- Details
- Hits: 182
ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
"Biotechnologia Acta" V. 12, No 3, 2019
p. 75-81, Bibliography 24, English
Universal Decimal Classification: 579.6:632.4:633.1
https://doi.org/10.15407/biotech12.03.075
О. Hrytsev1, 2, J. Shevchenko2, N. Vorobiova1, L. Skivka1
1Taras Shevchenko National University of Kyiv, ESC “Institute of Biology and Medicine”, Ukraine
2LLC “Syngenta”, Kyiv, Ukraine
The aim of the study was to develop rapid and sensitive assay for the simultaneous detection of R. cerealis and R. solani. Pure cultures of fungi were grown on a potato dextrose agar for 5 days at 28 °C, and mycelium was harvested and used for DNA extraction. Total DNA was extracted using a commercial test-systems. Molecular identification of phytopathogenic fungi was performed using a multiplex-touchdown PCR with further electrophoretic separation of amplification products in agarose gel. The specific sequence characterized amplified region primers RtubR4/RtubF4 for R. cerealis and ITS1/GMRS–3 for R. solani were tested for their specificity and useability in PCR multiplex capacity. The specificity of the multiplex-touchdown PCR was tested using DNA from wide range of fungal species and non-target DNA from healthy wheat. The used primer pairs provided only specific fragments for R. cerealis and R.solani. No PCR products were obtained during amplification with the negative control or non-target DNA templates from other species. Coupled to this we have optimized the temperature regime for the multiplex PCR protocol. Taken together, our protocol convincingly demonstrated the simultaneous ability to detect Rhizoctonia cerealis and Rhizoctonia solani and can be used for the diagnosis of compound Rhizoctonia root rot.
Key words: phytopathogenic fungi, Rhizoctonia, multiplex PCR.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Wiesw M. V. Compendium of wheat disease (3rd Ed). St. Paul, USA: APS Press. 1998, 112 p.
2. Kriuchkova L. O. Diseases of winter wheat, caused by necrotroph mushroom pathogens and methods of their diagnosis.: Aftoref. dys. … dok. biol. nauk. Kyiv. 2007, 52 s. (In Ukrainian).
3. Pletnikova N. Root rots of winter wheat. Crop protection. Ahrovіsnyk Ukrainy nauk. vyrobn. zhurn. 2008, N 3, P. 54–56. (In Russian).
4. Dur?n P., Tortella G., Viscardi S., Barra P. J., Carri?n V. J., Mora M. L., Pozo M. J. Microbial Community Composition in Take-All Suppressive Soils. Front Microbiol. 2018, V. 9, P. 2198. https://doi.org/10.3389/fmicb.2018.02198
5. Kwak Y. S., Weller D. M. Take-all of Wheat and Natural Disease Suppression: A Review. Plant Pathol J. 2013, 29 (2), 125–135. https://doi.org/10.5423/PPJ.SI.07.2012.0112
6. Laluk K., Mengiste T. Necrotroph attacks on plants: wanton destruction or covert extortion. Arabidopsis Book. 2010, V. 8, e0136. https://doi.org/10.1199/tab.0136
7. Mengiste T. Plant immunity to necrotrophs. Annu Rev Phytopathol. 2012, V. 50, P. 267–294. https://doi.org/10.1146/annurev-phyto-081211-172955
8. Kriuchkova L. O., Hrytsiuk N. V Root rot of winter wheat — distribution in the northern forest-steppe of Ukraine. Karantyn i zakhyst roslyn 2014, V. 2, P. 9–12. (In Ukrainian).
9. Markov I. L. Phytopathology: textbook / red. I. L. Markova. Kyiv: Feniks. 2016, 492 s. (In Ukrainian).
10. Li W., Guo Y., Zhang A., Chen H. Genetic Structure of Populations of the Wheat Sharp Eyespot Pathogen Rhizoctonia cerealis Anastomosis Group D Subgroup I in China. Phytopathology. 2017, 107 (2), 224–230. https://doi.org/10.1094/PHYTO-05-16-0213-R
11. Lema?czyk G., Kwa?na H. Effects of sharp eyespot (Rhizoctonia cerealis) on yield and grain quality of winter wheat. Eur. J. Plant Pathol. 2013, 135 (1), 187–200. https://doi.org/10.1007/s10658-012-0077-3
12. Hamada M. S., Yin Y. N., Ma Z. H. Detection of Rhizoctonia cerealis in wheat tissues by real-time PCR assay. J. Plant Pathol. 2012, 94 (1), 215–217.
