ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 18, No. 1, 2025
P. 38-43 , Bibliography 32, Engl.
UDC: 579.6:579.864.1
doi: https://doi.org/10.15407/biotech18.01.038
Full text: (PDF, in English)
THE PROBIOTIC PROPERTIES OF Lactiplantibacillus plantarum ISOLATED FROM PLANT MATERIAL
D.S. Holubchyk1, O.M. Dugan1, S.G. Danylenko2, A.D Khablenko1, 2, O.I. Yalovenko 1
1National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
2Institute of Food Resources of the National Academy of Agrarian Sciences of Ukraine
Aim. To identify and study the probiotic properties of a typical representative of lactic acid bacteria isolated from maize sourdough.
Methods. The sourdough was prepared by mixing flour with water, followed by incubation for 24 hours. The species identity of L.plantarum was determined based on phenotypic characteristics. Stress resistance was assessed by evaluating cell viability after exposure to artificial saliva, low-pH saline solution, and a mixture of bile and simulated duodenal juice. Antibiotic susceptibility was determined using the disk diffusion method with reference values, while autoaggregation ability was evaluated by cell sedimentation through centrifugation and absorbance measurement using a spectrophotometric method.
Results. The isolate was identified as L.plantarum. Its survival rates under simulated conditions of the oral cavity, stomach, and duodenum were 97.13±1.12%, 95.06±0.52%, and 91.67±1.66%, respectively. The strain was sensitive to erythromycin, ampicillin, and chloramphenicol, moderately sensitive to streptomycin and tetracycline, and resistant to benzylpenicillin and kanamycin. Autoaggregation levels after 2 and 24 hours were 6.88±0.1% and 41.83±0.4%, respectively.
Conclusions. L/plantarum isolated from maize sourdough demonstrated highstress resistance, sensitivity to several antibiotics (although resistance to kanamycin and benzylpenicillin requires further investigation), and sufficient autoaggregation capacity for a probiotic strain.
Key words: probiotics, lactic acid bacteria, L.plantarum, maize, gastrointestinal tract survival, antibiotic resistance, autoaggregation.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2025
References
1. Gasbarrini, G, Bonvicini, F, Gramenzi, A. (2016). Probiotics History. J Clin Gastroenterol.;50, S116–S119. https://doi.org/10.1097/mcg.0000000000000697
2. Das, T.K., Pradhan, S., Chakrabarti, S., Mondal, K.C., Ghosh, K. (2022). Current Status of Probiotic and related Health Benefits. Appl Food Res.100185. DOI: https://doi.org/10.1016/j.afres.2022.100185
3. Bassaganya-Riera, J., Viladomiu, M., Pedragosa, M., De Simone, C., Hontecillas, R. (2012). Immunoregulatory Mechanisms Underlying Prevention of Colitis-Associated Colorectal Cancer by Probiotic Bacteria. PLoS ONE. 7(4). e34676. https://doi.org/10.1371/journal.pone.0034676
4. Gul, S., Durante-Mangoni, E. (2024). Unraveling the Puzzle: Health Benefits of Probiotics—A Comprehensive Review. J Clin Med. 13(5), 1436. https://doi.org/10.3390/jcm13051436
