- Details
- Hits: 136
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 7, no 6, 2014
https://doi.org/10.15407/biotech7.06.102
Р. 102-108, Bibliography 56, English
Universal Decimal classification: 576.314.63.004.15:005]:617-089.844
EXTRACELLULAR VESICLES: CLASSIFICATION, FUNCTIONS AND CLINICAL RELEVANCE
A. V. Oberemko, A. G. Popandopulo
Government Institution «Institute of Urgent and Recovery Surgery named after Gusak of
Ukrainian National Academy of Medical Sciences», Donetsk
This review presents a generalized definition of vesicles as bilayer extracellular organelles of all celular forms of life: not only eu-, but also prokaryotic. The structure and composition of extracellular vesicles, history of research, nomenclature, their impact on life processes in health and disease are discussed. Moreover, vesicles may be useful as clinical instruments for biomarkers, and they are promising as biotechnological drug. However, many questions in this area are still unresolved and need to be addressed in the future.
The most interesting from the point of view of practical health care represents a direction to study the effect of exosomes and microvesicles in the development and progression of a particular disease, the possibility of adjusting the pathological process by means of extracellular vesicles of a particular type, acting as an active ingredient. Relevant is the further elucidation of the role and importance of exosomes to the surrounding cells, tissues and organs at the molecular level, the prospects for the use of non-cellular vesicles as biomarkers of disease.
Key words: exosomes, microvesicles.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Schwechheimer C., Kuehn M. J. Synthetic effect between envelope stress and lack of outer membrane vesicle production in Escherichia coli. J. Bacteriol. 2013, 195 (18), 4161–4173. doi: 10.1128/JB.02192-12.
2. Witwer K. W., Buz?s E. I., Bemis L. T., Bora A., L?sser C., L?tvall J., Nolte-’t Hoen E. N., Piper M. G., Sivaraman S., Skog J., Th?ry C., Wauben M. H., Hochberg F. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles. 2013, V. 2, P. 20360. doi: 10.3402/jev.v2i0.20360.
3. Van der Pol E., B?ing A. N., Harrison P., Sturk A., Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev. 2012, V. 64, P. 676–705. doi: 10.1124/pr.112.005983.
4. Chargaff E., West R. The biological significance of the thromboplastic protein of blood. J. Biol. Chem. 1946, V. 166, P. 189–197.
5. Wolf P. The nature and significance of platelet products in human plasma. British J. Haematology. 1967, 13 (3), 269–288.
http://dx.doi.org/10.1111/j.1365-2141.1967.tb08741.x
6. L?tvall J., Rajendran L., Gho Y. S., Thery C., Wauben M., Raposo G., Sj?strand M., Taylor D., Telemo E., Breakefield X. O. The launch of Journal of Extracellular Vesicles (JEV), the official journal of the International Society for Extracellular Vesicles — about microvesicles, exosomes, ectosomes and other extracellular vesicles. Extracell. Vesicles. 2012, V. 1, P. 18514. doi: 10.3402/jev.v1i0.18514.
7. Crawford N. The presence of contractile proteins in platelet microparticles isolated from human and animal platelet-free plasma. British J. Haematology. 1971, 21(1), 53–69.
http://dx.doi.org/10.1111/j.1365-2141.1971.tb03416.x
8. Davis J. S., Lie J. T. Extracellular glomerular microparticles in nephrotic syndrome of heroin users. Arch Pathol. 1975, 99(5), 278–282.
9. Johnstone R. M, Adam M., Hammond J. R., Orr L., Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. boil. chem. 1987, 262(19), 9412–9420.
10. Johnstone R. M., Bianchini A., Teng K. Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood. 1989, V. 74, P. 1844–1851.
11. Johnstone R. M., Mathew A., Mason A. B., Teng K. Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins. J. Cell Physiol. 1991, 147(1), 27–36.
http://dx.doi.org/10.1002/jcp.1041470105
12. Harding C. V., Heuser J. E., Stahl P. D. Exosomes: looking back three decades and into the future. J. Cell Biol. 2013, 200(4), 367–371. doi: 10.1083/jcb.201212113.
13. Morel O., Jesel L., Freyssinet J. M., Toti F. Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb. Vasc. Biol. 2011, 31(1), 15–26. doi: 10.1161/ATVBAHA.109.200956.
14. Baryshnikov A. Ju., Shishkin Ju. V. Immunological problems of apoptosis. Moscow: Jeditorial URSS. 2002, 320 p.
15. Sohel M. M., Hoelker M., Noferesti S. S., Salilew-Wondim D., Tholen E., Looft C., Rings F., Uddin M. J., Spencer T. E., Schellander K., Tesfaye D. Exosomal and non-exosomal transport of extracellular microRNAs in follicular fluid: implications for bovine oocyte developmental competence. PLoS One. 2013, 8(11), 78505. doi: 10.1371/journal.pone.0078505.
16. Christianson H. C., Svensson K. J., van Kuppevelt T. H., Li J. P., Belting M. Cancer cell exosomes depend on cell-surface heparin sulfate proteoglycans for their internalization and functional activity. PNAS. 2013, 110 (43), 17380–17385. doi: 10.1073/pnas.1304266110.
17. Christianson H. C., Belting M. Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol. 2014, V. 35, P. 51–55. doi: 10.1016/j.matbio. 2013.10.004.
18. Johnstone R. M. Cleavage of the transferrin receptor by human granulocytes: differential proteolysis of the exosome-bound TFR. J. Cell Physiol. 1996, 168(2), 333–345.
http://dx.doi.org/10.1002/(SICI)1097-4652(199608)168:2<333::AID-JCP12>3.0.CO;2-4
19. Huang X., Yuan T., Tschannen M., Sun Z., Jacob H., Du M., Liang M., Dittmar R. L., Liu Y., Liang M., Kohli M., Thibodeau S. N., Boardman L., Wang L. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics. 2013, V. 14, P. 319. doi: 10.1186/1471-2164-14-319.
20. Guescini M., Guidolin D., Vallorani L., Casadei L., Gioacchini A. M., Tibollo P., Battistelli M., Falcieri E., Battistin L., Agnati L. F., Stocchi V. C2C12 myoblasts release microvesicles containing mtDNA and proteins involved in signal transduction. Exp. Cell Res. 2010, 316(12), 1977–1984. doi: 10.1016/j.yexcr.2010.04.006.
21. Kahlert C., Melo S. A., Protopopov A., Tang J., Seth S., Koch M., Zhang J., Weitz J., Chin L., Futreal A., Kalluri R. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J. Biol. Chem. 2014, 289(7), 3869–3875. doi: 10.1074/jbc.C 113.532267.
22. Thakur B. K., Zhang H., Becker A., Matei I., Huang Y., Costa-Silva B., Zheng Y., Hoshino A., Brazier H., Xiang J., Williams C., Rodriguez-Barrueco R., Silva J. M., Zhang W., Hearn S., Elemento O., Paknejad N., Manova-Todorova K., Welte K., Bromberg J., Peinado H., Lyden D. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014, 24(6), 766–769. doi: 10.1038/cr.2014.44.
23. Forterre A., Jalabert A., Chikh K., Pesenti S., Euthine V., Granjon A., Errazuriz E., Lefai E., Vidal H., Rome S. Myotube-derived exosomal miRNAs downregulate Sirtuin1 in myoblasts during muscle cell differentiation. Cell Cycle. 2014, 13(1), 78–89. doi: 10.4161/cc.26808.