13. Dada T. E. Epidemiology of Wheat Rhizoctonia. Int. J. Sci. Res. Publ. 2017, 7 (5), 463–473.
14. Goll M. B., Schade?Sch?tze A., Swart G., Oostendorp M., Schott J. J., Jaser B., Felsenstein F. G. Survey on the prevalence of Rhizoctonia spp. in European soils and determination of the baseline sensitivity towards sedaxane. Plant Pathology. 2014, V. 63, P. 148–154. https://doi.org/10.1111/ppa.12063
15. Woodhall J. W., Brown M. J., Perkins K., Somoza Valdeolmillos E., Boonham N., Ray R. V. A TaqMan real-time PCR assay for Rhizoctonia cerealis and its 1 use in wheat and soil. Eur. J. Plant Pathol. 2017, 148 (2), 237–245. https://doi.org/10.1007/s10658-016-1083-7
16. Sayler R. J., Yang Y. Detection and Quantification of Rhizoctonia solani AG1 IA, the Rice Sheath Blight Pathogen, in Rice Using Real-Time PCR. Plant Disease. 2007, 91 (12), 1663–1668. https://doi.org/10.1094/PDIS-91-12-1663
17. Chen S., Cao Y., Li T., Wu X. Simultaneous detection of three wheat pathogenic fungal species by multiplex PCR. Phytoparasitica. 2014. https://doi.org/10.1007/s12600-014-0442-1
18. Korbie D. J., Mattick J. S. Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat. Protoc. 2008, 3 (9), 1452–1456. https://doi.org/10.1038/nprot.2008.133
19. Yingpeng G., Wei L., Haiyan S., Ning W., Hanshou Y., Huaigu C. Detection and quantification of Rhizoctonia cerealis in soil using real-time PCR. J. Gen. Plant Pathol. 2012, 78 (4). https://doi.org/10.1007/s10327-012-0390-x
20. Johanson A., Turner H. C., McKay G. J., Brown A. E. A PCR based method to distinguish fungi of the rice sheath-blight complex, Rhizoctonia solani, R. oryzae and R. oryzae-sativae. FEMS Microbiol. Lett. 1998, 162 (2), 289–294. https://doi.org/10.1016/S0378-1097(98)00136-0
21. Kralik P., Ricchi M. A basic guide to real time PCR in microbial diagnostics: definitions, parameters and everything. Front Microbiol. 2017, V. 8, P. 108. https://doi.org/10.3389/fmicb.2017.00108
22. Sint D., Raso L., Traugott M. Advances in multiplex PCR: balancing primer efficiencies and improving detection success. Meth. Ecol. Evol. 2012, 3 (5), 898–905. https://doi.org/10.1111/j.2041-210X.2012.00215.x
23. Markoulatos P., Siafakas N., Moncany M. Multiplex polymerase chain reaction: a practical approach. J. Clin. Labt. Anal. 2002, V. 16, P. 47–51. https://doi.org/10.1002/jcla.2058
24. Ishii K., Fukui M. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ Microbiol. 2001, 67 (8), 3753–3755. https://doi.org/10.1128/AEM.67.8.3753-3755.2001
- Details
- Hits: 110
ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
"Biotechnologia Acta" V. 12, No 3, 2019
Р. 67-74, Bibliography 24, English
Universal Decimal Classification: 579.6:632.4:633.1
https://doi.org/10.15407/biotech12.03.067
EXTRACTS OF EDIBLE PLANTS AS BENEFICIAL MICROORGANISMS GROWTH STIMULATORS
O. V. Pallah1, 2, T. V. Meleshko1, 2, V. V. Bati2, N. V. Boyko1, 2
1Uzhhorod National University, Department of Clinical and Laboratory Diagnostics and Pharmacology, Faculty of Dentistry, Ukraine
2Uzhhorod National University, Research Development and Educational Centre of Molecular Microbiology and Mucosal Immunology, Ukraine
The aim of the work was to determine the content of biologically active compounds in berries and fruits collected in ecologically clean zones, to find out their potential use for the creation of target action pharmabiotics, and the ability of extracts derived from such products to stimulate the growth of probiotic lactic bacteria strains and representatives of commensal intestinal microbiota. The content of biologically active compounds was determined by thin-layer chromatography. We established the effect of berries and fruits methan extracts on the selected strains L. acidophilus, L. catenaformis, L. casei, L. fermentum, E. coli 058, E. faecalis (gut commensals), B. subtilis 090 (component of biopreparation), which were perspective for the creation of modern pharmabiotics, according to the results of these bacteria cultivation in the specified extracts. It was found that the investigated berry extracts were characterized by a higher content of polyphenols, compared to anthocyanins. Alycha extract mainly inhibited the growth of the most lactobacilli strains that we had tested, except for B. subtilis 090. Extracts of red currant, sweet cherry, and jostaberry stimulated the growth of L. сatenaformis, while extracts of sweet cherry and jostaberry, in addition to that of the above-mentioned lactobacilli strains, also stimulated the growth of L. сasei and L. fermentum. Blueberry and plum extracts activated the growth of all lactobacilli strains. The ability to stimulate the growth of B. subtilis 090 was noted only in the extract of alycha, jostaberry, and plum.
Key words: berries, fruits, flavanoids, anthocyanins, lactobacteria, pharmabiotics.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Pandey K. R., Naik S. R., Vakil B. V. Probiotics, prebiotics and synbiotics – a review. J. Food Sci. Technol. 2015, 52 (12), 7577–7587.https://doi.org/10.1007/s13197-015-1921-1
2. Melnуk V. S., Composite biopreparation for the treatment of periodontal tissue inflammation and correction of associated gastroduodenal disorders of the intestines in children. UA 93301, September 25, 2014. (In Ukrainian).
3. Stadnitskaya N. E., Pavlyuk I. V., Dumich I. I., Gubitska I. I., Novikov V. P. Antimicrobial properties of tinctures of Scorzonera Purpurea and Hypericum Perforatum Available at http://ena.lp.edu.ua:8080/handle/ntb/28631(In Ukrainian).
4. Andrzejewska J., Sadowska K., Kloska L., Rogowski L. The effect of plant age and harvest time on the content of chosen components and antioxidative potential of black chokeberry fruit. Acta Sci. Pol. Hortorum Cultus. 2015, 14 (4), 105–114.
5. Sarvash O., Bati V., Markush N., Levchuk O., Melnyk V., Mizernytskyy O., Boyko N. Novel Antimicrobials of Complex Origin. Abstracts of the thirteenth Congress of the Society of Microbiologists of Ukraine named after. S. M. Vinogradsky. Yalta, Ukraine, 01–06 October, 2013, Р. 220.
6. Diganta D., Ray R., Hazda B. Antibacterial and antitubercular activity of selected plant products against multi-drug resistant clinical isolates. Res. 2015, V. 1021, P. 1014–1021.
7. Khomych G. P. Fruits of wild raisins – a source of biologically active substances for food products. Scientific works. 2009, 36 (2), 186–190. (In Ukrainian).
