- Details
- Hits: 55
SSN 2410-776X (Online)
ISSN 2410-7751 (Print)
Biotechnologia Acta. V. 13, No 1, 2020
Р. 56-63, Bibliography 31, English
Universal Decimal Classification: 628.3
https://doi.org/10.15407/biotech13.01.056
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
The aim of the work is to determine the rational parameters of the malt plant wastewater treatment from ferric compounds in a flow-through experimental bioreactor with the use of duckweed. The main tasks of the study were as follows: to determine the effect of the initial concentration of the ferrum, the amount of biomass introduced and the duration of the purification process to reduce the content of ferric compounds in the wastewater.
The studies were carried out on existing sewage treatment plants. They used a semi-production unit incorporated into the technology before the decontamination step.
The results show that the logarithmic nature of the biological process was detected in the concentration range from 0.2 to 1.3 mg/dm3. Under these conditions, the rational values of the duration of the purification process is found to be 3-8 h with the Lemna minor biomass value not exceeding 12 g/dm3.
It has been first demonstrated that the effect of sewage treatment from ferric ions in the bioreactor with Lemna minor was up to 40% and depended on the initial concentration of the ferrum compounds in water at the existing wastewater treatment plants at a semi-production unit for biological treatment of wastewater from ferric compounds.
Key words: wastewater, biological treatment, iron, duckweed, fibrous carrier, malt plant.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. Chong A., Celli J. The Francisella intracellular life cycle: toward molecular mechanisms of intracellular survival and proliferation. Front Microbiol. 2010, 1 (138), 1–12. https://doi.org/10.3389/fmicb.2010.00138
2. WHO Guidelines on Tularemia. WHO Press. 2007, 115 p.
3. Oyston P., Sjostedt A., Titball R. Tularemia: Bioterrorism Defence Renews Interest n Francisella Tularensis. Nature Rev. Microbiol. 2004, 2 (12), 967?979. https://doi.org/10.1038/nrmicro1045
4. Dahouk A. L., Nockler S. K., Tomaso H., Splettstoesser W., Jungersen G., Riber U., Petry T., Hoffmann D., Scholz H., Hensel A., Neubauer H. Seroprevalence of Brucellosis, Tularemia, and Yersiniosis in Wild Boars (Sus scrofa) from North-Eastern Germany. J. Vet. Med. 2005, 52 (10), 444?455. https://doi.org/10.1111/j.1439-0450.2005.00898.x
5. Hub?lek Z., Treml F., Juicov? Z., Huady M., Halouzka J., Jan?k V., Bill D. Serological survey of the wild boar (Sus scrofa) for tularaemia and brucellosis in South Moravia, Czech Republic. Vet. Med. 2002, 47 (2?3), 60?66. https://doi.org/10.17221/5805-VETMED
6. Geiger J. C. Tularemia in cattle and sheep. Cal. West. Med. 1931, 34 (3), 154?156. https://doi.org/10.1007/BF01627743
7. Stupnitskaya V. M., Marinov M. P., Litvinenko Ye. F., Slesarenko V. V., Slesarenko A. S.,. Khizhnskaya O. P., Stepanova I. A., Buyalo S. G. Natural tularemia foci on the territory of the Ukrainian SSR. J. Microbiol. Epidemiol. Immunobiol. 1965, N 10, P. 94?98
8. Hightower J., Kracalik I., Vydayko N., Goodin D., Glass G., Blackburn J. Historical distribution and host-vector diversity of Francisella tularensis, the causative agent of tularemia, in Ukraine. Parasites and Vectors. 2014, V. 7, P. 453?458. https://doi.org/10.1186/s13071-014-0453-2
9. Rusev I. T., Mogylevskii L. Ya., Boshenko Yu. A. Zakysilo V. N. Biocenotic features of natural foci of tularemia in the steppe zone of Ukraine. Visn. Sumy State Un-ty. 2005, 7 (79), 25?35. (In Russian).