24. Raposo G., Nijman H. W., Stoorvogel W., Liejendekker R., Harding C. V., Melief C. J., Geuze H. J. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 1996, 183(3), 1161–1172.
http://dx.doi.org/10.1084/jem.183.3.1161
25. Luketic L., Delanghe J., Sobol P. T., Yang P., Frotten E., Mossman K. L., Gauldie J., Bramson J., Wan Y. Antigen presentation by exosomes released from peptide-pulsed dendritic cells is not suppressed by the presence of active CTL. J. Immunol. 2007, 11(8), 5024–5032.
http://dx.doi.org/10.4049/jimmunol.179.8.5024
26. Reinhardt T. A., Lippolis J. D., Nonnecke B. J., Sacco R. E. Bovine milk exosome proteome. J. Proteomics. 2012, 75(5), 1486–1492. doi: 10.1016/j.jprot.2011.11.017.
27. Gupta A., Pulliam L. Exosomes as mediators of neuroinflammation. J. Neuroinflammation. 2014, V. 11, P. 68. doi: 10.1186/1742-2094-11-68.
28. Mathew A., Bell A., Johnstone R. M. Hsp-70 is closely associated with the transferrin receptor in exosomes from maturing reticulocytes. Biochem. J. 1995, 308(3), 823–830.
29. Liu A. M., Xu Z., Shek F. H., Wong K. F., Lee N. P., Poon R. T., Chen J., Luk J. M. miR-122 targets pyruvate kinase M2 and affects metabolism of hepatocellular carcinoma. PLoS One. 2014, 9(1), e86872. doi: 10.1371/journal.pone.0086872.
30. Hulsmans M., Holvoent P. MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovascular Research. 2013, V. 100, P. 7–18. doi: 10.1093/cvr/cvt161.
31. Ismail N., Wang Y., Dakhlallah D., Moldovan L., Agarwal K., Batte K., Shah P., Wisler J., Eubank T. D., Tridandapani S., Paulaitis M. E., Piper M. G., Marsh C. B. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood. 2013, 121(6), 984–995. doi: 10.1182/blood-2011-08-374793.
32. Kshirsagar S. K., Alam S. M., Jasti S., Hodes H., Nauser T., Gilliam M., Billstrand C., Hunt J. S., Petroff M. G. Immunomodulatory molecules are released from the first trimester and term placenta via exosomes. Placenta. 2012, 33(12), 982–990. doi: 10.1016/j.placenta.2012.10.005.
33. Melnik B. C., John S. M., Schmitz G. Milk: an exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy? J. Transl. Med. 2014, V. 12, P. 43. doi: 10.1186/1479-5876-12-43.
34. Zhang L., Hou D., Chen X., Li D., Zhu L., Zhang Y., Li J., Bian Z., Liang X., Cai X., Yin Y., Wang C., Zhang T., Zhu D., Zhang D., Xu J., Chen Q., Ba Y., Liu J., Wang Q., Chen J., Wang J., Wang M., Zhang Q., Zhang J., Zen K., Zhang C. Y. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012, 22(1), 107–126. doi: 10.1038/cr.2011.158.
35. Smythies J., Edelstein L. Telocytes, exosomes, gap junctions and the cytoskeleton: the makings of a primitive nervous system? Front Cell Neurosci. 2014, V. 7, P. 278. doi: 10.3389/fncel.2013.00278.
36. Gu J., Qian H., Shen L., Zhang X., Zhu W., Huang L., Yan Y., Mao F., Zhao C., Shi Y., Xu W. Gastric cancer exosomes trigger differentiation of umbilical cord derived mesenchymal stem cells to carcinoma-associated fibroblasts through TGF-?/Smad pathway. PLoS ONE. 2012, 7(12), e52465. doi: 10.1371/journal.pone.0052465.
37. Whiteside T. L. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem. Soc. Trans. 2013, 41(1), 245–251. doi: 10.1042/BST20120265.
38. Dutta S., Warshall C., Bandyopadhyay C., Dutta D., Chandran B. Interactions between Exosomes from Breast Cancer Cells and Primary Mammary Epithelial Cells Leads to Generation of Reactive Oxygen Species Which Induce DNA Damage Response, Stabilization of p53 and Autophagy in Epithelial Cells. PLoS One. 2014, 9 (5), e97580. doi: 10.1371/journal.pone.0097580.
39. Cosset F. L., Dreux M. HCV transmission by hepatic exosomes establishes a productive infection. J. Hepatol. 2014, 60 (3), 674–675. doi: 10.1016/j.jhep.2013.10.015.
40. Arenaccio C., Chiozzini C., Columba-Cabezas S., Manfredi F., Federico M. Cell activation and HIV-1 replication in unstimulated CD4+ T-lymphocytes ingesting exosomes from cells expressing defective HIV-1. Retrovirology. 2014, 11(1), 46.
41. Bang C., Batkai S., Dangwal S., Gupta S. K., Foinquinos A., Holzmann A., Just A., Remke J., Zimmer K., Zeug A., Ponimaskin E., Schmiedl A., Yin X., Mayr M., Halder R., Fischer A., Engelhardt S., Wei Y., Schober A., Fiedler J., Thum T. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Invest. 2014, 124(5), 2136–2146. doi: 10.1172/JCI70577.
42. Li T., Yan Y., Wang B., Qian H., Zhang X., Shen L., Wang M., Zhou Y., Zhu W., Li W., Xu W. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev. 2013, 22(6), 845–854. doi: 10.1089/scd.2012.0395.
43. Dorronsoro A., Robbins P. Regenerating the injured kidney with human umbilical cord mesenchymal stem cell-derived exosomes. Stem Cell Research Therapy. 2013, V. 4, P. 39.
44. Ekstr?m K., Omar O., Gran?li C., Wang X., Vazirisani F., Thomsen P. Monocyte exosomes stimulate the osteogenic gene expression of mesenchymal stem cells. PLoS ONE. 2013, 8(9), e75227. doi: 10.1371/journal.pone.0075227.
45. Gross J. C., Chaudhary V., Bartscherer K., Boutros M. Active Wnt proteins are secreted on exosomes. Nat. Cell Biol. 2012, 14(10), 1036–1045. doi: 10.1038/ncb2574.
46. Lee J. K., Park S. R., Jung B. K., Jeon Y. K., Lee Y. S., Kim M. K., Kim Y. G., Jang J. Y., Kim C. W. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One. 2013, 8(12), e84256. doi: 10.1371/journal.pone.0084256.
47. Van Balkom B. W., de Jong O. G., Smits M., Brummelman J., den Ouden K., de Bree P. M., van Eijndhoven M. A., Pegtel D. M., Stoorvogel W., W?rdinger T., Verhaar M. C. Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood. 2013, V. 121, P. 3997–4006. doi: 10.1182/blood-2013-02-478925.
48. McDonald M. K., Tian Y., Qureshi R. A., Gormley M., Ertel A., Gao R., Aradillas Lopez E., Alexander G. M., Sacan A., Fortina P., Ajit S. K. Functional significance of macrophage-derived exosomes in inflammation and pain. Pain. 2014, 155(8), 1381–1396. doi: 10.1016/j.pain.2014.04.029.
49. Bottero D., Gaillard M. E., Errea A., Moreno G., Zurita E., Pianciola L., Rumbo M., Hozbor D. Outer membrane vesicles derived from Bordetella parapertussis as an acellular vaccine against Bordetella parapertussis and Bordetella pertussis infection. Vaccine. 2013, 31(45), 5262–5268. doi: 10.1016/j.vaccine.2013.08.059.
50. Jiang Y. J., Bikle D. D. LncRNA: a new player in 1?, 25(OH)(2) vitamin D(3) /VDR protection against skin cancer formation. Exp. Dermatol. 2014, 23(3), 147–150. doi: 10.1111/exd.12341.
51. Cheng L., Sharples R. A., Scicluna B. J., Hill A. F. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J. Extracell. Vesicles. 2014, V. 3, P. 23743. doi: 10.3402/jev.v3.23743.