8. Roate A., Jangid A., Tale R. V. Liguid chromatography – tandem mass spectrometric method for simultaneous determination of rutin and quercetin from leaves of Artocarpus Lakoocha Roxb. Int. Journal of pharma and biosciences. 2011, 2 (1), 848–853.
9. Wrolstad R. E., Acree T. E., Decker A., Pen ner M. H., Reid D. S., Schwarts S. J., Shoemaher C. F., Smith D. M ., Sporns P. Handbook of Food Analytical Chemistry, Volume 2: Pigments, Colorants, Flavors, Texture, and Bioactive Food Components. John Wiley & Sons Inc. 2005. https://doi.org/10.1002/0471709085
10. Vinnikova O. I., Morgul I. M. Practicum on microbiology: methodical recommendations. 2nd edition, amended. KhNU named after V. N. Karazin. 2009. (In Ukrainian).
11. Bati V. V., Boyko N. V. Biological properties of strains of lactobacilli isolated from food products of vegetable origin. Scientific Journal “ScienceRise”. 2016, 8/1 (25), 6–14. https://doi.org/10.15587/2313-8416.2016.76712
12. Rusin V. V., Petrov V. O., Boyko N. V. Method of prevention of purulent complications and wound infection after extraction of a tooth by bacterial suspension on the basis of Bacillus subtilis 090. UA 108567, May 12, 2015. (In Ukrainian).
13. Vitkovsky V. L. Fruit plants of the world. St. Petersburg: Lan. 2003, 592 p. (In Russian).
14. Wojciechowska O. V., Sitar O. V., Taran N. Yu. Phenolic compounds. Diversity, biological activity, prospects of application. Bulletin of Kharkiv Agrarian University. 2015, 1 (34), 104–119. (In Ukrainian).
15. Tiwari R., Rana C. S. Plant secondary metabolites: a review. International Journal of Engineering Research and General Science. 2015, 3 (5), 661–670.
16. Donovan J. L., Meyer A. S., Waterhouse A. L. Phenolic composition and antioxidant activity of Prunes and Prune juice (Prunus domestica). J. Agric. Food Chem. 1998, 46 (4), 1247–1252. https://doi.org/10.1021/jf970831x
17. Gonz?lez-Garc?a E., Puchalska P., Marina M. L., Garc?a M. C. Fractionation and identification of antioxidant and angiotensin-converting enzyme-inhibitory peptides obtained from plum (Prunus domestica L.) stones. Journal of functional foods. 2015, V. 19, P. 376–384. https://doi.org/10.1016/j.jff.2015.08.033
18. Poonam V., Kumar G., Reddy L. C., Jain R., Sharma K. S., Prasad K. A., Parmar S. V. Chemical constituents of the genus Prunus and their medicinal properties. Current medicinal chemistry. 2011, 18 (25), 3758–3824. https://doi.org/10.2174/092986711803414386
19. Plumb J., Lyons J., N?rby K., Thomas M., N?rby E., Poms R., Bucchini L., Restani P., Kiely M., Finglas P. ePlant LIBRA: A composition and biological activity database for bioactive compounds in plant food supplements. Food Chemistry. 2016, 193 (15), 121–127. https://doi.org/10.1016/j.foodchem.2015.03.126
20. Wu X., Gu L., Prior R. L., McKay S. Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J. Agric. Food Chem. 2004, 52 (26), 7846–7856. https://doi.org/10.1021/jf0486850
21. Veberic R., Slatnar A., Bizjak J., Stampar F., Mikulic-Petkovesk M. Anthocyanin composition of different wild and cultivated berry species. LWT–Food Science and Technology. 2015, P. 509–517. https://doi.org/10.1016/j.lwt.2014.08.033
22. Jakobek L., Seruga M., Seruga B., Novak I., Medvidovic-Kosanovic M. Phenolic compound composition and antioxidant activity of fruits of Rubus and Prunus species from Croatia International. Journal of Food science and Technology. 2009, P. 860–868. https://doi.org/10.1111/j.1365-2621.2009.01920.x
23. Puupponen-Pimi? R., Nohynek L., Alakomi H. L., Oksman-Caldentey K. M. Bioactive berry compounds – novel tools against human pathogens. Applied Microbiology and Biotechnology. 2005, V. 67, P. 8–18. https://doi.org/10.1007/s00253-004-1817-x
24. Nile S. H., Park S. W. Edible berries: Bioactive components and their effect on human health. Nutrition. 2014, 30 (2), 134–144. https://doi.org/10.1016/j.nut.2013.04.007
- Details
- Hits: 340
ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
"Biotechnologia Acta" V. 12, No 3, 2019
Р. 57-66, Bibliography 29, English
Universal Decimal Classification: 637.03: 577.215
https://doi.org/10.15407/biotech12.03.057
INFLUENCE OF SHORT-WAVELENTH ULTRAVIOLET LIGHT ON GENES EXPRESSION IN Arabidopsis thaliana PLANTS
M. Kryvokhyzha1, Y. Libantova2, N. Rashydov1
1Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine, Kiyv
2Institute Plant Genetics and Biotechnology of SAS, Slowak Republic
The aim of the work was to estimate the impact of the short wavelengths ultraviolet radiation (wavelength is 230 nm) on Arabidopsis thaliana. The stress response on some key flowering determination genes AP1, GI, LFY, FT, CO, and the repair gene RAD51 expression were investigated. The grown plants were applied by red (610–700 nm), violet (400–450 nm), neutral white (mixture wavelengths 380–750 nm), 20 V and high intensive white light (mixture wavelengths 380–750 nm) 40V LED. The experimental group of plants was irradiated by short wavelengths ultraviolet on ontogenesis stage 5.1 by Boyes classification. The leaf length as growth parameter mark also was analyzed. The short wavelengths ultraviolet influence caused differences in photoperiodic pathway genes expression in plants grown under different illumination. Acceleration flowering phases under influence white intensive illumination and delay ones in case of violet and common white illumination were observed comparing with control groups. It was revealed that cryptochrome and phytochrome formation play an important role in plant development and stress resistance. It enables to understand the best way of plant cultivation in stressful condition.