10. Nakajima R., Escudero R., Molina D., Rodr?guez-Vargas M., Randall A., Jasinskas A., Pablo J., Felgner P., AuCoin D., Anda P., Davies D. Towards Development of Improved Serodiagnostics for Tularemia by Use of Francisella tularensis Proteome Microarrays. J Clin. Microbiol. 2016, 54 (7), 1755?1765. https://doi.org/10.1128/JCM.02784-15
11. Porsch-Ozc?r?mez M., Kischel N., Priebe H., Splettst?sser W., Finke E., Grunow R. Comparison of enzyme-linked immunosorbent assay, Western blotting, microagglutination, indirect immunofluorescence assay, and flow cytometry for serological diagnosis of tularemia. Clin. Diagn. Lab. Immunol. 2004, 11 (6), 1008?1015. https://doi.org/10.1128/CDLI.11.6.1008-1015.2004
12. Silva M. T. Classical Labeling of Bacterial Pathogens According to Their Lifestyle in the Host: Inconsistencies and Alternatives. Front Microbiol. 2012, 3 (71), 1–7.https://doi.org/10.3389/fmicb.2012.00071
13. Heizmann W., Botzenhart K., Doller G., Schanz D., Hermann G., Fleischmann K. Brucellosis : serological methods compared. J. Hyg. 1985, V. 95, P. 639–653. https://doi.org/10.1017/S0022172400060745
14. Moyer N. P., Evins G. M., Pigott N. E., Hudson J. D., Farshy C. E., Feeley J. C., Hausleret W. J. Comparison of serological screening tests for brucellosis. J. Clin. Microbiol. 1987, V. 25, P. 1969–1972. https://doi.org/10.1128/JCM.25.10.1969-1972.1987
15. Schmitt P., Splettst?sser W., Porsch-Ozc?r?mez M., Finke E. J., Grunow R. A novel screening ELISA and a confirmatory Western blot useful for diagnosis and epidemiological studies of tularemia. Epidemiol. Infect. 2005, 133 (4), 759?766. https://doi.org/10.1017/S0950268805003742
16. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 8th Edition. OIE. 2018, P. 675?682.
17. SI Sumy OLC MoH of Ukraine (Official web-page) Available at: http://ses.sumy.ua/informacya-dlya-naselennya/1027-epzootichna-situacya-z-tulyaremyi-v-oblast.html (accessed 25 December 2019).
- Details
- Hits: 61
ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
Biotechnologia Acta V. 13, No 1, 2020
Р. 45-55, Bibliography 17, English
Universal Decimal Classification: 619:616.98-078:579.841.95:[577.2.08+57.083.33]:636.4
https://doi.org/10.15407/biotech13.01.045
O. B. Zlenko 1, C. Popp 2, H. von Buttlar 2, A. P.Gerilovych 1, J. Schwarz 2
1 National Scientific Center «Institute of Experimental and Clinical Veterinary Medicine», Kharkiv, Ukraine
2Bundeswehr Institute of Microbiology, Munich, Germany
To the present day, a Francisella infection is diagnosed by a mandatory combination of two methods: a screening Enzyme-linked Immunosorbent Assay (ELISA) and a confirmatory Western Blot (WB), both based on the use of Francisella tularensis subsp. holarctica lipopolysaccharides (LPS) as a capture antigen. The purpose of the present work was to obtain and assess three recombinant proteins (FTT1696, FTT0077, FTT0975) as antigens in an indirect ELISA (iELISA) with the final goal to replace the confirmatory WB. Cloning strategy in vector pASG103, expression in E. coli and purification of proteins using Strep-system are described in detail in this report. Sera with confirmed antibody titers against F. tularensis reacted with all three antigens, which make them suitable for the serological detection of F. tularensis in swine and humans.
Key words: ELISA, FTT1696, FTT0077, FTT0975, recombinant proteins, tularemia.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. Chong A., Celli J. The Francisella intracellular life cycle: toward molecular mechanisms of intracellular survival and proliferation. Front Microbiol. 2010, 1 (138), 1–12. https://doi.org/10.3389/fmicb.2010.00138
2. WHO Guidelines on Tularemia. WHO Press. 2007, 115 p.
3. Oyston P., Sjostedt A., Titball R. Tularemia: Bioterrorism Defence Renews Interest n Francisella Tularensis. Nature Rev. Microbiol. 2004, 2 (12), 967?979. https://doi.org/10.1038/nrmicro1045
4. Dahouk A. L., Nockler S. K., Tomaso H., Splettstoesser W., Jungersen G., Riber U., Petry T., Hoffmann D., Scholz H., Hensel A., Neubauer H. Seroprevalence of Brucellosis, Tularemia, and Yersiniosis in Wild Boars (Sus scrofa) from North-Eastern Germany. J. Vet. Med. 2005, 52 (10), 444?455. https://doi.org/10.1111/j.1439-0450.2005.00898.x
5. Hub?lek Z., Treml F., Juicov? Z., Huady M., Halouzka J., Jan?k V., Bill D. Serological survey of the wild boar (Sus scrofa) for tularaemia and brucellosis in South Moravia, Czech Republic. Vet. Med. 2002, 47 (2?3), 60?66. https://doi.org/10.17221/5805-VETMED
6. Geiger J. C. Tularemia in cattle and sheep. Cal. West. Med. 1931, 34 (3), 154?156. https://doi.org/10.1007/BF01627743
7. Stupnitskaya V. M., Marinov M. P., Litvinenko Ye. F., Slesarenko V. V., Slesarenko A. S.,. Khizhnskaya O. P., Stepanova I. A., Buyalo S. G. Natural tularemia foci on the territory of the Ukrainian SSR. J. Microbiol. Epidemiol. Immunobiol. 1965, N 10, P. 94?98
8. Hightower J., Kracalik I., Vydayko N., Goodin D., Glass G., Blackburn J. Historical distribution and host-vector diversity of Francisella tularensis, the causative agent of tularemia, in Ukraine. Parasites and Vectors. 2014, V. 7, P. 453?458. https://doi.org/10.1186/s13071-014-0453-2
9. Rusev I. T., Mogylevskii L. Ya., Boshenko Yu. A. Zakysilo V. N. Biocenotic features of natural foci of tularemia in the steppe zone of Ukraine. Visn. Sumy State Un-ty. 2005, 7 (79), 25?35. (In Russian).
