ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 18, No. 1, 2025
P. 16-29 , Bibliography 70, Engl.
UDC: 004.9:612.822
doi: https://doi.org/10.15407/biotech18.01.016
Full text: (PDF, in English)
ADAPTATION IN EXTREME STRESSFUL CONDITIONS: SOME TECHNOLOGIES OF STUDYING
P.V. Biloshitsky 1 , O.M. Klyuchko 2, YU.M. Onopchuk 3,G.V. Lizunov 4, K.S. Lyman 5, A.G. Lizunova 6
1P. Tychyny Uman State Pedagogical University, Ukraine
2National Aviation University, Educational & Research Institute of Air Navigation, Kyiv, Ukraine
3Institute of Cybernetics of V. M. Glushkov National Academy of Sciences, Kyiv, Ukraine
4Space Research Institute of the National Academy of Sciences of Ukraine —State Space Agency of Ukraine, Kyiv
5Washington State University, USA
6Luxoft Global Operations GmbH: Zug, CH,USA
Adaptation is a fundamental phenomenon ensuring biological organisms’ survival in changing environmental conditions. Studying this and related phenomena is critically necessary for people not only in conditions of peaceful life but also in conditions of war
Aim. Description of some research technologies and results of their application to study the adaptation of various organisms to stressful extreme mountain conditions.
Methods. Comparative analysis of a large number of the data from experiments and observations of phylogenetically different organisms under the changed stressful conditions of hypoxia and other factors of the highlands. Standard methods of laboratory analysis of some vital indicators of biological organisms. Day and night collection methods using a light trap were used to collect insects. In some cases, pheromones were used. Mathematical and program modeling.
Results. Modern concepts of physiological adaptation based on Ukrainian and foreign classical studies were observed. The evolutionary aspects of adaptation studies were observed, taking into account two main strategies of biological organisms adaptation, as well as evolutionary aspects of adaptation to hypoxia were considered using the examples of insects and mammals (gophers). The research technologies and obtained results were described in detail — both the results of field observations and those registered in laboratory conditions. The primary attention was focused on the results of contemporary works of Ukrainian scientists. In this way, various directions of research were characterized in detail for insects and mammals (gophers). Special attention was paid to the problems of human adaptation to stressful conditions. The effects were registered on volunteers from special groups (rescuers, pilots, others).
Conclusions. The results of numerous long-term studies of adaptation on examples of vertebrates and invertebrates were described. A comprehensive analysis of the obtained results was made. A number of general theoretical conclusions that were made on the basis of presented results were given as well. Functional adaptation was put in the base of hypoxytherapy methods.
Key words: adaptation, extreme conditions, stressful conditions, numerical indices of physiological functions, mathematical modeling.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2025
References
1.Carter, C.S., Kingsbury, M.A. (2022). Oxytocin and oxygen: the evolution of a solution to the ‘stress of life. Philos Trans R Soc Lond B Biol Sci., 377 (1858), 20210054 . https://doi.org/10.1098/rstb.2021.0054.
2.Xu S., Wang J., Guo Z., He Z., Shi S. (2020). Genomic convergence in the adaptation to extreme environments. Plant Commun., 1, 872–879. https://doi.org/10.1016/j.xplc.2020.100117