Key words: illumination conditions, gene expression, short wavelengths ultraviolet, stress response.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Seiler F., Soll J., B?lter B. Comparative phenotypical and molecular analyses of arabidopsis grown under fluorescent and LED light. Plants (Basel). 2017, 6 (2), pii: E24. https://doi.org/10.3390/plants6020024
2. Song K., Kim H. Ch., Shin S., Kim K. H., Moon J. Ch., Kim J. Y., Lee1 B. M. Transcriptome analysis of flowering time genes under drought stress in maize leaves. Front. Plant Sci. 2017, 8 (267). https://doi.org/10.3389/fpls.2017.00267
3. Valentim F., Mourik S., Pos? D., Kim M., Schmid M., van Ham R., Busscher M., Sanchez-Perez G., Molenaar J., Angenent G., Immink R., van Dijk A. A quantitative and dynamic model of the Arabidopsis flowering time gene regulatory network. PLoS One. 2015, 10 (2), e0116973. https://doi.org/10.1371/journal.pone.0116973
4. Song Y., Ito Sh., Imaizumi T. Flowering time regulation: in leaves. Trends in Plant Science. 2013, 18 (10), Elsevier Ltd: 575–583. https://doi.org/10.1016/j.tplants.2013.05.003
5. Bernier G., P?rilleux C. A physiological overview of the genetics of flowering time control. Plant Biotechnology Journal. 2005, 3 (1), 3–12. https://doi.org/10.1111/j.1467-7652.2004.00114.x
6. McCree K. J. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural Meteorology. 1972, 9 (3), 191–216.https://doi.org/10.1016/0002-1571(71)90022-7
7. Cashmore A., Jarillo J., Wu Y., Liu D. Cryptochromes: blue light receptors for plants and animals. 1999, V. 284, P. 760–766. https://doi.org/10.1126/science.284.5415.760
8. Dougher T., Bugbee B. Evidence for yellow light suppression of lettuce growth. Photochem Photobiol. 2001, 73 (2), 208–212. https://doi.org/10.1562/0031-8655(2001)073<0208:EFYLSO>2.0.CO;2
9. Brown C., Schuerger A., Sager J. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J. Am. Soc. Hortic. Sci. 1995, 120 (5), 808–813. https://doi.org/10.21273/JASHS.120.5.808
10. King R., Hisamatsu T., Goldschmidt E., Blundell C. The nature of floral signals in arabidopsis. I. Photosynthesis and a farred photoresponse independently regulate flowering by increasing expression of FLOWERING LOCUS T (FT). J. Exp. Bot. 2008, 59 (14), 3811–3820. https://doi.org/10.1093/jxb/ern231
11. Yano A., Fujiwara K. Plant lighting system with five wavelength-band light-emitting diodes providing photon flux density and mixing ratio control. Plant Methods. 2012, V. 8, P. 46. https://doi.org/10.1186/1746-4811-8-46
12. Liu B., Zuo Z., Liu H., Liu X., Lin C. Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes and Development. 2011, 25 (10), 1029–1034.https://doi.org/10.1101/gad.2025011
13. Ahmad M., Jarillo J., Smirnova O., Cashmore R. Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism. Nature. 1998, V. 392, P. 720–723. https://doi.org/10.1016/1369-5266(88)80000-1
14. Teramura A., Sullivan J. Effects of UV-B radiation on photosynthesis and growth of terrestrial plants. Photosynth Res. 1994, 39 (3), 463–473. https://doi.org/10.1007/BF00014599
15. Rozema J., Lenssen G., Van De Staaij J., Tosserams М., Visser А., Broekman R. Effects of UV-B radiation on terrestrial plants and ecosystems: interaction with CO2 enrichment. Plant Ecology. 1997, V. 128, P. 183–191. https://doi.org/10.1023/A:1009762924174
16. Hollo F. Effects of ultraviolet radiation on plant cells. Micron. 2002, 33 (2), 179–197. https://doi.org/10.1016/S0968-4328(01)00011-7
17. Brem R., Guven M., Karran P. Oxidativelygenerated damage to DNA and proteins mediated by photosensitized UVA. Free Radical Biology and Medicine. 2017, V. 107, P. 101–109. https://doi.org/10.1016/j.freeradbiomed.2016.10.488
18. Gasperini A., Sanchez S. Doiron A., Lyles M., German G. Non-ionising UV light increases the optical density of hygroscopic self assembled DNA crystal films. Scientific Reports, Springer US. 2017, P. 1–10.https://doi.org/10.1038/s41598-017-06884-8
19. Fina J., Casadevall R., AbdElgawad H., Prinsen E., Markakis M., Beemster G., Casati P. UV-B inhibits leaf growth through changes in growth regulating factors and gibberellins levels. Plant Physiol. 2017, 74 (2), 1110–1126. https://doi.org/10.1104/pp.17.00365
20. Sampson B., Cane J. Impact of enhanced ultraviolet-B radiation on flower, pollen, and nectar production. American Journal of Botany. 1999, 86 (1), 108–114. https://doi.org/10.2307/2656959
21. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000, 408 (6814), 796–815. https://doi.org/10.1038/35048692
22. Boyes D. Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. The plant cell online. 2001, 13 (7), 1499–1510. https://doi.org/10.1105/tpc.13.7.1499
23. Logemann J., Schell J., Willmitzer L. Improved method for the isolation of RNA from plant tissues. Analytical Biochemistry. 1987, 163 (1), 16–20,https://doi.org/10.1016/0003-2697(87)90086-8
24. Algina J., Olejnik S. Conducting power analyses for ANOVA and ANCOVA in between-subjects designs. Evaluation & the Health Professions. 2003, 26 (3), 288–314,https://doi.org/10.1177/0163278703255248