52. Marimpietri D., Petretto A., Raffaghello L., Pezzolo A., Gagliani C., Tacchetti C., Mauri P., Melioli G., Pistoia V. Proteome profiling of neuroblastoma-derived exosomes reveal the expression of proteins potentially involved in tumor progression. PLoS ONE. 2013, 8(9), e75054. doi: 10.1371/journal.pone.0075054.
53. S?enz-Cuesta M., Osorio-Querejeta I., Otaegui D. Extracellular vesicles in multiple sclerosis: what are they telling us? Front Cell Neurosci. 2014, V. 8, P. 100. doi: 10.3389/fncel.2014.00100.
54. Khalyfa A., Gozal D. Exosomal miRNAs as potential biomarkers of cardiovascular risk in children. J. Transl. Med. 2014, 12(1), 162. doi: 10.1186/1479-5876-12-162.
55. Rodr?guez-Su?rez E., Gonzalez E., Hughes C., Conde-Vancells J., Rudella A., Royo F., Palomo L., Elortza F., Lu S. C., Mato J. M., Vissers J. P., Falc?n-P?rez J. M. Quantitative proteomic analysis of hepatocyte-secreted extracellular vesicles reveals candidate markers for liver toxicity. J. Proteomics. 2014, V. 103, P. 227–240. doi: 10.1016/j.jprot.2014.04.008.
56. Johnstone R. M. Revisiting the road to the discovery of exosomes. Blood Cells Mol. Dis. 2005, 34(3), 214–219
http://dx.doi.org/10.1016/j.bcmd.2005.03.002
- Details
- Hits: 381
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 7, no 6, 2014
https://doi.org/10.15407/biotech7.06.092
Р. 92-101, Bibliography 59, Russian
Universal Decimal classification: 664.0–637.52
COMPLEX MICROBIAL PREPARATIONS. THE APPLICATION IN AGRICULTURAL PRACTICE
S. S. Murodova, K. D. Davranov
Mirzo Ulugbek National University of Uzbekistan, Tashkent
Analysis of literature data and authors researchers on application of complex microbial preparations in agricultural practice of Uzbekistan for the purpose of soils fertility increase was the aim of the review. Application of biotechnologies on the basis of highly effective microorganisms allows offering the alternative strategy of ecologically steady land usage based on chemicals substitution by microbial preparations.
Synthesis of preparations — microbial complexes from local bacterial strains, with are capable to keep the basic properties under extreme conditions is perspective direction that represents theoretical and practical interest.
Key words: complex microbial preparation, rhizosphercial bacteria stimulating growth of plants.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Tikhonovich I. A., Kojemyakov A. P., Chebotar V. K. Biopreparations in agriculture (Methodology and practice of microorganisms application in plant growing and crop production). Moskva: Rosselkhozakademiia. 2005, 154 p. (In Russian).
2. Zviagintsev D. G., Dobrovolskaia T. G., Babeva I. P., Chernov I. J. Development of conceptions about the structure of soils microbial successions. Pochvovedeniie. 1999, N 1, 134–144. (In Russian).
3. Dobrovolskaia T. T. Structure of soils bacterial successions. Moskva: Academkniga. 2002. 281 p. (In Russian).
4. Anderuk E. I. Antipchuk A. F., Rangelova V. N., Tantsiurenko E. V. BTU — New complex preparation. Microbiol. zh. 1999, 60(2), 45–53. (In Russian).
5. Titova L. V., Roi A. A., Bulavenko L. V., Kurdish I. K. Combined bacterial preparation son the basis of loamy mineral sand compositions of soil microorganisms. Biulleten Odes. nats. Un-ta. 2001, V. 6, P. 305–308. (In Russian).
6. Tihonovich I. A., Kruglov J. V. Microbiological aspects of soil fertility and problem so sustainable agriculture. Plodorodiie. 2006, V. 5, P. 9–12. (In Russian).
7. Volkogon V. V., Nadkernichna O. V., Kovalevska T. M. Microbial preparations in agriculture: theory and practice. Kyiv: Ahrarna nauka. 2006, 312 p. (In Ukrainian).
8. Kozar S. F., Nadkernichnyi S. P., Sherstoboev M. K, Patika V. P. Development of complex biopreparations for soil restoration. Biul. in-tu s.-kh. mikrobiologii. 1998, V. 2, P. 30–33. (In Ukrainian).
9. Patika V. P. Perspectives and advancement of microbial nitrogen-fixation. Materials of the International Conference “Plants ontogenesis, biological fixation of molecular nitrogen and nitrogen metabolism”, Ternopil, 2–5 October 2001, P. 111–115. (In Ukrainian).
10. Kyrychenko E. V., Kots S. J. Use of Azotobacter chroococcum for development of complex biological preparations. Biotekhnologiia. 2011, 4(3), 74–81. (In Russian).
11. Titova L., Leonov N., Verhoturova I., Pindrus A., Antipchuk A., Iutinskaya G. Complex biopreparations for wheat productivity increase and their effect on microorganisms. Stiinta agricola. 2009, N 2, P. 12–18. (In Russian).
12. Larocque J. R., Bergholz P. W., Baqwell C. E., Lovell C. R. Influence of host plantderived and abiotic environmental parameters on the composition of the diazotroph assemblage associated with roors of Juncus roemerianus/ Juncus roemerianus. Antone van Leewenhoek. 2004, 86(3), 249–261.
13. Kozar S. F., Nadkernichnyj S. P., Sherstoboev M. K., Patika V. P. Development of complex biopreparations for soil restoration. Biulleten in-tu s.-kh. mikrobiol. 1998, V. 2, P. 30–33. (In Ukrainian).
14. Morgun V. V., Kots S. Y., Kirichenko O. V. Growth stimulating rhizobacteria and their practical application. Fisiol. biokhim. kult. rastenii. 2009, 41 (3), 187–207. (In Russian).
15. Antipchuk A. F., Kantseliaruk R. M. The effect of Azotobacter on cucumber seeds germination. Mikrobiol. zh. 1985, 47 (2), 19–23. (In Russian).
16. Antipchuk A. F., Rangelova V. M., Tantsyurenko O. V., Shevchenko A. I. The effect of Azotobacter on yield and quality of sugar beet. Mikrobiol. zh. 1997, 59 (4), 90–95. (In Ukrainian).
17. Kots S. Y., Titova L. V. Efficacy of rhizosphere diazotrophs preparations at spring wheat growing. Zhivlennia roslyn: teoriia i praktyka (Proceedings devoted to century from the day of birth of ANRURSR and VASGNIL named after P. A. Vlasyuk). Kyiv: Lohos. 2005, P. 245–253. (In Ukrainian).
18. Hovaniskaja S. S., Lisitskaja T. B. Bacteria stimulating plants growth: screening and associations on their basis. 4-th Moscow International Congress Biotechnology: status and perspectives of development Congress proceedings. Moscow, 12–16 March, 2007. P. 2013. (In Russian).
19. Patent. 2322061 MPK7A01N63/00 C12N 1/20. Biopreparation for agricultural crops yield increase and production quality improvement. Afanasyev Ye. N., Tyumenceva I. S., Afanasyeva Ye. Ye., Afanasyev N. Ye. Russia. April 20, 2008.
20. Strunnikova O. K., Shakhnazarov V. Ju., Vishnevskaya N. A., Chebotar V. K., Tikhonovich I. A. Interactions between Fusarium culmorum and Pseudomonas fluorescens in the rhizosphere of barley. Mikol. fitopatol. 2008, V. 1, P. 70–77 (In Russian).
21. Antipchuk A. F., Skochinkaja N. N. To the question about colonizing ability of Azotobacter genus bacteria beet. Mikrobiol. zh. 1993, 55 (3), 44–47. (In Russian).
22. Lui Xuming, Zhao Hongxing, Chen Sanfeng. Colonization of maize and rice plants by strain Bacillus megaterium C4. Curr. Microbiol. 2006, 52 (3), 186–190. (In Russian).