3. Badran B. W., Caulfield K. A., Cox C., Lopez J.W., Borckardt J. J., DeVries W. H., Summers P., …, Roberts D.R. (2020). Brain stimulation in zero gravity: transcranial magnetic stimulation (TMS) motor threshold decreases during zero gravity induced by parabolic flight. NPJ Microgravity. , 6, 26. https://doi.org/10.1038/s41526-020-00116-6
4. Cunha, C.E.X., Oliveira, A.F., Dantas, G.F.G., Castro, L.R., Vitor de Omena Jucá, J., Vieira, G.C.F., Ribeiro, M.V.M.R. (2021). Neuropsychiatric aspects of the space missions: scientific overview of the last 15 years. Int. Physiol. Med. Rehabil. J. , 6(1), 4‒9, https://doi.org/10.15406/ipmrj.2021.06.00270
5. Davis, J., Stepanak, J., Fogarty, J., Blue, R (2021). Fundamentals of Aerospace Medicine (fourth ed.), Lippincott Williams & Wilkins,
6. Angeloni D., Demontis G.C. (2020). Endocrine adaptations across physical and psychological stressors in long-term space flights. Curr. Opin. Endocr. Metab. Res , 11, 21‒26 https://doi.org/10.1016/j.coemr.2019.12.005
7. Clément, G.R., Boyle, R.D., George, K.A., Nelson, G.A., Reschke, M.F., Williams, T.J., Paloski, W.H. (2020). Challenges to the central nervous system during human spaceflight missions to Mars. J. Neurophysiol. 123, 2037‒2063, https://doi.org/10.1152/jn.00476.2019
8. Szydlowski, L.M., Bulbul, A.A., Simpson, A.C, Kaya, D,E. Singh, N.K. Sezerman, U.O. Łabaj, P.P. Kosciolek, T., Venkateswaran,K. (2024). Adaptation to space conditions of novel bacterial species isolated from the International Space Station revealed by functional gene annotations and comparative genome analysis. Microbiome., 12, 190. https://doi.org/10.1186/s40168-024-01916-8
- Pirri, F., Ometto, L., Fuselli, S., S., Flávia A. N., Fernandes, F., Ancona, L., Perta, N., Di Marino, D., Le Bohec, C.( 2022). Selection-driven adaptation to the extreme Antarctic environment in the Emperor penguin. 129, 317–326. https://doi.org/10.1038/s41437-022-00564-8
- Zhang, Zh, https://linkinghub.elsevier.com/retrieve/pii/S0960982220308459?showall=true">Changfeng, Qu, https://linkinghub.elsevier.com/retrieve/pii/S0960982220308459?showall=true">Kaijian, Zh., https://linkinghub.elsevier.com/retrieve/pii/S0960982220308459?showall=true">Yingying, H., https://linkinghub.elsevier.com/retrieve/pii/S0960982220308459?showall=true">Xing, Zh., https://linkinghub.elsevier.com/retrieve/pii/S0960982220308459?showall=true">Lingxiao, Ya.,https://linkinghub.elsevier.com/retrieve/pii/S0960982220308459?showall=true">Zhou, Zh., https://linkinghub.elsevier.com/retrieve/pii/S0960982220308459?showall=true">Xiaoya, Ma,∙…, https://linkinghub.elsevier.com/retrieve/pii/S0960982220308459?showall=true">Jinlai M. (2020). Adaptation to Extreme Antarctic Environments Revealed by the Genome of a Sea Ice Green Alga. Current Biology, 30 (17), 3330 - 3341.
- Vianna, J.A., Fernandes, F.A.N., Frugone, M.J., Figueiró, H.V., Pertierra, L.R., Nol,l D., Bi, K., Wang-Claypool, …, Bowie, R. C. K. (2020). Genome-wide analyses reveal drivers of penguin diversification. Proc Natl Acad Sci USA. 117 (36), 22303‒ https://doi.org/10.1073/pnas.2006659117.
- Pham, K., Parikh, K., Heinrich, E.C. (2021). Hypoxia and inflammation: insights from high-altitude physiology. Front Physiol., 12, 676782. https://doi.org/10.3389/fphys.2021.676782.
- Sachdev, S., Ansari, S.A., Ansari, M.I., Fujita, M., Hasanuzzaman M. (2021). Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants (Basel), 10 (2), 277. https://doi.org/10.3390/antiox10020277.