10. Nakajima R., Escudero R., Molina D., Rodr?guez-Vargas M., Randall A., Jasinskas A., Pablo J., Felgner P., AuCoin D., Anda P., Davies D. Towards Development of Improved Serodiagnostics for Tularemia by Use of Francisella tularensis Proteome Microarrays. J. Clin. Microbiol. 2016, 54 (7), 1755?1765. https://doi.org/10.1128/JCM.02784-15
11. Porsch-Ozc?r?mez M., Kischel N., Priebe H., Splettst?sser W., Finke E., Grunow R. Comparison of enzyme-linked immunosorbent assay, Western blotting, microagglutination, indirect immunofluorescence assay, and flow cytometry for serological diagnosis of tularemia. Clin. Diagn. Lab. Immunol. 2004, 11 (6), 1008?1015. https://doi.org/10.1128/CDLI.11.6.1008-1015.2004
12. Silva M. T. Classical Labeling of Bacterial Pathogens According to Their Lifestyle in the Host: Inconsistencies and Alternatives. Front Microbiol. 2012, 3 (71), 1–7. https://doi.org/10.3389/fmicb.2012.00071
13. Heizmann W., Botzenhart K., Doller G., Schanz D., Hermann G., Fleischmann K. Brucellosis : serological methods compared. J. Hyg. 1985, V. 95, P. 639–653. https://doi.org/10.1017/S0022172400060745
14. Moyer N. P., Evins G. M., Pigott N. E., Hudson J. D., Farshy C. E., Feeley J. C., Hausleret W. J. Comparison of serological screening tests for brucellosis. J. Clin. Microbiol. 1987, V. 25, P. 1969–1972. https://doi.org/10.1128/JCM.25.10.1969-1972.1987
15. Schmitt P., Splettst?sser W., Porsch-Ozc?r?mez M., Finke E. J., Grunow R. A novel screening ELISA and a confirmatory Western blot useful for diagnosis and epidemiological studies of tularemia. Epidemiol. Infect. 2005, 133 (4), 759?766.https://doi.org/10.1017/S0950268805003742
16. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 8th Edition. OIE. 2018, P. 675?682.
17. SI Sumy OLC MoH of Ukraine (Official web-page) Available at: http://ses.sumy.ua/informacya-dlya-naselennya/1027-epzootichna-situacya-z-tulyaremyi-v-oblast.html (accessed 25 December 2019).
- Details
- Hits: 61
ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
Biotechnologia Acta V. 13, No 1, 2020
P. 38-44, Bibliography 15, English
Universal Decimal Classification:: 579.842.21:615.331:579.61
https://doi.org/10.15407/biotech13.01.038
Bogomolets National Medical University, Kyiv, Ukraine
The work was aimed to study the synergy of the antimicrobial activity of the prodigiosin pigment with antibiotics against bacteria of the genera Bacillus, Staphylococcus and Streptococcus. The serial dilution method was used to evaluate antimicrobial compositions, which included inhibitors of cell wall synthesis: ampicillin, benzylpenicillin, vancomycin, cefazolin, and metronidazole (nitroimidazole derivatives) in combination with the pigment prodigiosin isolated from Serratia marcescens. Each combination was tested against the studied strains. The fractional inhibitory concentration index (FICI) for each combination was calculated to determine synergy, and the results were interpreted as follows: FICI ?0.5 ? synergism; FICI > 4.0 ? antagonism; and FICI > 0.5-4 ? neutralism.
It was shown that the ethanol extract of prodigiosin in combination with benzylpenicillin, vancomycin, cefazolin, and metronidazole interacted differently synergistically depending on the type of microorganism. The combinations of prodigiosin and metronidazole showed a synergistic effect against Bacillus subtilis, vancomycin and cefazolin against Staphylococcus aureus and benzylpenicillin against Streptococcus pyogenes. Other combinations of prodigiosin and antibiotics showed a neutral effect, and in the case of cefazolin against Str. pyogenes, even an antagonistic effect.
Thus, the study showed the synergism of prodigiosin with antibiotics depending on the type of microorganism, contributed to a several-fold decrease in the minimum inhibitory and bactericidal concentrations of each component separately, and the results indicated that prodigiosin acted separately more efficiently against gram-positive non-spore-forming bacteria. This synergistic combination of antimicrobial agents had great potency to prevent bacterial resistance.