5. Daneshvar Kakhaki, R., Kouchaki, E., Bahmani, F., Borzabadi, S., Oryan, S., Mafi, A, Asemi, Z.C. (2019). linical and metabolic response to probiotic administration in people with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Clin Nutr. 38(3), 1031–5. https://doi.org/10.1016/j.clnu.2018.05.018
6. Fei, Y., Wang, R., Lu, J., Peng, S., Yang, S., Wang, Y., Zheng, K., Li, R., Lin, L., Li, M. (2023). Probiotic intervention benefits multiple neural behaviors in older adults with mild cognitive impairment. Geriatr Nurs. 51, 167–75. https://doi.org/10.1016/j.gerinurse.2023.03.006
7. Phumkhachorn, P., Rattanachaikunsopon, P. (2023). Probiotics: Sources, selection and health benefits. Res J Biotechnol. 18(5), 102-13. https://doi.org/10.25303/1805rjbt1020113
8. Holubchyk, D., Khablenko, A., Dugan, O., Danylenko, S., Korzhenivska, A. (2024). PROBIOTIC MICROORGANISMS IN BREAD SOURDOUGHS. Food Sci Technol. 18(1). https://doi.org/10.15673/fst.v18i1.2848
9. Edema, M.O., Sanni, A.I. (2008). Functional properties of selected starter cultures for sour maize bread. Food Microbiol. 25(4), 616–25. https://doi.org/10.1016/j.fm.2007.12.006
10. McKenney, E.A., Nichols, L.M., Alvarado, S., Hardy, S., Kemp ,K., Polmanteer, R., Shoemaker, A., Dunn, R.R. (2023). Sourdough starters exhibit similar succession patterns but develop flour-specific climax communities. PeerJ. 11, e16163. https://doi.org/10.7717/peerj.16163
11. Taccari, M., Aquilanti, L., Polverigiani, S., Osimani, A., Garofalo, C., Milanović, V., Clementi, F. (2016). Microbial Diversity of Type I Sourdoughs Prepared and Back-Slopped with Wholemeal and Refined Soft (Triticum aestivum) Wheat Flours. J Food Sci. 81(8), M1996–M2005. https://doi.org/10.1111/1750-3841.13372
12 Simpson, P.J., Fitzgerald, G.F., Stanton, C., Ross, R.P. (2006). Enumeration and identification of pediococci in powder-based products using selective media and rapid PFGE. J Microbiol Methods. 64(1), 120-5. https://doi.org/10.1016/j.mimet.2005.04.019
13 Cai, Y., Kumai, S,. Ogawa, M., Benno, Y., Nakase, T. (1999). Characterization and Identification of Pediococcus Species Isolated from Forage Crops and Their Application for Silage Preparation. Appl Environ Microbiol. 65(7), 2901-6. https://doi.org/10.1128/aem.65.7.2901-2906.1999
14. Central Drug House. Acetate Agar Product Information Sheet. URL: https://www.cdhfinechemical.com/images/product/specs/DM%202225.pdf (date of access: 27.12.2024)
15. Sharpe, M.E. (1979). Identification methods for microbiologists. 2nd ed. London: Academic Press. 315 p.
16. EGNUM PROKARYOTAE. ABIS online – Lactobacillus input. URL: https://www.tgw1916.net/bacteria_Lactobacillus_input.php (date of access: 27.12.2024)
17. Kim, H., Rwubuzizi, R., Fugaban, J.I., Holzapfel, W.H., Todorov, S.D. (2023). Beneficial Properties and Evaluation of Survival in Model Systems of LAB Isolated from Oral Cavity. Acta Microbiol Bulg. 39(1), 36–50. https://doi.org/10.59393/amb23390106
18. Pytko-Polonczyk, J.J., Jakubik, A., Przeklasa-Bierowiec, A., Muszynska, B. (2017). Artificial saliva and its use in biological experiments. J Physiol Pharmacol. 68(6), 807–13.