14. González-Buenfil, R., Vieyra-Sánchez, S., Quinto-Cortés, C.D., Oppenheimer, S.J., Pomat, W., Laman, M., Cervantes-Hernández, M.C., Barberena-Jonas, C., …, Moreno-Estrada A. (2024). Genetic Signatures of Positive Selection in Human Populations Adapted to High Altitude in Papua New Guinea, Genome Biology and Evolution. 16 (8). evae161. https://doi.org/10.1093/gbe/evae161
15. Chen, Y.J., Leung, P.M., Wood, J.L., Bay, S.K., Hugenholtz, P., Kessler, A.J., Shelley, G., Waite, D.W., …, Greening C. Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem. ISME J. 2021, 15, 2986–3004. https://doi.org/10.1038/s41396-021-00988-w
16. León. F., Pizarro. E.J., Noll. D., Pertierra. L.R., Gonzalez. B.A., Johnson. W.E., Marín. J.C., Vianna. J.A. (2024). History of Diversification and Adaptation from North to South Revealed by Genomic Data: Guanacos from the Desert to Sub-Antarctica. Genome Biology and Evolution, 16(5), evae085, https://doi.org/10.1093/gbe/evae085
17. Klyuchko, O.M., Lizunov, G.V., Beloshitsky, P.V. (2023). Radiation and hypoxia studies: effects of high-energy atmospheric particles on biological organisms and possibilities of their rehabilitations. Biotechnologia Acta., 16(6), 48–68. https://doi.org/10.15407/biotech16.06.034
18. Klyuchko O.M., Lizunov G.V., Beloshitsky P.V. (2023). Radiation phenomena: some natural sources, mechanisms of effects, ways of biological organisms protection and rehabilitation. Biotechnologia Acta. 16(3), 24–44. https://doi.org/10.15407/biotech16.03.024
19. Biloshitsky, P.V., Klyuchko,O.M., Kravchenko, Yu.V., Makarenko, M.V., Lyman, K.S., Lizunova, A.G. (2024). Use of technologies for higher nervous activity and psycho-physiological human functions studying in extreme conditions. Biotechnologia Acta, 17(4), 5‒23 https://doi.org/10.15407/biotech17.04.005
20. Klyuchko, O.M. (2020). Medical information system for monitoring of the health state of population with personal data protection. Medical Informatics and Engineering, 49(1), 17‒28.
21. Klyuchko, O.M. (2018). Information computer technologies for using in biotechnology: electronic medical information systems. Biotechnologia Acta., 11(3), 5–26. https://doi.org/10.15407/biotech11.03.005
22. Klyuchko, O.M (2017). Application of artificial neural networks method in biotechnology. Biotechnologia Acta., 10(4), 5‒13. https://doi.org/10.15407/biotech10.04.005
23. Onopchuk, Yu. M., Beloshitsky, P.V., Klyuchko, O. M. (2008). Development of mathematical models based on the results of researches of Ukrainian scientists at Elbrus. Bulletin of NAU., 3, 146‒155. (In Ukrainian) https://doi.org/10.18372/2306-1472.36.1609
24. Aralova, N.I., Klyuchko, O.M., Mashkin, V.I., Mashkina, I.V. (2017). Mathematic and program models for investigation of reliability of operator professional activity for “Human-Machine” systems. Electronics and Control Systems.51(1), 105–113. https://doi.org/10.1038/s41396-021-00988-w
25. Aralova, N.I., Klyuchko, O.M., Mashkin, V.I., Mashkina, I.V.(2016). Mathematical model for research of organism restoring for operators of continuously interacted systems. Electronics and Control Systems. 49(3), 100–105. https://doi.org/10.18372/1990-5548.49.11245
26. Onopchuk, Yu. M., Aralova, N. I., Beloshitsky, P. V., Klyuchko, O. M. (2015). Mathematic models and integral estimation of organism systems reliability in extreme conditions. Electronics and Control Systems. , 46(4), 109–115. https://doi.org/10.18372/1990-5548.46.9978
27. Zubieta-Calleja, G. (2024). Redefining chronic mountain sickness: insights from high-altitude research and clinical experience. Medical Review, Open Access.. https://doi.org/10.1515/mr-2024-0036
28. Zubieta-Calleja, G., Zubieta-DeUrioste, N. (2022). High Altitude Pulmonary Edema, High Altitude Cerebral Edema, and Acute Mountain Sickness: an enhanced opinion from the High Andes – La Paz, Bolivia 3,500 m. Reviews on Environmental Health.Open Access.. https://doi.org/10.1515/reveh-2021-0172