Key words: prodigiosin, antimicrobial compounds, antimicrobial synergy.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. Stankovic N., Senerovic L., Ilic-Tomic T., Vasiljevic B., Nikodinovic-Runic J. Properties and applications of undecylprodigiosin and other bacterial prodigiosins. Appl Microbiol Biotechnol. 2014, 98 (9), 3841–3858. https://doi.org/10.1007/s00253-014-5590-1
2. Williamson N. R., Fineran P. C., Leeper F. J., Salmond G. P. C. The biosynthesis and regulation of bacterial prodiginines. Nat. Rev. Microbiol. 2006, V. 4, P. 887–899. https://doi.org/10.1038/nrmicro1531
3. Darshan N., Manonmani H. K. Prodigiosin and its potential applications. J. Food Sci. Technol. 2015, 52 (9), 5393–5407. https://doi.org/10.1007/s13197-015-1740-4
4. Li D., Liu J., Wang X., Kong D., Du W., Li H., Hse C. Y., Shupe T., Zhou D., Zhao K. Biological potential and mechanism of prodigiosin from Serratia marcescens subsp. lawsoniana in Human choriocarcinoma and prostate cancer cell lines. Int. J. Mol. Sci. 2018, 19 (11). https://doi.org/10.3390/ijms19113465
5. Suryawanshi R. K., Patil C. D., Borase H. P., Salunke B. K., Patil S. V. Studies on production and biological potential of prodigiosin by Serratia marcescens. Appl. Biochem. Biotechnol. 2014, 173 (5), 1209–1221. https://doi.org/10.1007/s12010-014-0921-3
6. Danev?i? T., Vezjak M. B., Zorec M., Stopar D. Prodigiosin – a multifaceted Escherichia coli antimicrobial agent. PLoS One. 2016, 11 (9), 9–15. https://doi.org/10.1371/journal.pone.0162412
7. Herr?ez R., Mur A., Merlos A., Vi?as M., Vinuesa T. Using prodigiosin against some gram-positive and gram-negative bacteria and Trypanosoma cruzi. J. Venom. Anim. Toxins Incl. Trop. Dis. 2019, V. 25, P. e20190001. https://doi.org/10.1590/1678-9199-jvatitd-2019-0001
8. Tyers M., Wright G. D. Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat. Rev. Microbiol. 2019, 17 (3), 141–155. https://doi.org/10.1038/s41579-018-0141-x
9. Cottarel G., Wierzbowski J. Combination drugs, an emerging option for antibacterial therapy. Trends Biotechnol. 2007, 25 (12), 547–555. https://doi.org/10.1016/j.tibtech.2007.09.004
10. Srimathi R., Priya R., Nirmala M., Malarvizhi A. Isolation, identification, optimization of prodigiosin pigment produced by Serratia marcescens. IJLEMR. 2017, 2 (9), 11–21.
11. Phatake Y. B., Dharmadhikari S. M. Isolation and screening of prodigiosin production bacteria and characterization of produced pigment. IJSN. 2016, 7 (1), 202–209.
12. Sathishkumar T., Aparna H. Original research article anti-biofouling activity of prodigiosin, a pigment extracted from Serratia marcescens. Int. J. Curr. Microbiol. App. Sci. 2014, 3 (5), 712–725.
13. Wayne P. A. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 29th ed. CLSI supplement M100-S18, 2018.
14. Xuejie X., Li X., Ganjun Y., Yimin W., Yunqiu Q., Meijing Z. Synergistic combination of two antimicrobial agents closing each other’s mutant selection windows to prevent antimicrobial resistance. Sci. Rep. 2018, 8 (1), 7237. https://doi.org/10.1038/s41598-018-25714-z
15. Colquhoun D. The reproducibility of research and the misinterpretation of P-values. R. Soc. Open. Sci. 2017, 4 (12), 171085. https://doi.org/10.1098/rsos.171085
- Details
- Hits: 84
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 13, No 1, 2020
Р. 30-37, Bibliography 18, English
Universal Decimal Classification: 615.322:616.37
https://doi.org/10.15407/biotech13.01.030
1 Uzhhorod National University, Ukraine
2 University of Veterinary Medicine and Pharmacy in Ko?ice, Slovakia
The purpose of this work was to study the antimicrobial, antibiofilm-forming and antioxidant properties of alcohol extracts of Arnica montana L. and Achillea millefolium L. The plants for the analysis were gathered in the territory of Velyky Berezny region, Transcarpathia. Ethyl and methyl extracts were produced from inflorescences of Arnica montana L. and Achillea millefolium L. For the purpose of analysis, we used Staphylococcus genus bacteria that had been isolated from the mouth cavities and pharynx of human patients suffering from inflammatory diseases, by plating into differentially diagnostic nutrient media with subsequent identification. All isolates were characterized to be biofilm-forming.
The subject of the study was extract’s antimicrobial activity evaluated by the diffusion-into-agar method in standard 96-well plates using the spectrophotometric method and by measuring of antioxidant activity (DPPH test).
t was established that Arnica montana L. extracts exerted a more pronounced antimicrobial activity upon the analysed isolates of Staphylococcus genus bacteria. It was furthermore shown that Arnica montana L. extracts displayed an antimicrobial effect even upon MRSA of S. aureus. Extracts of Arnica montana L. and Achillea millefolium L. were shown to possess anti-biofilm forming properties.