25. Pfaffl M., Horgan G., Dempfle L. Relative expression software tool (REST) for groupwise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research. 2002, 30 (9), e36.https://doi.org/10.1093/nar/30.9.e36
26. D’Amico-Damiao V., Carvalho R. F. Cryptochrome-related abiotic stress responses in plants. Front Plant Sci. 2018, V. 9, P. 1897. https://doi.org/10.3389/fpls.2018.01897
27. Litvinov S., Rashydov N. The transcriptional response of Arabidopsis thaliana L. genes AtKu70, AtRAD51 and AtRad1 to X-ray radiation. Journal of Agricultural Science and Technology. 2017, V. 7, P. 52–60. https://doi.org/10.17265/2161-6256/2017.01.008
28. Muneer S., Park Y. G, Jeong B. R. Red and Blue Light Emitting Diodes (LEDs) Participate in Mitigation of Hyperhydricity in In Vitro-Grown Carnation Genotypes (Dianthus Caryophyllus). Journal of Plant Growth Regulation. 2018, 137 (2), 370–379. https://doi.org/10.1007/s00344-017-9733-3
29. Xie X., He Z., Chen N., Tang Z., Wang Q., Cai Y. The roles of environmental factors in regulation of oxidative stress in plant. BioMed Research International. 2019. Article ID 9732325:11.https://doi.org/10.1155/2019/9732325
- Details
- Hits: 227
ISSN 2410-776X (Online
ISSN 2410-7751 (Print)
"Biotechnologia Acta" V. 12, No 3, 2019
Р. 50-56, Bibliography 17, English
Universal Decimal Classification: 577.115.083:608.2
https://doi.org/10.15407/biotech12.03.050
ILLUMINATION INFLUENCE ON Chlorella sorokiniana BIOMASS SYNTHESIS
Y. Bazarnova, N. Lyskova, T. Kuznetsova, E. Trukhina
Peter the Great St. Petersburg Polytechnic University, Russia
The aim of the work was to estimate the influence of illumination on the rate of Chlorella sorokiniana alga biomass synthesis; kinetic dependencies of the synthesis and unit rate of biomass growth at different illumination conditions. Verification of adequacy of kinetic dependencies has been implemented. The kinetic equations and values of the unit rate of biomass growth derived in studied illumination modes made it possible to calculate the time needed for the synthesis of the set amount of biomass and related growth medium consumption required for a set of cultivation conditions.
Key words: Chlorella sorokiniana, biomass growth, cultivation conditions, kinetic regularities.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Zheng Y., Chi Z., Lucker B., Chen S. Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production. Bioresour. Technol. 2012, 103 (1), 484–488. https://doi.org/10.1016/j.biortech.2011.09.122
2. Roeselers G., Van Loosdrecht M. C. M., Muyzer G. Phototrophic biofilms and their potential applications. J. Appl. Phycol. 2008, 20 (3), 227–235. https://doi.org/10.1007/s10811-007-9223-2
3. Overmann J., Garcia-Pichel F. The phototrophic way of life. In The Prokaryotes: Prokaryotic Communities and Ecophysiology (V. 9783642301230, Р. 203–257). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30123-0_51
4. Halim R., Danquah M. K., Webley P. A. Extraction of oil from microalgae for biodiesel production: A review. Biotechnol. Adv. 2012, V. 30, P. 709–732. https://doi.org/10.1016/j.biotechadv.2012.01.001
5. Vonshak A. Laboratory techniques for the cultivation of microalgae. In book: Handbook of Microalgal Culture: Biotechnology and Applied Phycology. John Wiley & Sons. 2004, P. 577.
6. Christenson L., Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 2011, 29 (6), 686–702. https://doi.org/10.1016/j.biotechadv.2011.05.015
7. Politaeva N., Bazarnova Y., Smyatskaya Y., Slugin V., Prokhorov V. Impact of carbon dopants on sorption properties of chitosanbased materials. J. Ind. Pollut. Control. 2017, V. 33, P. 1617–1621.
8. Abdelaziz A. E. M., Leite G. B., Hallenbeck P. C. Addressing the challenges for sustainable production of algal biofuels: I. Algal strains and nutrient supply. Environ. Technol. (United Kingdom). 2013, V. 34, P. 1783–1805. https://doi.org/10.1080/09593330.2013.827748
9. Stepanov S. S., Zolotareva E. K. Influence of methanol on the content of NAD(P)H, free amino acids and protein in the cells of Chlamydomonas reinhartdii. Ukr. Biochem. J. 2013, N 85, P. 82–89. https://doi.org/10.15407/ubj85.04.082
10. Audzhanova V. K. Morphological and systematic characteristics of Chlorella. Its production and implementation. Naychniy Vestn. 2014, N 1, P. 113–126. (In Russian). https://doi.org/10.17117/nv.2014.01.113
11. Moiseev I., Tarasov V., Trusov L. Evolution of bioenergetics. Time of algae. Chem. J. 2009, N 12, P. 24–29. (In Russian).
12. Franco M. C. Batch cultivation of microalgae in the Labfors 5 Lux Photobioreactor with LED Flat Panel Option. InforsHT Application note. 2014, P. 1–6.
13. Westerhoff P., Hu Q., Esparza-Soto M., Vermaas W. Growth parameters of microalgae tolerant to high levels of carbon dioxide in batch and continuous-flow photobioreactors. Environ. Technol. 2010, V. 31, P. 523–532. https://doi.org/10.1080/09593330903552078
14. Meledina T. V., Ivanova V. A., Fedorov A. V. Instrumental and methodological base of experiments in the field of food biotechnology products from plant materials. Tutorial. St. Petersburg: ITMO University. 2017. (In Russian).