29. Zubieta-Calleja, G., Zubieta-DeUrioste, N. (2021). The oxygen transport triad in high-altitude pulmonary edema: a perspective from the high Andes. Int J Environ Res Publ Health. 18, 7619. https://doi.org/10.3390/ijerph18147619, Available from: https://www.mdpi.com/1660-4601/18/14/7619/htm
30. Acinas, S.G., Sánchez, P., Salazar, G., Cornejo-Castillo, F.M., Sebastián, M., Logares, R., Royo-Llonch, M., Paoli, M., …, Pesant S. 2021 (). Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Commun Biol. 4, 1–15. https://doi.org/10.1038/s42003-021-02112-2
31. Bosi, E., Taviani, E., Avesani, A., Doni, L., Auguste, M., Oliveri, C., Leonessi, M., Martinez-Urtaza ,J., Vetriani, C., Vezzulli, L. (2024). Pan-Genome Provides Insights into Vibrio Evolution and Adaptation to Hydrothermal Vents. Genome Biology and Evolution., 16(7), evae131. https://doi.org/10.1093/gbe/evae131
32. Hagström ,Å, Zweifel, UL, Sundh, J, Osbeck, CM, Bunse, C, Sjöstedt, J. (2021). Composition and seasonality of membrane transporters in marine picoplankton. Front Microbiol, 12, 714732. https://doi.org/10.3389/fmicb.2021.714732
33. De-Kayne, R., Perry, B.W., McGowan, K.L., Landers, J., Arias-Rodriguez, L., Greenway, R., Peña, C.M.R., Tobler, M., Kelley J.L. (2024). Evolutionary Rate Shifts in Coding and Regulatory Regions Underpin Repeated Adaptation to Sulfidic Streams in Poeciliid Fishes, Genome Biology and Evolution, 16(5), evae087. https://doi.org/10.1093/gbe/evae087
34. Lyautey, E., Bonnineau, C., Billard, P., Loizeau, J.L., Naffrechoux, E., Tlili, A., Topp, E., Ferrari, B.J.D., Pesce, S. (2021). Diversity, functions and antibiotic resistance of sediment microbial communities from Lake Geneva are driven by the spatial distribution of anthropogenic contamination. Front Microbiol, 12, 738629. https://doi.org/10.3389/fmicb.2021.738629
35. Gupta, S., Graham, D.W., Sreekrishnan, T.R., Ahammad, S.Z. (2022). Effects of heavy metals pollution on the co-selection of metal and antibiotic resistance in urban rivers in UK and India. Environ Pollut, 306, 119326. https://doi.org/10.1016/j.envpol.2022.119326
36. Klyuchko, O.M. (2018). Electronic expert systems for biology and medicine. Biotechnologia Acta, 11(6), 5‒28. https://doi.org/10.15407/biotech11.06.005
37. Letunic, I., Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res, 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301.
- Banchi, E., Del Negro, P., Celussi, M., Malfatti, (2021). Sediment features and human activities structure the surface microbial communities of the Venice Lagoon. Front Mar Sci., 8, 762292. https://doi.org/10.3389/fmars.2021.762292
- Bruce, S.A., Aytur, S.A., Andam, C.P., Bucci, J.P. (2022). Metagenomics to characterize sediment microbial biodiversity associated with fishing exposure within the Stellwagen Bank National Marine Sanctuary. Sci Rep., 12, 1–12. https://doi.org/10.1038/s41598-022-13409-5
- Banchi, E., Corre, E., Del Negro, P., Celussi, M., Malfatti, F. (2024). Genome-resolved metagenomics of Venice Lagoon surface sediment bacteria reveals high biosynthetic potential and metabolic plasticity as successful strategies in an impacted environment. Mar Life Sci Technol,6, 126–142 https://doi.org/10.1007/s42995-023-00192-z
41.Curran, J.F., Zaggia, L., Quero, G.M. (2022). Metagenomic characterization of microbial pollutants and antibiotic-and metal-resistance genes in sediments from the canals of Venice. Water, 14, 1161
42. Flieder, M., Buongiorno,. J., Herbold, C.W., Hausmann, B., Rattei, T., Lloyd, K.G., Loy, A., Wasmund, K. (2021). Novel taxa of Acidobacteriota implicated in seafloor sulfur cycling. ISME J., 15, 3159–3180. https://doi.org/10.1038/s41396-021-00992-0
43. Semeno, M.V. (2021). Metabarcoding and metagenomics in soil ecology research: achievements, challenges, and prospects. Biol Bull Rev., 11, 40–53 https://doi.org/10.1134/S2079086421010084