Ethyl and methyl extracts of Arnica montana L.and Achillea millefolium L. were shown to reveal significant antioxidant activity.
Thus, our results indicated a need in further research of possible application of Arnica montana L. and Achillea millefolium L. extracts as anti-staphylococcal agents, which could be employed for the treatment of inflammatory processes in mouth cavity and oropharynx.
Key words: antimicrobial effect, antibiofilm formation, plant extracts.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. Kryvtsova M. V. Microscopic Candida genus fungi in the structure of microbial associations in the condition of generalized periodontitis and their sensitivity to antibiotics and essential oils. Bulletin of Problems Biology and Medicine. 2019, 1 (2), 263?266. https://doi.org/10.29254/2077-4214-2019-1-2-149-263-266
2. Piegerov? A., Ko??ov? J., Schusterov? P., Nemcov? R., Kryvtsova M. In vitro inhibition of biofilm formation by Staphylococcus aureus under the action of selected plant extracts. Folia Veterinaria. 2019, 63 (1), 48–53. https://doi.org/10.2478/fv-2019-0007
3. Kriplani P., Guarve K., Baghael U. S. Arnica montana L. ? a plant of healing: review. J. Pharm. Pharmacol. 2017, 69 (8), 925–945. https://doi.org/10.1111/jphp.12724
4. Mazova I. S., Apykhtin N. N., Plemenkov V. V. Chemotaxonomy of common yarrow Achillea millefolium L. Khimiya rastitelnogo syria. N 3, P. 85–88.
5. Safonov N. N. A complete atlas of medicinal plants. Moskva: EKSMO. 2009.
6. O'Toole G., Kaplan H. B., Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol. 2000, V. 54, P. 49?79. https://doi.org/10.1146/annurev.micro.54.1.49
7. Medini F., Fellah H., Ksouri R., Abdelly C. Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum. J. Taibah University for Science. 2014, 8 (3), 216?224.https://doi.org/10.1016/j.jtusci.2014.01.003
8. Koo H., Gomes B. P. F. A., Rosalen P. L., Ambrosano G. M. B., Park Y. K., Cury J. A. In vitro antimicrobial activity of propolis and Arnica montana against oral pathogens. Archives of Oral Biology. Elsevier. 2000, 45 (2), 141–148. https://doi.org/10.1016/S0003-9969(99)00117-X
9. Vorobets N. M., Bilynska I. S., Piniazhko O. B. Protymikrobni vlastyvosti arniky hirskoyi (Antimictobial properties of mountain arnica). Botanichni systemy. 2011, 3 (3), 222–224.
10. El-Kalamouni C., Venskutonis, P., Zebib B., Merah O., Raynaud C., Talou T. Antioxidant and Antimicrobial Activities of the Essential Oil of Achillea millefolium L. Grown in France. Medicines. 2017, 4 (2), 30. https://doi.org/10.3390/medicines4020030
11. Rasha N. Hasson. Antibacterial Activity of Water and Alcoholic Crude Extract of Flower Achillea millefolium. Rafidain J. Sci. 2011, 22 (5), 11?20. https://doi.org/10.33899/rjs.2011.6518
12. Stojanovi? G., Radulovi? N., Hashimoto T., Pali? R. In vitro antimicrobial activity of extracts of four Achillea species: The composition of Achillea clavennae L. (Asteraceae) extract. J. Ethnopharmacol. 2005, 101 (1?3), 185–190. https://doi.org/10.1016/j.jep.2005.04.026
13. Iauk L., Lo Bue A. M., Milazzo I., Rapisarda A., Blandino G. Antibacterial activity of medicinal plant extracts against periodontopathic bacteria. Phytotherapy Res. 2003, 17 (6), 599–604. https://doi.org/10.1002/ptr.1188
14. Kryvtsova M. V., Trush K., Eftimova J., Ko??ov?, J., Spivak M. J. Antimicrobial, antioxidant and some biochemical properties of Vaccinium vitis-idea L. Mikrobiol. Zh. 2019, N 3, P. 40?52. https://doi.org/10.1002/ptr.1188
15. Kryvtsova M. V., Ko??ov? J., Eftimova J., Spivak M. J. Antimicrobial, antibiofilm-forming and some biochemical properties of Potentilla erecta rhizome extract. Biotechnol. acta. 2019, 5 (12), С. 82?88. https://doi.org/10.15407/biotech
16. Yang J., Paulino R., Janke-Stedronsky S., Abawi F. Free-radical-scavenging activity and total phenols of noni (Morinda citrifolia L.) juice and powder in processing and storage. Food Chem. 2007, V. 102, P. 302–308. https://doi.org/10.1016/j.foodchem.2006.05.020
17. Scalbert A. Antimicrobial properties of tannins. Phytochemistry. Elsevier. 1991, 30 (12), 3875–3883. https://doi.org/10.1016/0031-9422(91)83426-L
18. Shukla V., Bhathena Z. Broad spectrum anti-quorum sensing activity of tannin-rich crude extracts of indian medicinal plants. ScientificaCairo. 2016, P. 1?8. https://doi.org/10.1155/2016/5823013
- Details
- Hits: 91
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 13, No 1, 2020
Р. 15-29, Bibliography 38, English
Universal Decimal Classification: 631.461:633.57 + 631.461.5
https://doi.org/10.15407/biotech13.01.015
Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine, Kyiv