15. Crofcheck C. L., Xinyi E., Shea A., Monstross M., Crocker M., Andrews R. Influence of media composition on the growth rate of Chlorella vulgaris and Scenedesmus acutus utilized for CO2 mitigation. J. Biochem. Tech. 2012, V. 4, P. 589–594.
16. Kingsland S. E. Modeling nature: episodes in the history of population ecology. Chicago: University of Chicago Press. 1995.
17. Dvoreckij D. S., Dvoreckij S. I., Temnov M. S., Peshkova E. V., Akulinin E. I. Technology of lipids obtaining from microalgae. Tambov: FGBOU VPO “TGTU”. 2015. (In Russian).
- Details
- Hits: 189
ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
"Biotechnologia Acta" V. 12, No 3, 2019
Р. 41-49, Bibliography 51, English
Universal Decimal Classification: 577.2:616
https://doi.org/10.15407/biotech12.03.041
ANTIAMYLOIDOGENIC EFFECT OF MiR-101 IN EXPERIMENTAL ALZHEIMER’S DISEASE
V. Sokolik1, O. Berchenko1, N. Levicheva1, S. Shulga2
1SI “Institute of Neurology, Psychiatry and Narcology of the National Academy of Medical Sciences of Ukraine”, Kharkiv
2SI “Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine”, Kyiv
The aim of the study was to determine the effect of miR-101 on the level of β-amyloid peptide and activation of the cytokine system in the brain regions of animals with an experimental model of Alzheimer’s disease. MiR-101 is the key deactivating operator of mRNA function for the amyloid-β protein precursor. Hence, miR-101 is capable to suppress its synthesis and amyloidogenic processing. Aged male rats were injected intrahippocampally with single-dose unilaterally of β-amyloid peptide 40 aggregates (15 nmol). After 10 days, nasal administration of the liposomal form of miR-101 or empty liposomes was started. After 10 days of therapy, the level of toxic endogenous form β-amyloid peptide 42 and the activity of the cytokine system were determined by the indicators of tumor necrosis factor α, interleukin-6, and interleukin-10 in neocortex, hippocampus and olfactory bulbs. It was found that in rats, aggregates of exogenous β-amyloid peptide 40 model the amyloidogenic and pro-inflammatory situation after 20 days in the neocortex and hippocampus (a significant increase in the concentrations of β-amyloid peptide 42 by 36% and cytokines by 16–18% in the neocortex, and β-amyloid peptide 42 by 27%, proinflammatory cytokines tumor necrosis factor α, interleukin-6 by 14% in the hippocampus), but not in olfactory bulbs. The ten-day course of nasal therapy of liposomal miR-101 normalized the level of β-amyloid peptide 42 and cytokines: in neocortex, the concentration of endogenous toxic β-amyloid peptide 42 decreased by 33%, in the hippocampus by 15%, and concentration of pro-inflammatory cytokines fell by 11–20%. Thus, nasal therapy of miR-101 in liposomes caused a significant anti-amyloidogenic effect in rats with the Alzheimer’s disease model, whereas its anti-inflammatory effect was primarily due to a decrease in β-amyloid peptide 42 concentration.
Key words: miR-101, β-amyloid peptide, amyloidosis, Alzheimer’s disease.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Nikam R. R., Gore K. R. Journey of siRNA: clinical developments and targeted delivery. Nucl. Acid Ther. 2018, 28 (4), 209–224. https://doi.org/10.1089/nat.2017.0715
2. Dana H., Chalbatani G. M., Mahmoodza deh H., Karimloo R., Rezaiean O., Moradza deh A., Mehmandoost N., Moazzen F., Mazraeh A., Marmari V., Ebrahimi M., Rashno M. M., Abadi S. J., Gharagouzlo E. Molecular mechanisms and biological functions of siRNA. Int. J. Biomed. Sci. 2017, 13 (2), 48–57.
3. Yu A. M., Jian C., Yu A. H., Tu M. J. RNA therapy: Are we using the right molecules? Pharmacol. Ther. 2019, V. 196, P. 91–104.
https://doi.org/10.1016/j.pharmthera.2018.11.011
4. Panza F., Lozupone M., Logroscino G., Imbimbo B. P. A critical appraisal of amyloid-?? targeting therapies for Alzheimerdisease. Nat. Rev. Neurol. 2019, V. 15, P. 73–88. https://doi.org/10.1038/s41582-018-0116-6
5. Reiss A. B., Arain H. A., Stecker M. M., Siegart N. M., Kasselman L. J. Amyloid toxicity in Alzheimer’s disease. Rev. Neurosci. 2018, 29 (6), 613–627. https://doi.org/10.1515/revneuro-2017-0063
6. Wang Z. X., Tan L., Liu J., Yu J. T. The essential role of soluble A? oligomers in Alzheimer’s disease. Mol. Neurobiol. 2016, V. 53, P. 1905–1924. https://doi.org/10.1007/s12035-015-9143-0
7. Herrera-Rivero M. Late-onset Alzheimer’s disease: risk factors, clinical diagnosis and the search for biomarkers. Neurodegenerative Diseases. Kishore U. (Ed.). Res. Triangle Park: InTech. 2013.
https://doi.org/10.5772/53775
8. Kunkle B. W., Grenier-Boley B., Sims R. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates A?, tau, immunity and lipid processing. Nat. Genet. 2019, V. 51, P. 414–430.
9. Rogaeva E. The genetic profile of Alzheimer’s disease: updates and considerations. Geriatrics and Aging. 2008, 11 (10), 577–581.