23. Gonsales Juan E., Marketon Melanie M. Quorum sensing in nitrogen-fixing rhizobia. Microb. Mol. Biol. Rev. 2003, 67 (4), 574–592.
24. Boronin A. M., Kochetkov V. V. Biological preparations on the basis of Pseudomonas. AgroXXI. 2000, V. 3, P 3–5 (In Russian).
25. Rodyniuk I. S. Nitrogen biological fization. Novosibirsk: Nauka, 1991, 142 p. (In Russian).
26. Zavalin A. A. Biopreparations, fertilizers and yield. Moskva: VNIIA. 2005, 302 p. (In Russian).
27. Shevelukha V. C. Plants growth and its regulation in ontogenesis. Moskva: Kolos. 1992, 594 p. (In Russian).
28. Belimov A. A., Ivanchikov A. J., Judkin L. V. Characterization and introduction of the new strains of associative growth stimulating bacteria dominating in barley seedlings rhizoplana. Mikrobiologiia. 1999, 68 (3), 392–397. (In Russian).
29. Belimov A. A., Kojemiakov A. P., Chuvarliyeva C. V. Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilising bacteria. Plant Soil. 1995, V. 173, P. 29–37.
30. Kunakova A. M. Interaction of associative bacteria with plants at different agroecological conditions. Synopsis of PhD. VNISM. SPb. 1998, 20 p. (In Russian).
31. Kravchenko L. V. The role of root exometabolites in integration of microorganisms with plants. Dr. of Sci. dissertation.: 03.00.07. VNISM. SPb. 2000, 45 p. (In Russian).
32. Shabaev V. P. The role of biological nitrogen in “soil-plant” system at rhizosphere microorganisms application. Dr. of Sci. dissertation.: In-t fiziko-khim. i biol. problem v pochvoved. 2004, 46 p. (In Russian).
33. Lukin S. A. Kozhevin P. A., Zviagintsev L. G. Azospirillum and associative nitrogen fixation of non legume cultures in practice of agriculture. Sielskokhoziaystvennaia biologiia. 1987, V. 1. P. 51–58. (In Russian).
34. Kozhemyakov A. P., Hotyanovich A. V. Perspectives of biopreparations on the basis of associative nitrogen fixing microorganisms application in agriculture. Biulletien. VIUA. 1997, V. 110, P. 4–5. (In Russian).
35. Volkogon V. V. The methods of associative nitrogenfixation regulation. Biulleten Institutu silskohospodar. mikrobiol. Chernihiv. 1997, P 17–19. (In Russian).
36. Vassyuk L. F., Kojemyakov A. P., Popova T. A. European J. Of Plant Pathology. 1995, P. 1310.
37. Kozhemyakov A. P., Tikhonovich I. A. The application of legume inoculants and biopreparations with complexactivityin agriculture. Doklady Rosselkhozakademii. 1998, V. 6, P. 7–10 (In Russian).
38. Makarov P. N. Features of growth processes in formation of efficiency of a winter cherry depending on a breed, way of cultivation and application of associative bacteria strains. Synopsis of PhD. SPb.: VIR. 2002, 18 p. (In Russian).
39. Glik B., Pasternak G. Molecilar biotechnology. Principles and application. Transl. from Eng. Moskva: Mir. 2002, 589 p. (In Russian).
40. Chebotar B. K., Zavalin A. A., Kiprushkina E. I. Efficacy of Extrasol bioreparation application. Moskva: Rosselkhozakademiia. 2007, 216 p. (In Russian).
41. Novikova I. I. Biological basis of creation and application of polyfunctional biopreparations on the basis of microbs-antagonists for phytosanitar optimization of agroecosystems. Dr. of Sci. dissertation.: 06.01.04. VNIIZR. SPb. 2005. 792 p. (In Russian).
42. Kandybin N. V., Smirnov O. V. Microbial preparations for agricultural crops pest control. AgroXXI. 1997, V. 3. P. 14–15. (In Russian).
43. Korobkova T. P., Ivanitskaya L. P., Drobysheva T. N. Current state and perspectives of antibiotics application in agriculture. Antibiotiki i meditsinskaya biotekhnologiya. 1987, V. 8, P. 563–571. (In Russian).
44. Lobanok A. G., Zalashko M. V., Anisimova N. I. Biotechnology for agriculture. Minsk: 1988, 199 p. (In Russian).
45. Popov F. A. Commercial preparations on the basis of Bacillus subtilis. «Zashita rasteniy», Minsk: Uradzhay. 1990, P. 120–128. (In Russian).
46. Egorov I. V., Chekasina E. V. Rebirth of agricultural production of Russia. Proceedings of the 2 international symposiums to the memory of P. G. Kuznecov. 2002, N 7–8, P. 31–32. (In Russian).
47. Malashin S. N. The influence of associative nitrogen fixing microorganisms on productivity of red meadow in north-west of Russian Federation. Synopsis of PhD. s.-kh. nauk: 06.01.04. Leningradskiy NIISKHRA. SPb. 2009, 101 p. (In Russian).
48. Chiga T. Regenerated future. Transl. from Japan by V. M. Khaykov and I. V. Yugov. Vladivostok: Dalnauka. 2010, 280 p. (In Russian).
49. Lazarev S. F. About the efficiency of bacterial fertilizers at cotton and alfalfa crops. Khlopkovodstvo. 1958, V. 6. (In Russian).
50. Shurigin V. V., Lyan Yu. V., Davranov K. Properties of Azotobactercroococcum A-4 bacteria. Uzbek. biol. zh. 2012, V. P. 20–23. (In Russian).
51. Patent. IAP 20100618. Association of green algae of Scenodesmus genus for application in plant growing. Dzhumaniyasov I., Yuldasheva Ch. E., Dzhumaniyasova G. I., Yakubov Ch. F., Zaripov R. N., Berezhnova V. V., Yusupov Ch. Uzb. 2010.
52. Dzhumaniyasova G. I Phosphorus mobilizing bacteria and biopreparations on their basis. Dr. of Sci. Dissertation: 03.00.07.-03.00.23. Institut mikrobiologii ANSUZ. Tashkent, 2012. 101 p. (In Russian).
53. Patent. IAP 04660. Bacterial fertilizer and the way of its acquisition. Davranov K. Uzb. January 19, 2013.
54. Patent. IAP03807. The way of fertilizer acquisition. Mavlyanova F. M., Mavlyanov N. G., Mavlyanov E. N., Mavlyanov O. E., Mavlyanov P. N., Mavlyanov G. N. Uzb. November 28, 2008.
55. Patent. IAP20030291. Biofertilizer. Djumaniyasov I., Djumaniyasova G. I., Egjemov S. S., Yusupov B. Yu., Kulbekov M. T., Iskandarov Sh. E. Uzb. March 11, 2003.
56. Patent. IAP 02430. Complex microbiological fertilizer and the way of its acquisition. Abduazizov M. N., Baybaev B. Uzb. June 30, 2004.
57. Patent. IAP 2012 0370 8A 01N. Microbial preparation Verbaktin for biocontrol of fungi deseases and stimulation of cotton growth. Khodzhibaeva S. M., Zolotilina G. D., Fedorova O. A., Karimova H. M., Hamidova H. M., Abdullaev N. D., Tashpulatov Z. Z., Gulyamova T. G. Uzb. March 31, 2014.
58. Zuhriddinova N. J. Microbial growth stimulators and their influence on agricultural crops. Synopsis of PhD. Institut mikrobiologii ASRUZ, Tashkent, 2008. 23 p.
59. Murodova S. S., Gafurova L. A., Fajzullaev B. A., Chuzhanazarova M. K. The effect of microbial composition on cotton productivity. Agro XXI. 2008, V. 10–12, P. 38–39 (In Russian).