The purpose of the work was to evaluate the symbiotic productivity of soybean?rhizobium and wheat?azotobacter phyto-bacterial systems under the action of N-acetyl-D-glucosamine (0.01 M; 0.1 M) in vitro on the cultures of nitrogen-fixing microorganisms Bradyrhizobium japonicum 634b and Azotobacter chroococcum Т79. We have used such indicators as plants biological and seed productivity, rhizobia nodulation ability and nitrogenase activity of soybean symbioses as well as wheat rhizosphere microbiota. It was shown that the biological activity of N-acetyl-D-glucosamine during incubation with soybean nodule bacteria had a higher level of realization of the rhizobia nodulation ability: plants were more actively infected (by 12%), a greater number of nodules were formed (1.2–2.3 times) with their greater total mass per plant (1.4–2.1 times) and the mass of each root nodule (1.2 times), as well as the nitrogen-fixing activity of the symbiosis (1.7 times) and the functional capacity of each morpho-structural symbiotic unit (1.4 times). It provided higher (by 14–29%) seed productivity of this system as compared with the symbiosis formed by the rhizobia monoculture. Activation of basic physiological processes in wheat such as nitrogen fixation (the activity of the rhizosphere microbiota was increased by 1.1–1.4 times) and photosynthesis (the content of chlorophylls in leaves was increased by 1.1–1.2 times) with N-acetyl-D-glucosamine-modified azotobacter provided a higher level of realization of the productive potential of this system in comparison with both non-infected plants (by 15%) and the variant of seed inoculation with bacteria only (by 7%). While inoculants bacteria + glucosamine had positive effect on seed productivity of the symbiotic and associative systems, it was shown no significant change in the biological productivity of soybean and wheat plants.
So, the use of N-acetyl-D-glucosamine as an additional agent of carbohydrate nature in inoculants with soybean nodule bacteria and soil diazotrophs of Azotobacter genus led to a more complete realization of the symbiotic and productive potential of phyto-bacterial symbiosis and association when compared to using a diazotrophs only.
Our results indicated the possibility of practical use of acetylated glucose-containing aminosaccharide in the creation of complex inoculants based on nitrogen-fixing bacteria.
Key words: soybean-rhizobium symbiosis, wheat?azotobacter association, N-acetyl-D-glucosamine, nodulation, nitrogen fixation, rhizosphere microbiota, chlorophyll, harvest.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. Isobe K., Ohte N. Ecological Perspectives on Microbes Involved in N-cycling. Microbes Environ. 2014, 29 (1), 4–16. https://doi.org/10.1264/jsme2.ME13159
2. Kyrychenko E. V. Crop Biotechnology. Nikolaev: Ilion. 2014, 436 p. (In Russian).
3. Chebotar V. K., Malfanova N. V., Shcherbakov A. V., Ahtemova G. A., Borisov A. Y., Lugtenberg B., Tikhonovich I. A. Endophytic Bacteria in Microbial Preparations That Improve Plant Development (Review). Applied Biochem. Microbiol. 2015, 51 (3), 271–277. https://doi.org/10.1134/S0003683815030059
4. Shiro S., Matsuura S., Rina Saiki G., Sigue C., Yamamoto A., Umehara Y., Hayashi M., Saeki Y. Genetic Diversity and Geographical Distribution of Indigenous Soybean-Nodulating Bradyrhizobia in the United States. Appl. Environ. Biol. 2013, 79 (12), 3610–3618. https://doi.org/10.1128/AEM.00236-13
5. Kyrychenko O. V. Market Analysis and Microbial Biopreparations Creation for Crop Production in Ukraine. Biotechnol. acta. 2015, 8 (4), 40–52. https://doi.org/10.15407/biotech8.04.040
6. Kiriziy D. A., Vorobey N. A., Kots S. Ya. The Relationship of Nitrogen Fixation and Photosynthesis as the Main Components of the Production Process in Alfalfa. Russ. Plant Physiol. 2007, 54 (5), 666–671. (In Russian). https://doi.org/10.1134/S1021443707050032
7. Beneduzi A., Ambrosini A., Passaglia L. M. P. Plant-Growth-Promoting Rhizobacteria (PGPR): Their Potential as Antagonists and Biocontrol Agents. Genet. Mol. Biol. 2012, 35 (Suppl. 4), 1044–1051. https://doi.org/10.1590/S1415-47572012000600020
8. Trivedi P., Pandey A., Palni L. M. S. Bacterial Inoculants for Field Applications under Mountain Ecosystem: Present Initiatives and Future Prospects. In: Bacteria in Agrobiology, Plant Probiotics; Ed. D. K. Maheshwari. Springer Berlin Heidelberg. 2012, P. 15–44. https://doi.org/10.1007/978-3-642-27515-9_2
9. Djordjevic M., Mohd Radzman N., Imin N. Small-Peptide Signals That Control Root Nodule Number, Development and Symbiosis. J. Exp. Bot. 2015, 66 (17), 5171–5181.https://doi.org/10.1093/jxb/erv357
10. Chebotar V. K., Raphalskiy S. V., Aritkin A. G., Esion V. V. Efficiency of Combined Application of Microbiological Means for Soybean Cultivation. Dostizheniya nauki i tekhniki. APK. 2013, N 8, P. 23–25. (In Russian).