19. Tan, Q., Xu, H., Aguilar, Z.P., Peng, S., Dong, S., Wang, B., Li P., Chen, T., Xu, F., Wei, H. (2013). Safety Assessment and Probiotic Evaluation of Enterococcus Faecium YF5 Isolated from Sourdough. J Food Sci. 78(4), M587–M593. https://doi.org/10.1111/1750-3841.12079
20. Charteris, W.P., Kelly, P.M., Morelli, L., Collins, J.K. (1998). Antibiotic Susceptibility of Potentially Probiotic Lactobacillus Species. J Food Prot. 61(12), 1636‒43. https://doi.org/10.4315/0362-028x-61.12.1636
21. Collado, M.C., Meriluoto, J., Salminen, S. (2007). Adhesion and aggregation properties of probiotic and pathogen strains. Eur Food Res Technol. 226(5), 1065–73. https://doi.org/10.1007/s00217-007-0632-x
22. Wood, B.J., Holzapfel, W.H. (1995). The Genera of Lactic Acid Bacteria. Boston, MA: Springer US;. https://doi.org/10.1007/978-1-4615-5817-0
23. Rocha, J.M., Malcata, F.X. (1999). On the Microbiological Profile of Traditional Portuguese Sourdough. J Food Prot. 62(12), 1416–29. https://doi.org/10.4315/0362-028x-62.12.1416
24. Li, Y., Liu, T., Zhao, M., Zhong, H., Luo, W., Feng, F. (2019). In vitro and in vivo investigations of probiotic properties of lactic acid bacteria isolated from Chinese traditional sourdough. Appl Microbiol Biotechnol. 103(4), 1893–903. https://doi.org/10.1007/s00253-018-9554-8
25. Bartkiene, E., Lele, V., Ruzauskas, M., Domig, K.J., Starkute, V., Zavistanaviciute, P., Bartkevics, V., Pugajeva, I., Klupsaite, D., Juodeikiene, G., Mickiene, R., Rocha, J.M. (2019). Lactic Acid Bacteria Isolation from Spontaneous Sourdough and Their Characterization Including Antimicrobial and Antifungal Properties Evaluation. Microorganisms. 8(1), 64. https://doi.org/10.3390/microorganisms8010064
26. Naissinger da Silva, M., Tagliapietra ,B.L, Flores, V.D., Pereira dos Santos Richards, N.S. (2021). In vitro test to evaluate survival in the gastrointestinal tract of commercial probiotics. Curr Res Food Sci. 4, 320–5. https://doi.org/10.1016/j.crfs.2021.04.006
27. Rychen, G., Aquilina, G., Azimonti, G., Bampidis, V., Bastos, M.D., Bories, G., Chesso, A., Cocconcelli, P.S., ..., Galobart J. (2018). Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA J. 16(3). https://doi.org/10.2903/j.efsa.2018.5206
28. Fekri, A., Torbati, M., Yari Khosrowshahi, A., Bagherpour Shamloo, H., Azadmard-Damirchi, S. (2020). Functional effects of phytate-degrading, probiotic lactic acid bacteria and yeast strains isolated from Iranian traditional sourdough on the technological and nutritional properties of whole wheat bread. Food Chem. 306, 125620. https://doi.org/10.1016/j.foodchem.2019.125620
29. Dentice Maidana, S., Aristimuño Ficoseco, C., Bassi, D., Cocconcelli, P.S., Puglisi, E., Savoy, G., Vignolo, G., Fontana, C. (2020). Biodiversity and technological-functional potential of lactic acid bacteria isolated from spontaneously fermented chia sourdough. Int J Food Microbiol. 316, 108425. https://doi.org/10.1016/j.ijfoodmicro.2019.108425
30. Ruiz Rodríguez, L., Vera Pingitore, E., Rollan, G., Cocconcelli, P.S., Fontana, C., Saavedra, L, Vignolo, G., Hebert, E.M. (2016). Biodiversity and technological-functional potential of lactic acid bacteria isolated from spontaneously fermented quinoa sourdoughs. J Appl Microbiol. 120(5), 1289‒301. https://doi.org/10.1111/jam.13104
31. Feng, C., Zhang, F., Wang, B., Gao, J., Wang, Y., Shao, Y. (2019). Evaluation of kanamycin and neomycin resistance in Lactobacillus plantarum using experimental evolution and whole-genome sequencing. Food Control. 98, 262‒7. https://doi.org/10.1016/j.foodcont.2018.11.030
32. García-Cayuela, T., Korany, A.M., Bustos, I.P. Gómez de Cadiñanos, L, Requena, T., Peláez, C., Martínez-Cuesta, M.C. (2014). Adhesion abilities of dairy Lactobacillus plantarum strains showing an aggregation phenotype. Food Res Int. 57, 44‒50. DOI: 10.1016/j.foodres.2014.01.010.