- Details
- Hits: 337
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 7, No 6, 2014
https://doi.org/10.15407/biotech7.06.083
Р. 83-91, Bibliography 59, Ukrainian
Universal Decimal classification: 615.272.6
AMINO ACIDS APPLICATION TO CREATE OF NANOSTRUCTURES
I. S. Chekman1, N. A. Gorchakova1, H. O. Sirova2, O. O. Kazakova3, T. I. Nagorna1, V. F. Shatornaya4
1Department of Pharmacology and Clinical pharmacology of Bohomolets National Medical University, Kyiv, Ukraine
2Department of Medical and Bioorganic Chemistry of Kharkiv National Medical University, Ukraine
3Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine, Kyiv
4Biology Department Dnepropetrovsk Medical Academy, Ukraine
Review is devoted to the amino acids that could be used for nanostructures creation. The investigation of corresponding properties of amino acids is essential for their role definition in creation of nanomedicines. However, amino acid studying as components of nanostructures is insufficient. Study of nanoparticles for medicines creation was initiated by the development of nanotechnology. Amino acids in complexes with the nanoparticles of organic and inorganic nature play an important role for medicines targeting in pathological process. They could reduce toxicity of the nanomaterials used in nanomedicine and are used for creation of biosensors, lab-on-chip and therefore they are a promising material for synthesis of new nanodrugs and diagnostic tools.
Key words: amino acids, nanomedicine.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008
References
1. Xidos J. D., Li J., Zhu T., Hawkins G. D., Thompson J. D., Chuang Y.Y., Fast P. L., Liotard D. A., Rinaldi D., Cramer C. J., Truhlar D. G. GAMESOL–version 3.1, University of Minnesota, Minneapolis, 2002, based on the General Atomic and Molecular Electronic Structure System (GAMESS) as described in Ref. 4. J. Comp. Chem. 1993, N 14, P. 1347.
2. Chekman I. S. Nanoscience: prospects of scientific investigations. Nauka ta innovatsiia. 2009, 5(3), 89–93. (In Ukrainian).
3. Avetisova G. Ye., Melkonyan L. H., Chakhalyan A. Kh., Keleshyan S. Gh., Saghyan A. S. Development of new highly active BreviBacterium flavum’ Lalanine producers strains and comparative characterization of their alaninsynthesizing activity. Vavilovskii zh. genetiki i selektsii. 2013, 17 3), 430–434. (In Russian).
4. Guidelli E. J., Ramos A. P., Zaniquelli M. E., Nicolucci P., Baffa O. Synthesis and characterization of gold/alanine nanocomposites with potential properties for medical application as radiation sensors. ACS Appl. Mater. Interfaces. 2012, 4(11), 5844–5851.
doi: 10.1021/am3014899.
5. Wu L., Lu X., Zhang H., Chen J. Amino acid ionic liquid modified mesoporous carbon: a tailormade nanostructure biosensing platform. Chem. Sus. Chem. 2012, 5(10), 1918–1925.
doi: 10.1002/cssc.201200274.
6. Chernyshova O. S. The binding of ?phenyl?alanine by sodium dodecylsulphate’ nanodimensional aggregates. Biulleten Kharkovskogo gos. unta. Chim. nauki. 2011, N 976. 20(43), 187–191. (In Ukrainian).
7. Golovnev N. N., Vasiliev A. D., Molokeev M. S., Novikova G. V., Sergeeva M. V. Synthesis of the metals with betaalanine complex compounds. Biulleten Kharkovskogo gos. unta. 2004, N 2, P. 14–20. (In Russian).
8. Alabanza A. M., Pozharski E., Aslan K. Rapid Crystallization of LAlanine on engineered surfaces using metalassisted and microwaveaccelerated evaporative crystallization. Cryst. Growth. Des. 2012, 12(1), 346–353.
http://dx.doi.org/10.1021/cg2011502
9. Bratzel G., Buehler M. J. Sequencestructure correlations in silk: PolyAla repeat of N. clavipes MaSp1 is naturally optimized at a critical length scale. J. Mech. Behav. Biomed. Mater. 2012, V. 7, P. 30–40. doi: 10.1016/j.jmbbm.2011.07.012.
10. Joksimovic R., Altin B., Mehta S. K., Gradzielski M. Synthesis of silica nanoparticles covered with silver beads. J. Nanosci. Nanotechnol. 2013, 13(10), 6773–6781.
http://dx.doi.org/10.1166/jnn.2013.7750
11. Adeyemi O. S., Whiteley C. G. Interaction of metal nanoparticles with recombinant arginine kinase from Trypanosoma brucei: Thermodynamic and spectrofluorimetric evaluation. Biochim. Biophys. Acta. 2013, 1840(1), 701–706.
doi: 10.1016/j.bbagen.2013.10.038.
12. Chen Y., Yang L., Huang S., Li Z., Zhang L., He J., Xu Z., Liu L., Cao Y., Sun L. Delivery system for DNAzymes using argininemodified hydroxyapatite nanoparticles for therapeutic application in a nasopharyngeal carcinoma model. Int. J. Nanomedicine. 2013, V. 8, P. 3107–3718.
doi: 10.2147/IJN.S48321.
13. Bai C. Z., Choi S., Nam K., An S., Park J. S. Arginine modified PAMAM dendrimer for interferon beta gene delivery to malignant glioma. Int. J. Pharm. 2013, 445(1–2), 79–87.
doi: 10.1016/j.ijpharm.2013.01.057.
14. Kondratyeva M. S., Kabanov A. V., Komarov V. M. Modeling of helix formation in peptides containing aspartic and glutamic residues. Kompiuternyie issledovaniia i modelirovaniie. 2010, 2(1), 83–90. (In Russian).
15. Wang X., Wu G., Lu C., Zhao W., Wang Y., Fan Y., Gao H., Ma J. A novel delivery system of doxorubicin with high load and pHresponsive release from the nanoparticles of poly (?, ?aspartic acid) derivative. Eur. J. Pharm. Sci. 2012, 47(1), 256–264.
doi: 10.1016/j.ejps.2012.04.007.
16. Zeng J., Huang H., Liu S., Xu H., Huang J., Yu J. Hollow nanosphere fabricated from ?cyclodextringrafted ?, ? poly(aspartic acid) as the carrier of camptothecin. Colloids Surf. B. Biointerfaces. 2013, N 105, P. 120–127.
doi: 10.1016/j.colsurfb.2012.12.024.
17. Benezra M., PenateMedina O., Zanzonico P. B., Schaer D., Ow H., Burns A., DeStanchina E., Longo V., Herz E., Iyer S., Wolchok J., Larson S.M., Wiesner U., Bradbury M. S. Multimodal silica nanoparticles are effective cancertargeted probes in a model of human melanoma. J. Clin. Invest. 2011, 121(7), 2768–2780.
doi: 10.1172/JCI45600.
18. Hassan H. H., ElBanna S. G., Elhusseiny A. F., Mansour elS. M. Antioxidant activity of new aramide nanoparticles containing redoxactive Nphthaloyl valine moieties in the hepatic cytochrome P450 system in male rats. Molecules. 2012, 17(7), 8255–8275.
doi: 10.3390/molecules17078255.
19. Krasylenko O. P., Pedachenko Yu. Ye. The treatment of neurogenic intermittent claudication syndrome caused by stenosis of spinal canal’ lumbar region. Mizhnarodnyi nevrol. zh. 2011, 3(41), 21–26. (In Ukrainian).
20. VeigadaCunha M., Hadi F., Balligand T., Stroobant V., van Schaftingen E. Molecular identification of hydroxylysine kinase and of ammoniophospholyases acting on 5phosphohydroxyLlysine and phosphoethanolamine. J. Biol. Chem. 2012, 287(10), 7246–7255. doi: 10.1074/jbc.M111.323485.