11. Jabbarova D. P., Egamberdieva D., Davranov K., Jabbarov M. P. Restoration of Growth of Soybean Under Saline Conditions Due to Inoculation with Bradyrhizobium japonicum and Pseudomonas putida. Uzbek. Biol. J. 2013, N 5, P. 23–26.
12. Kosenko L. V., Mykhalkiv L. M., Krugova E. D., Mandrovskaya N. M., Zatovskaya T. V., Kots S. Ya. Biological Activity of Sinorhizobium meliloti Glucan. Rus. J. Microbiol. 2003, 72 (5), 633–638. (In Russian). https://doi.org/10.1023/A:1026043200549
13. Antipchuk A. F., Kosenko L. V. The Influence of Lipopolysaccharides and Glucans From Two Rhizobium leguminosarum bv. viciae Strains on the Formation and Efficiency of Their Symbioses With Pea Plants. Rus. J. Microbiol. 2004, 73 (1), 51–55. (In Russian). https://doi.org/10.1023/B:MICI.0000016368.23462.eb
14. Laus M. C., Logman T. J., Lamers, G. E., Van Brussel A. A., Carlson R. W., Kijne J. W. A Novel Polar Surface Polysaccharide from Rhizobium leguminosarum Binds Host Plant Lectin. Mol. Microbiol. 2006, 59 (6), 1704–1713. https://doi.org/10.1111/j.1365-2958.2006.05057.x
15. Mc Near Jr. D. H. The Rhizosphere. Roots, Soil and Everything in Between. Nat. Educ. Knowl. 2013, 4 (3), 1–20. http://www.nature.com/scitable/knowledge/library/the-rhizosphere-roots-soiland-67500617
16. Kyrychenko O. V. Study of Chemotaxis of Nodule Bacteria of Lupin to Organic Substances. Mikrobiol. Zh. 2005, 67 (3), 19–26. (In Russian).
17. B?rgmann H., Meier S., Bunge M., Widmer F., Zeyer J. Effects of Model Root Exudates on Structure and Activity of a Soil Diazotroph Community. Environ. Microbiol. 2005, 7 (11), 1711–1724. https://doi.org/10.1111/j.1462-2920.2005.00818.x
18. Kyrychenko O. V. Biological Activity of Rhizosphere Soil Spring Wheat in Association with Bacteria Azotobacter chroococcum T79 Modified N-acetyl-D-glucoseamine. Microbiol. and Biothecnol. 2016, N 3, 30–42. (In Russian). https://doi.org/10.18524/2307-4663.2016.3(35).77955
19. Antypchuk A. F., Pilyashenko-Novokhatniy A. I., Evdokimenko T. M. Practicum on Microbiology. Kyiv: Manual. University “Ukraine”. 2011, 156 p. (In Ukrainian).
20. Sadovnikova Yu. N. Features of Cellular Responses of Azospirillum brasilense to the Interaction of Stress Factors and Wheat Lectin: Author. dis. ... cand. biol. sciences on a specialty 03.00.04 – biochemistry, 03.00.07, microbiology, Yu. N. Sadovnikova; Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, Saratov. 2009, 23 p. (In Russian).
21. Denarie J. Maillet F., Poinsot V., Andre O., Becard G., Gueunier M., Cromer L., Haouy A., Giraudet D. Lipohitooligosaccharides Stimulating Arbuscular Mycorrhizal Symbiosis. Pat. W0 2010/049751 A1, W0 2010/049817 A2, W0 2010/049817 A3, CN 102215669 A, EP 2358194 A2, US 2011/0301032. France, Institute National De La Recherche Agronomique. Filing date 28.10.2009 (N CA 2740082); Pub. date 06.05.2010 (N CA 2740082 A1).