10. Kelleher R. J., Shen J. Presenilin-1 mutations and Alzheimer’s disease. Proc. Nat. Acad. Sci. 2017, 114 (4), 629–631. https://doi.org/10.1073/pnas.1619574114
11. Cai Y., An S. S. A., Kim S. Y. Mutations in presenilin 2 and its implications in Alzheimer’s disease and other dementiaassociated disorders. Clinical Interventions in Aging. 2015, V. 10, P. 1163–1172. https://doi.org/10.2147/CIA.S85808
12. Safieh M., Korczyn A. D., Michaelson D. M. ApoE4: an emerging therapeutic target for Alzheimer’s disease. BMC Medicine. 2019, V. 17, P. 64. https://doi.org/10.1186/s12916-019-1299-4
13. Lim Y. Y., Mormino E. C. APOE genotype and early ?-amyloid accumulation in older adults without dementia. Neurology. 2017, V. 89, P. 1028–1034. https://doi.org/10.1212/WNL.0000000000004336
14. Verheijen J., Sleegers K. Understanding Alzheimer disease at the interface between genetics and transcriptomics. Trends Genet. 2018, 34 (6), 434–447. https://doi.org/10.1016/j.tig.2018.02.007
15. Chen X., Mangala L. S., Rodriguez-Aguayo C., Kong X., Lopez-Berestein G., Sood A. K. RNA interference-based therapy and its delivery systems. Canser Metastasis Rev. 2018, 31 (1), 107–124. https://doi.org/10.1007/s10555-017-9717-6
16. Setten R. L., Rossi J. J., Han S. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 2019. Online.
https://doi.org/10.1038/s41573-019-0023-6
17. Filipowicz W., Bhattacharyya S. N., Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 2008, V. 9, P. 102–114. https://doi.org/10.1038/nrg2290
18. Pepin G., Gantier M. P. MicroRNA decay:refining microRNA regulatory activity. MicroRNA. 2016, 5 (3), 167–174.
https://doi.org/10.2174/2211536605666161027165915
19. Tafrihi M., Hasheminasab E. MiRNas: biology, biogenesis, their Web-based tools, and Databases. MicroRNA. 2019, 8 (1), 4–27. https://doi.org/10.2174/2211536607666180827111633
20. Eiring A. M., Harb J. G., Neviani P., Garton C., Oaks J. J., Spizzo R., Liu S., Schwind S., Santhanam R., Hickey C. J., Becker H., Chandler J. C., Andino R., Cortes J., Hokland P., Huettner C. S., Bhatia R., Roy D. C., Liebhaber S. A., Caligiuri M. A., Marcucci G., Garzon R., Croce C. M., Calin G. A., Perrotti D. MiR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell. 2010, 140 (5), 652–665. https://doi.org/10.1016/j.cell.2010.01.007
21. Vasudevan S., Tong Y., Steitz J. A. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007, V. 318, P. 1931–1934. https://doi.org/10.1126/science.1149460
22. Zhao J., Yue D., Zhou Y., Jia L., Wang H., Guo M., Xu H., Chen Ch., Zhang J., Xu L. The role of MicroRNAs in A? deposition and tau phosphorylation in Alzheimer’s disease. Front. Neurol. 2017, V. 8, P. 342. https://doi.org/10.3389/fneur.2017.00342
23. Wang R., Wang H. B., Hao C. J., Cui Y., Han X. C. MiR-101is involved in Human breast carcinogenesis by targeting. Stathmin1. Plos One. 2012, 7 (10), e46173. https://doi.org/10.1371/journal.pone.0086319
24. Kim J. H., Lee K. S., Lee D. K., Kim J., Kwak S. N., Ha K. S., Choe J., Won M. H., Cho B. R., Jeoung D., Lee H., Kwon Y. G., Kim Y. M. Hypoxia-responsive microRNA-101 promotes angiogenesis via heme oxygenase-1/vascular endothelial growth factor axis by targeting cullin 3. Antiox. Redox. Signal. 2014, 21 (18), 2469–2482. https://doi.org/10.1089/ars.2014.5856
25. Liu J-J., Lin X-J., Yang X-J., Zhou L., He Sh., Zhuang Sh-M., Yang J. A novel AP-1/miR-101 regulatory feedback loop and its implication in the migration and invasion of hepatoma cells. Nucl. Acids Res. 2014, 42 (19), 12041–12051. https://doi.org/10.1093/nar/gku872
26. Lippi G., Fernandes C. C., Ewell L. A., John D., Romoli B., Curia G., Taylor S. R., Frady E. P., Jensen A. B., Liu J. C., Chaabane M. M., Belal C., Nathanson J. L., Zoli M., Leutgeb J. K., Biagini G., Yeo G. W., Berg D. K. MicroRNA-101 regulates multiple developmental programs to constrain excitation in adult neural networks. Neuron. 2016, 92 (6), 1337–1351. https://doi.org/10.1016/j.neuron.2016.11.017
27. Amakiri N., Kubosumi A., Tran J., Reddy P. H. Amyloid beta and MicroRNAs in Alzheimer’s disease. Front. Neurosci. 2019, V. 13, P. 430. https://doi.org/10.3389/fnins.2019.00430
28. Vilardo E., Barbato C., Ciotti M., Cogoni C., Ruberti F. MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. J. Biol. Chem. 2010, V. 285, P. 18344–18351. https://doi.org/10.1074/jbc.M110.112664
29. Alasmari F., Alshammari M. A., Alasmari A. F., Alanazi W. A., Alhazzani Kh. Neuroinflammatory cytokines induce Amyloid beta neurotoxicity through modulating Amyloid Precursor Protein levels/metabolism. BioMed Res. Intern. V. 2018, Article ID 3087475. https://doi.org/10.1155/2018/3087475