21. Haiko H. V., Magomedov A. M., Kalashnikov A. V., Kuzub T. A. Features of biochemical changes in the blood serum depending on the form of progression idiopathic coxarthrosis. Zh. “Trauma”. 2012, 13(2), 64–67. (In Russian).
22. Trivedi R., Redente E. F., Thakur A., Riches D. W., Kompella U. B. Local delivery of biodegradable pirfenidone nanoparticles ameliorates bleomycininduced pulmonary fibrosis in mice. Nanotechnology. 2012, 23(50), 505101.
doi: 10.1088/09574484/23/50/505101.
23. Zobnina V.G., Kosevich M.V., Boryak O.A., Chagovets V.V. Intermolecular interaction of polyethers oligomers with amino acid histidine. Bulletin of SevNTU. 2011, N 113, P. 88–93.
24. Liu Y. R., Hu R., Liu T., Zhang X. B., Tan W., Shen G. L., Yu R. Q. Labelfree dsDNACu NPsbased fluorescent probe for highly sensitive detection of Lhistidine. Talanta. 2013, N 107, P. 402–407.
doi: 10.1016/ j.talanta.2013.01.038.
25. Mirolo L., Schmidt T., Eckhardt S., Meuwly M., Fromm K. M. pHdependent coordination of Ag(I) ions by histidine: experiment, theory, and a model for SilE. Chemistry. 2013, 19(5), 1754–1761.
doi: 10.1002/chem.201201844.
26. Soni S. K., Selvakannan P. R., Bhargava S. K., Bansal V. Selfassembled histidine acid phosphatase nanocapsules in ionic liquid [BMIM][BF4] as functional templates for hollow metal nanoparticles. Langmuir. 2012, 28(28), 10389–10397.
doi: 10.1021/la3014128.
27. Wu J. L., Liu C. G., Wang X. L., Huang Z. H. Preparation and characterization of nanoparticles based on histidinehyaluronic acid conjugates as doxorubicin carriers. J. Mater. Sci. Mater. Med. 2012, 23(8), 1921–1929.
doi: 10.1007/s1085601246658.
28. Thomas J. J., Rekha M. R., Sharma C. P. Unraveling the intracellular efficacy of dextranhistidine polycation as an efficient nonviral gene delivery system. Mol. Pharm. 2012, 9(1), 121–134.
doi: 10.1021/mp200485b.
29. Gu J., Wang X., Jiang X., Chen Y., Chen L., Fang X., Sha X. Selfassembled carboxymethyl poly (Lhistidine) coated poly (?amino ester)/DNA complexes for gene transfection. Biomaterials. 2012, 33(2), 644–658.
doi: 10.1016/j.biomaterials.2011.09.076.
30. Nishimura T., Matsuo T., Sakurai K. Metalion induced transition from multi to singlebilayer tubes in histidine bearing lipids and formation of monodisperse Au nanoparticles. Phys. Chem. Chem. Phys. 2011, 13(35), 15899–15905.
doi: 10.1039/c1cp21065c.
31. Onishi H, Matsuyama M. Conjugate between chondroitin sulfate and prednisolone with a glycine linker: preparation and in vitro conversion analysis. Chem. Pharm. Bull. (Tokyo). 2013, 61(9), 902–912.
http://dx.doi.org/10.1248/cpb.c13-00189
32. Badenhorst C. P., van der Sluis R., Erasmus E., van Dijk A. A. Glycine conjugation: importance in metabolism, the role of glycine Nacyltransferase, and factors that influence interindividual variation. Expert Opin. Drug. Metab. Toxicol. 2013, 9(9), 1139–1153.
doi: 10.1517/17425255.2013.796929.
33. Bordallo H. N., Boldyreva E. V., Buchsteiner A., Koza M. M., Landsgesell S. Structureproperty relationships in the crystals of the smallest amino acid: an incoherent inelastic neutron scattering study of the glycine polymorphs. J. Phys. Chem. B. 2008, 112(29), 8748–8759.
doi: 10.1021/jp8014723.
34. Petrikov S., Zinkin V. Y., Solodov A. A., Roar A. A., Krylov V. V. Use of enteral glutamine in the structure of artificial feeding in patients with intracranial hemorrhages. Biulleten intensivnoi terapii. 2010, N 4, P. 59–64. (In Russian).
35. Qiao J., Qi L., Yan H., Li Y., Mu X. Microchip CELIF method for the hydrolysis of Lglutamine by using Lasparaginase enzyme reactor based on gold nanoparticles. Electrophoresis. 2013, 34(3), 409–416.
doi: 10.1002/elps.201200461.
36. Deng Y., Wang W., Ma C., Li Z. Fabrication of an electrochemical biosensor array for simultaneous detection of Lglutamate and acetylcholine. J. Biomed. Nanotechnol. 2013, 9(8), 1378–1382.
http://dx.doi.org/10.1166/jbn.2013.1633
37. Tyurenkov I. N., Bagmutova V. V., Chernysheva J. V., Marchenkova O. V., Berestovitsa V. M., Vasilieva O. S. Comparison of glutamic acid and its new derivative hydrochloride beta phenylglutarimide acid (glutarone) psychotropic properties. Fundamentalnyie issledovaniia. 2013, N 3, P. 167–172. (In Russian).
38. Ucero A. C., Berzal S., Oca?aSalceda C., Sancho M., Orz?ez M., Messeguer A., RuizOrtega M., Egido J., Vicent M. J., Ortiz A., Ramos A. M. A polymeric nanomedicine diminishes inflammatory events in renal tubular cells. PLoS One. 2013, 8(1), 51992.
doi: 10.1371/journal.pone.0051992.
39. CamposFerraz P. L., Bozza T., Nicastro H., Lancha A. H. Jr. Distinct effects of leucine or a mixture of the branchedchain amino acids (leucine, isoleucine, and valine) supplementation on resistance to fatigue, and muscle and liverglycogen degradation, in trained rats. Nutrition. 2013, 29(11–12), 1388–1394.
doi: 10.1016/ j.nut.2013.05.003.
40. Liao M., Liu H. Gene expression profiling of nephrotoxicity from copper nanoparticles in rats after repeated oral administration. Environ. Toxicol. Pharmacol. 2012, 34(1), 67–80.
doi: 10.1016/j.etap.2011.05.014.
41. Chekman I. S., Simonov P. V. Natural nanostructures and nanomechanisms. Kyiv: Zadruha. 2012, 104 p. (In Ukrainian).
42. Kumar M., Pandey R. S., Patra K. C., Jain S. K., Soni M. L., Dangi J. S., Madan J. Evaluation of neuropeptide loaded trimethyl chitosan nanoparticles for nose to brain delivery. Int. J. Biol. Macromol. 2013, V. 61, P. 189–195.
doi: 10.1016/j.ijbiomac.2013.06.041.
43. Raula J., Hanzl?kov? M., Rahikkala A., Hautala J., Kauppinen E. I., Urtti A., Yliperttula M. Gasphase synthesis of solid state DNA nanoparticles stabilized by lleucine. Int. J. Pharm. 2013, 444(1–2), 155–161.
doi: 10.1016/j.ijpharm.2013.01.026.
44. AlAhmady Z. S., AlJamal W. T., Bossche J. V., Bui T. T., Drake A. F., Mason A. J., Kostarelos K. Lipidpeptide vesicle nanoscale hybrids for triggered drug release by mild hyperthermia in vitro and in vivo. ACS Nano. 2012, 6(10), 9335–9346.
doi: 10.1021/nn302148p.
45. Kurtseva A. A., Smakhtin M. Yu., Ivanov A. V., Besedin A. V. The inflluence of amino acids — components of glyhislys peptide on skin wounds regeneration and neutrophil functions. Kurskii nauchnopracticheskii vestnik «Chelovek i zdorovie». 2008, N 3, P. 5–10. (In Russian).