22. Djordjevic M. A., Susanti A. B., Marmuse L., Driguez H., Samain E., Vauzeilles B., Beau J-M., Kordbacheh F., Rolfe B. G., Schw?rer R., Daines A. M., Gresshoff P. M., Parish Ch. R. Lipo-Chitin Oligosaccharides, Plant Symbiosis Signalling Molecules That Modulate Mammalian Angiogenesis In Vitro. PLoS ONE (Public Library of Science). 2014, 9 (12), 112635. https://doi.org/10.1371/journal.pone.0112635
23. Iutynska G. O., Biliavska L. O., Kozyrytska V. E. Averkom-Nova Phyto-protective Biological Preparation for Plant Treatment. Pat. UA N 107972 С2, А 01N 63/02, А 01Р 3/00, А 01Р 5/00, С12N 1/20, С12 R 1/465. Ukraine, Institute of Microbiology and Virology im. Zabolotnogo NAS of Ukraine. Filing date 07.02.2013 (N а 2013 01463); Pub. date 10.03.2015. Bull. N 5 (N 107972 С2). (In Ukrainian).
24. Кyrychenko O. V. The Effect of Glucose- and Galactose-Containing Monosaccharides on In Vitro Development of Bradyrhizobium japonicum. Silskohospodarska mikrobiolohia. 2017, N 25, P. 3–9. (In Ukrainian).
25. Кyrychenko O. V. Change of the Wheat Lectin Activity and Degree of Its Interaction With Different Components of Compositions of Lectin Nature. Ukr. Biochem. J. 2006, 78 (6), 105–112. (In Ukrainian).
26. Grodzinskiy A. M. Allelоpatiya Rasteniy i Pochvoutomlenie: Izbr. Tr. Kyiv: Naukova dumka. 1991, 432 p. (In Russian).
27. State Register of Plant Varieties Suitable for Dissemination in Ukraine in 2018. Kyiv: Ministry of Agrarian Policy and Food of Ukraine. 447 p. www.sops.gov.ua/uploads/page/5aa63108e441e.pdf (In Ukrainian).
28. Hardy R. W. F., Burns R. C., Holsten R. D. Application of the Acetylene-Ethylene Assay for Measurement of Nitrogen Fixation. Soil. Biol. Biochem. 1973, 5 (1), 41–83. https://doi.org/10.1016/0038-0717(73)90093-X
29. Hiscox J. D., Israelstam R. J. The Method for the Extraction of Chlorophyll from Leaf Tissue Without Maceration. Can. J. Bot. 1979, 57 (12), 1332–1334. https://doi.org/10.1139/b79-163
30. Dospekhov B. A. Field experiment technique (Field experience). Moskva: Agropromizdat. 1985, 351 p. (In Russian).
31. Malichenko S. M., Krugova O. D., Starchenkov Yu. P. Nitrogenase of the Pure Culture Rhizobium lupine and her Effect on the Metabolites of the Legume Plants Nodules. V Ukr. Biochem. Cong. (Kyiv, 1987): Abstracts (Ch. 1, P. 102–103). (In Russian).
32. Kots S. Ya., Morgun V. V., Patyka V. Ph., Malichenko S. M., Mamenko P. N., Kiriziy D. A., Mykhalkiv L. M., Beregovenko S. K., Melnikova N. M. Biological nitrogen fixation: Legume-rhizobium symbiosis. Kiev: Logos. 2011, V. 2, 523 p. (In Russian).
33. Kyrychenko O. V., Volkogon N. V., Kots S. Ya. Effect of Presowing Seed Treatment with N-acetyl-D-glucosamine on Auxin and Cytokinin Contents in Leaves of Spring Wheat. The 7th Congress of the Plant Physiology Island of Russia “Plant Physiology is the Fundamental Basis of Ecology and Innovative Biotechnologies”: Reports (Part 1, P. 331), Nizhny Novgorod: UNN im. N. I. Lobachevsky. 2011, Ch. 1., P. 331. (In Russian).
34. Chernyadev I. I. The Protective Action of Cytokinins on the Photosynthetic Machinery and Productivity of Plants under Stress (Review). Appl. Biochem. Microbiol. 2009, 45 (4), 351–362 (In Russian). https://doi.org/10.1134/S0003683809040012
35. Tsavkelova E. A., Klimova S. Yu., Cherdyntseva T. A., Netrusov A. I. Hormones and Hormone-Like Substances of Microorganisms (Review). Appl. Biochem. Microbiol. 2006, 42 (3), 229–235 (In Russian). https://doi.org/10.1134/S000368380603001X
36. Dragovoz I. V., Leonova N. O., Biliavska L. O., Yavorska V. K., Iutynska G. O. Phytohormone Production by Some Free-Living and Symbiotic Soil Microorganisms. Dop. NAS Ukr. 2010, V. 12, P. 154–159 (In Ukrainian).
37. Dragovoz I. V., Leonova N. O., Iutynska G. A. Phytohormones Synthesis by Bradyrhizobium japonicum Strains with Different Symbiotic Effectiveness. Mikrobiol. Zh. 2011, 73 (4), 29–35 (In Ukrainian).
38. Kots S. Ya., Volkogon N. V., Gryschuk E. A. Ability of Strains and Tn5-mutants of Bradyrhizobium japonicum to Synthesize IAA and ABA In Vitro. Physiol. Biochem. Cultural Plant. 2010, 42 (6), 491–496 (In Russian).