30. Domingues C., da Cruz E., Silva O. A. B., Henriques A. G. Impact of cytokines and chemokines on Alzheimer’s disease neuropathological hallmarks. Curr. Alzheimer. Res. 2017, 14 (8), 870–882. https://doi.org/10.2174/1567205014666170317113606
31. Zheng C., Zhou X. W., Wang J. Z. The dual roles of cytokines in Alzheimer’s disease: update on interleukins, TNF-?, TGF-? and IFN-?. Transl. Neurodegener. 2016, V. 5, P. 7. https://doi.org/10.1186/s40035-016-0054-4
32. Sokolik V. V., Berchenko O. G., Shulga S. M. Comparative analysis of nasal therapy with soluble and liposomal forms of curcumin on rats with Alzheimer’s disease model. J. Alzheimers Dis. Parkinsonism. 2017, V. 7, P. 357.https://doi.org/10.4172/2161-0460.1000357
33. Sokolik V. V., Shulga S. M. Curcumin influence on the background of intrahippocampus administration of ?-amyloid peptide in rats. Biotechnol. acta. 2015, 8 (3), 78–88. https://doi.org/10.15407/biotech8.03.078
34. Goure W. F., Krafft G. A., Jerecic J., Hefti F. Targeting the proper amyloid-beta neuronal toxins: a path forward for Alzheimer’s disease immunotherapeutics. Alzheimers Res. Ther. 2015, V. 6, P. 42. https://doi.org/10.1186/alzrt272
35. Sakono M., Zako T. Amyloid oligomers: formation and toxicity of A? oligomers. FEBS J. 2010, V. 277, P. 1348–1358. https://doi.org/10.1111/j.1742-4658.2010.07568.x
36. Sokolik V. V., Maltsev A. V. Cytokines neuroinflammatory reaction to ?-amyloid 1-40 action in homoaggregatic and liposomal forms in rats. Biomed. Chem. 2015, 9 (4), 220–225. https://doi.org/10.1134/S1990750815040058
37. Sokolik V. V., Shulga S. M. Effect of curcumin liposomal form on angiotensin converting activity, cytokines and cognitive characteristics of the rats with Alzheimer’s disease model. Biotechnol. acta. 2015, 8 (6), 48–55. https://doi.org/10.15407/biotech8.06.048
38. Hampel H., Shen Y., Walsh D. M., Aisen P., Shaw L. M., Zetterberg H., Trojanowski J. Q., Blennow K. Biological markers of amyloid beta-related mechanisms in Alzheimer’s disease. Exp. Neurol. 2010, 223 (2), 334–346. https://doi.org/10.1016/j.expneurol.2009.09.024
39. Gu L., Guo Z. Alzheimer’s A?42 and A?40 peptides form interlaced amyloid fibrils. J. Neurochem. 2013, 126 (3), 305–311. https://doi.org/10.1111/jnc.12202
40. Bures J., Petran M., Zachar J. Electrophysiological methods in biological research, Ed. 2 Publishing House. 1960, 516 p.
41. Shulga S. M. Obtaining and characteristic of curcumin liposomal form. Biotechnol. acta. 2014, V. 7, P. 55–61. https://doi.org/10.15407/biotech7.05.055
42. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with Folin phenol reagent. J. Biol. Chem. 1951, V. 193, P. 265–275.
43. H?bert S. S., Horr? K., Nicola? L., Papadopoulou A. S., Mandemakers W., Silahtaroglu A. N., Kauppinen S., Delacourte A., De Strooper B. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc. Natl. Acad. Sci. U. S. A. 2008, V. 105, P. 6415–6420. https://doi.org/10.1073/pnas.0710263105
44. Nunez-Iglesias J., Liu C. C., Morgan T. E., Finch C. E., Zhou X. J. Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. PLoS One. 2010, 5 (2), e8898. https://doi.org/10.1371/journal.pone.0008898
45. Zhao Q., Luo L., Wang X., Li X. Relationship between single nucleotide polymorphisms in the 3?UTR of amyloid precursor protein and risk of Alzheimer’s disease and its mechanism. Biosci. Rep. 2019, V. 39, P. 5. https://doi.org/10.1042/BSR20182485
46. Vilardo E., Barbato C., Ciotti M., Cogoni C., Ruberti F. MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. J. Biol. Chem. 2010, V. 285, P. 18344–18351. https://doi.org/10.1074/jbc.M110.112664
47. Long J. M., Lahiri D. K. MicroRNA-101 downregulates Alzheimer’s amyloid-?? precursor protein levels in human cell cultures and is differentially expressed. Biochem. Biophys. Res. Commun. 2011, 404 (4), 889–895. https://doi.org/10.1016/j.bbrc.2010.12.053
48. Wojdasiewicz P., Poniatowski ?. A., Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014, V. 2014, P. 561459. https://doi.org/10.1155/2014/561459
49. Wang C. C., Yuan J. R., Wang C. F.,Yang N., Chen J., Liu D., Song J., Feng L., Tan X. B., Jia X. B.Anti-inflammatoryeffects of Phyllanthus emblica L on benzopyreneinduced precancerous lung lesion by regulating the IL-1?/miR-101/Lin28B signaling pathway. Integr. Cancer Ther. 2016, 16 (4), 505–515.https://doi.org/10.1177/1534735416659358
50. Saika R., Sakuma H., Noto D., Yamaguchi S., Yamamura T., Miyake S. MicroRNA-101a regulates microglial morphology and inflammation. J. Neuroinf. l017, 14 (1), 109. https://doi.org/10.1186/s12974-017-0884-8
51. Gao Y., Liu F., Fang L., Cai R, Zong C, Qi Y. Genkwanin inhibits proinflammatory mediators mainly through the regulation of miR-101/MKP-1/MAPK pathway in LPSactivated macrophages. PLoS One. 2014, 9 (5), e96741. https://doi.org/10.1371/journal.pone.0096741