medicine and Biology, V. 317. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3428-0_30
22. Paul Held. Determination of NADH Concentrations with the Synergy™ 2 Multi-Detection Microplate Reader using Fluorescence or Absorbance. BioTek, Application Note. 2011.