46. Lee M. K., Kim S., Ahn C. H., Lee J. Hydrophilic and hydrophobic amino acid copolymers for nanocomminution of poorly soluble drugs. Int. J. Pharm. 2010, 384(1–2), 173–180.
doi: 10.1016/ j.ijpharm.2009.09.041.
47. Daima H. K., Selvakannan P. R., Shukla R., Bhargava S. K., Bansal V. Finetuning the antimicrobial profile of biocompatible gold nanoparticles by sequential surface functionalization using polyoxometalates and lysine. PLoS One. 2013, 8 (10), 79676.
doi: 10.1371/journal.pone.0079676.
48. Khosroshahi A. G., Amanlou M., Sabzevari O., Daha F. J., Aghasadeghi M. R., Ghorbani M., Ardestani M. S., Alavidjeh M. S., Sadat S. M., Pouriayevali M. H., Mousavi L., Ebrahimi S. E. A comparative study of two novel nanosized radiolabeled analogues of methionine for SPECT tumor imaging. Curr. Med. Chem. 2013, 20(1), 123–133.
http://dx.doi.org/10.2174/0929867311302010012
49. Okada Y., Takano T. Y., Kobayashi N., Hayashi A., Yonekura M., Nishiyama Y., Abe T., Yoshida T., Yamamoto T. A., Seino S., Doi T. New protein purification system using goldmagnetic beads and a novel peptide tag, «the methionine tag». Bioconjug. Chem. 2011, 22(5), 887–893.
doi: 10.1021/bc100429d.
50. Rai S., Singh H. Electronic structure theory based study of proline interacting with gold nano clusters. J. Mol. Model. 2013, 19(10), 4099–40109.
doi: 10.1007/s008940121711x.
51. Soldatkin O. O. Development of amperometric microbiosensor for Dserin determination. Biotechnologiia. 2011, 4(3), 36–42. (In Ukrainian).
52. An J. H., Oh B. K., Choi J. W. Detection of tyrosine hydroxylase in dopaminergic neuron cell using gold nanoparticlesbased barcode DNA. J. Biomed. Nanotechnol. 2013, 9(4), 639–643.
http://dx.doi.org/10.1166/jbn.2013.1525
53. Ditto A. J., Reho J. J., Shah K. N., Smolen J. A., Holda J. H., Ramirez R. J., Yun Y. H. In vivo gene delivery with Ltyrosine polyphosphate nanoparticles. Mol. Pharm. 2013, 10(5), 1836–1844.
doi: 10.1021/mp300623a.
54. Liang R. P., Meng X. Y., Liu C. M., Qiu J. D. PDMS microchip coated with polydopamine/gold nanoparticles hybrid for efficient electrophoresis separation of amino acids. Electrophoresis. 2011, 32(23), 3331–3340.
doi: 10.1002/elps.201100403.
55. Selvakannan P., Mantri K., Tardio J., Bhargava S. K. High surface area AuSBA15 and AuMCM41 materials synthesis: tryptophan amino acid mediated confinement of gold nanostructures within the mesoporous silica pore walls. J. Colloid. Interface Sci. 2013, N 394, P. 475–484.
doi: 10.1016/j.jcis.2012.12.008.
56. Li J., Kuang D., Feng Y., Zhang F., Xu Z., Liu M., Wang D. Green synthesis of silver nanoparticlesgraphene oxide nanocomposite and its application in electrochemical sensing of tryptophan. Biosens. Bioelectron. 2013, V. 42, P. 198–206.
doi: 10.1016/ j.bios.2012.10.029.
57. Akagi T., Piyapakorn P., Akashi M. Formation of unimer nanoparticles by controlling the selfassociation of hydrophobically modified poly(amino acid)s. Langmuir. 2012, 28(11), 5249–5256.
doi: 10.1021/la205093j.
58. Sergeev H. B. Nanochemistry. Moskow: MSU Publishing house. 2003, 288 p. (In Russian).
59. Chekman I. S. Nanopharmacology. Kyiv: Zadruha. 2011, 424 p. (In Ukrainian).
- Details
- Hits: 276
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 7, No 6, 2014
https://doi.org/10.15407/biotech7.06.075
Р. 75-82, Bibliography 9, Ukrainian
Universal Decimal classification: 577.21+633.16+663.421+544.475
А. I. Stepanenko1, B. V. Morgun1, 1O. V. Stepanenko 1, S. S. Polishchuk2, O. I. Rybalka1
1Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine, Kyiv
2The Plant Breeding and Genetics Institute — National Center of Seed and Cultivar Investigation of the National Academy of Agricultural Sciences, Odesa, Ukraine
The biotechnological analysis of modern barley varieties of national and foreign origin for the presence of valuable SE-ve genotypes was done. Identification of the allelic status of the gene was performed among 109 barley samples using the developed multiplex PCR system for SNAP molecular markers. Among the studied varieties SE+ve allele was identified in 75 barley samples and the other contained SE-ve allele. 6 samples which revealed both alleles SE+ve and SE-ve were heterogeneous (+/-).
The obtained results were compared with the data of the State register of plant varieties suitable for dissemination in Ukraine and showed that 8 samples referred to as forage, contained SE+ve allele and none of them were SE-ve allele. Of 38 varieties, which quality was identified as suitable for brewing, 19 contained SE+ve allele, the rest — allele SE-ve. The results of performed analysis of the spring barley collection for allelic composition of HvITR1 gene are of great practical importance as for the correct selection of mating pairs for malting breeding, for the selection of elite plants in breeding populations, or evaluation of barley seeds for beverage brewing purposes.
Key words: barley biotechnology, haze beer, СМе protein.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Paz-Ares J., Hernandez-Lucas C., Salcedo G., Aragoncillo C., Ponz F., Garcia-Olmedo F. The CM-proteins from cereal endosperm: immunochemical relationships. J. Exp. Bot. 1983, 34(4), 388–395.
http://dx.doi.org/10.1093/jxb/34.4.388
2. Ye L., Huang L., Huang Y., Wu D., Hu H., Li C., Zhang G. Haze activity of different barley trypsin inhibitors of the chloroform/methanol type (BTI-CMe). Food Chem. 2014, V. 165, P. 175–180.
http://dx.doi.org/10.1016/j.foodchem.2014.05.058
3. Ye L., Dai F., Qiu L., Sun D., Zhang G. Allelic diversity of a beer haze active protein gene in cultivated and Tibetan wild barley and development of allelic specific markers. J. Agric. Food Chem. 2011, V. 59, P. 7218–7223.
http://dx.doi.org/10.1021/jf200419k
4. Robinson L., Healy P., Stewart D., Eglinton J. K., Ford C. M., Evans D. E. The identification of a barley haze active protein that influences beer haze stability: the genetic basis of a barley malt haze active protein. J. Cereal Sci. 2007, V. 45, P. 335–342.
http://dx.doi.org/10.1016/j.jcs.2006.08.013
5. Murray M., Thompson W. Rapid isolation of high molecular weight plant DNA. Nucl. Acids Res. 1980, 8(19), 4321–4325.
http://dx.doi.org/10.1093/nar/8.19.4321
6. Kim Y.-Y., Kim D.-Y., Shim D., Song W.-Y., Lee J., Schroeder J. I., Kim S., Moran N., Lee Y. Expression of the novel wheat gene TM20 confers enhanced cadmium tolerance to bakers’ yeast. J. Biol. Chem. 2008, 283(23), 15893–15902.
http://dx.doi.org/10.1074/jbc.M708947200
7. Brody J., Kern S. History and principles of conductive media for standard DNA electrophoresis. Anal. Biochem. 2004, V. 333, P. 1–13.
8. Singhal H., Ren Y. R., Kern S. E. Improved DNA electrophoresis in conditions favoring polyborates and Lewis acid complexation. PLoS One. 2010, 5(6), e11318, 1–6.
9. State Register of Plant Varieties Suitable for Distribution in Ukraine in 2013. — Kyiv: Ukrainian Institute for Plant Variety Examination. 2013. P. 30–37.
- Details
- Hits: 308
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 7, No 6, 2014
https://doi.org/10.15407/biotech7.06.069
Р. 69-74, Bibliography 16, English
Universal Decimal classification: 579.873.7:547.979.8:577.21
B. P. Matselyukh, L. V. Polishchuk, V. V. Lukyanchuk, S. A. Golembiovska, V. Y. Lavrenchuk
Zabolotny Institute of Mirobiology and Virology of the National Academy of Sciences of Ukraine, Kyiv
The aim of research was a comparative analysis of the sequences of the carotenoid biosynthetic gene clusters of the initial inactive strain S. globisporus 1912-2 and spontaneously arising, carotenoid producing mutant 1912-4Crt, and comparison of these sequences with the known sequences of the crt genes of the other representatives of streptomycetes. Streptomyces globisporus 1912 is a producer of the antitumor antibiotic landomycin E and new regulator of diketopiperazine nature. Comparative analysis of the obtained DNA sequences using the GenBank data allowed localization of 7 carotenoid biosynthetic crt genes of S. globisporus 1912 in one cluster. This cluster, similar to other crt clusters of different Streptomyces species, consists of two convergent operons from 4 and 3 crt genes. The high homology (93%) of the crt gene clusters of S. globisporus 1912 and S. griseus IFO 13350 was shown. Two non-punctual repeats of 21 b. p. were found in the sequence of crtY gene coding lycopene cyclase. It was shown that the deletion of 117 b.p. including the sequence between non-punctual repeats of 96 b. p. and one NPR from 5’-side activated the crt gene cluster and production of beta-carotene (6.91 mg/l) and lycopene (3.24 mg/l) by the mutant 1912-4Crt. A hypothesis about the site-specific recombination between two non-punctual repeats as the cause of the deletion in crtY gene of strain 1912-4Crt was proposed. The obtained strain 1912-4Crt is essential for the next genetic selection of the more effective carotenoid producers. Deletion of 86 b. p. was revealed in the regulatory gene lndRR resulting in the deficiency of landomycin E production by the strain 1912-4Crt. The DNA sequences of crt and lnd genes of S. globisporus 1912 were submitted to the NCBI database with accession numbers KM349312 and KJ645792, respectively.
Key words: Streptomyces globisporus, spontaneous deletion, lycopene cyclase, crt gene cluster.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Frenglova G., Breshkova D. Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J. Industr. Microbiol. Biotechnol. 2009, V. 36, P. 163–180.
http://dx.doi.org/10.1007/s10295-008-0492-9
2. Van Wezel G., McKenzie N., Nodwell J. Applying the genetics of secondary metabolism in model Actinomycetes to the discovery of new antibiotics. Meth. Enzymol., 2009, V. 458, P. 117–141.
http://dx.doi.org/10.1016/S0076-6879(09)04805-8
3. Takano H., Obitsu S., Beppu T., Ueda K. Light-induced carotenogenesis in Streptomyces coelicolor A3(2): identification of an extracytoplsmic function sigma factor that directs photodipendent transcription of the carotenoid biosynthesis gene cluster. J. Bacteriol. 2005, V. 187, P. 1825–1832.
http://dx.doi.org/10.1128/JB.187.5.1825-1832.2005
4. Lee H-S., Ohnishi Y., Horinouchi S. A ?B-like factor responsible for carotenoid biosynthesis in Streptomyces griseus. J. Mol. Microbiol. Biotechnol. 2001, V. 3, P. 95–101.
5. Matselyukh B., Lutchenko V., Polishchuk L. Synthesis of carotenoids by mutant strains of Streptomyces globisporus 1912. Mikrobiol. zh. 2003, V. 65, P. 24–30. (In Ukrainian).
6. Myronovskyi M., Tokovenko B., Br?tz E., R?ckert C., Kalinowski J., Luzhetsky A. Genome rearrangement of Streptomyces albus J1074 lead to the carotenoid gene cluster activation. Appl. Microbiol. Biotechnol. 2014, V. 98, P. 795 –806.
http://dx.doi.org/10.1007/s00253-013-5440-6
7. Kieser T., Bibb M., Buttner M., Chater K., Hopwood D. Practical Streptomyces Genetics. The John Innes Foundation, Norwich. 2000.
8. Korynevska A., Heffeter P., Matseliukh B., Elbling L., Micksche M., Stoika R., Berger W. Mechanisms underlying the anticancer activities of the angucycline landomycin E. Biochem. Pharmacol. 2007, V. 74, P. 1713–1726.
http://dx.doi.org/10.1016/j.bcp.2007.08.026
9. Matselyukh B., Mohammadipanah F., Laatsch H., Rohr J., Efremenkova O., Khilya V. N-methylphenylalanyl-drhydrobutyrine diketopiperazine, an A-factor mimic that restores antibiotic biosynthesis and morphogenesis in Streptomyces globisporus 1912-B2 and Streptomyces griseus 1439. J. Antibiot. doi:10.1038/ja.2014.86.
http://dx.doi.org/10.1038/ja.2014.86
10. Matselyukh B., Lavrinchuk V. The isolation and characteristics of mutant Streptomyces globisporus 1912 defective for landomycin E biosynthesis. Mikrobiol. zh. 1999, V. 61, P. 22–27. (In Ukrainian).
11. Matselyukh B., Matselyukh D., Golembiovska S., Polishchuk L., Lavrinchuk V. Isolation of Strep[tomyces globisporus and Blakeslea trispora mutants with increased carotenoid content. Mikrobiol. zh. 2013, V. 75, P. 10–16. (In Ukrainian).
12. Chikhi R., Medvedev P. Informed and automated k-mer size selection for genome assembly. Bioinformatics. 2014. V. 30. P. 31–37.
http://dx.doi.org/10.1093/bioinformatics/btt310
13. Boetzer M., Henkel C., Jansem H., Butler D., Pirovano W. Scaffolding preassembled contigs using SSPACE. Bioinformatics. 2011, V. 27, P. 578–579.
http://dx.doi.org/10.1093/bioinformatics/btq683
14. Boetzer M., Pirovano W. Toward almost closed genomes with GapFiler. Genome Biol. 2012, V. 13, R56.
http://dx.doi.org/10.1186/gb-2012-13-6-r56
15. Krubasik P., Sandman G. Molecular evolution of lycopene cyclases nvolved in the formation of carotenoids with ionone end groups. Biochem. Soc. Transact. 2000, V. 28, P. 806–810.
http://dx.doi.org/10.1042/BST0280806
16. Lee P., Schmidt-Dannert C. Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl. Microbiol. Biotechnol. 2002, V. 60, P. 1–11.
http://dx.doi.org/10.1007/s00253-002-1101-x
- PREPARATION AND PROPERTIES OF THE COLLODIAL SOLUTION BASED ON BIOGENIC METAL NANOPARTICLES K. V. Liapina, P. G. Dulnev, A. I. Marinin, T. V. Melnichenko, A. I. Ustinov
- OBTAINING AND ACTIVITY OF SILVER NANOPARTICLES BASED ON THE EXOPOLYSACCHARIDE OF DIAZOTROPHIC STRAIN Bradyrhizobium japonicum 36 AND AgNO3 B. A. Rasulov
- PHENOTYPING AND SORTING OF MURINE BONE MARROW HAEMATOPOIETIC STEM CELLS USING FLOW CYTOMETRY Kyryk V. M
- BIOSYNTHESIS AND PROPERTIES OF ANTIBIOTIC BATUMIN V. V. Klochko