44. Arias, C.F., Dikow, R.B., McMillan, W.O., De León, L.F. (2021). De novo genome assembly of the electric fish Brachyhypopomus occidentalis (Hypopomidae, Gymnotiformes). Genome Biol Evol., 13, 1–7. https://doi.org/10.1134/S2079086421010084
45. Ding, W., Zhang, X., Zhao, X., Jing, W., Cao, Z., Li, J., Huang, Y., You, X., …, Bing, X. (2021). A chromosome-level genome assembly of the mandarin fish (Siniperca chuatsi). Front Genet. 12, 1–15. https://doi.org/10.1134/S2079086421010084
46. Manni, M., Berkeley, M.R., Seppey, M., Simão, F.A., Zdobnov, E.M. (2021). BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol., 38, 4647–4654. https://doi.org/10.1093/molbev/msab199
47. Ozerov, M.Y., Flajshans, M., Noreikiene, K., Vasemägi, A., Gross, R., Flajšhans, M., Noreikiene, K., Vasemägi, A., …, Gross, R. (2020). Draft genome assembly of the freshwater apex predator wels catfish (Silurus glanis) using linked-read sequencing. G3- Genes Genom Genet, 10, 3897–3906. https://doi.org/10.1534/g3.120.401711
48. Zheng, S., Shao, F., Tao, W., Liu, Z., Long, J., Wang, X., Zhang, S., Zhao, Q., …, Zhang. Y. (2021). Chromosome-level assembly of southern catfish (Silurus meridionalis) provides insights into visual adaptation to nocturnal and benthic lifestyles. Mol Ecol Resour, 21, 1575–1592. https://doi.org/10.1534/g3.120.401711
49. Chaumeil, P.A., Mussig, A.J., Hugenholtz, P., Parks, D.H. (2020). GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics, 36, 1925–1927. https://doi.org/10.1093/bioinformatics/btz848
50. Kang, D.D., Li, F., Kirton, E., Thomas, A., Egan, R., An, H., Wang, Z.( 2019). MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ., 7, e7359. https://doi.org/10.7717/peerj.7359
51. Koonin, E.V., Makarova, K.S., Wolf, Y.I., Krupovic, M. (2020). Evolutionary entanglement of mobile genetic elements and host defence systems: guns for hire. Nat Rev Genet, 21, 119–131. https://doi.org/10.7717/peerj.7359
52. Meziti, A., Rodriguez,-R.L.M., Hatt, J.K., Peña-Gonzalez, A., Levy, K., Konstantinidis, K.T. (2021). The reliability of metagenome-assembled genomes (MAGs) in representing natural populations: Insights from comparing MAGs against isolate genomes derived from the same fecal sample. Appl Environ Microbiol, 87, 02593–20. https://doi.org/10.1128/AEM.02593-20
53. Milewska, K., Krause, K., Szalewska-Pałasz, A. (2020). The stringent response of marine bacteria–assessment of (p) ppGpp accumulation upon stress conditions. J Appl Genet, 6, 123–130. https://doi.org/10.1007/s13353-019-00531-w
54. Okazaki, Y., Nakano, S.I., Toyoda, A., Tamaki, H. (2022). Long-read-resolved, ecosystem-wide exploration of nucleotide and structural microdiversity of lake bacterioplankton genomes. mSystems, 30, e0043322. https://doi.org/10.1101/2022.03.23.485478
55. Pinhassi, J., Farnelid, H., García, S.M., Teira, E., Galand, P.E., Obernosterer, I., Quince, C., Vila-Costa, M., …, Riemann, L. (2022). Functional responses of key marine bacteria to environmental change–toward genetic counselling for coastal waters. Front Microbiol, 13, 869093. https://doi.org/10.3389/fmicb.2022.869093
56. Seidel, L., Broman, E., Turner, S., Ståhle, M., Dopson, M. (2021). Interplay between eutrophication and climate warming on bacterial communities in coastal sediments differs depending on water depth and oxygen history. Sci Rep., 11, 23384. https://doi.org/10.1038/s41598-021-02725-x
57. Setubal, J.C. (2021). Metagenome-assembled genomes: concepts, analogies, and challenges. Biophys Rev., 3, 905–909. https://doi.org/10.1007/s12551-021-00865-y
58. Muhammad, F.S., Awudu, A., (2020). Adaptation to extreme weather conditions and farm performance in rural Pakistan. Agricultural Systems, 180, 102772. https://doi.org/10.1016/j.agsy.2019.102772.
59. Angélil, O., Stone, D., Wehner, M., Paciorek, C.J., Krishnan, H., Collins, W. (2017). An independent assessment of anthropogenic attribution statements for recent extreme temperature and rainfall events. J Clim., 30, 5–16. https://doi.org/10.1175/JCLI-D-16-0077.1.
60. Miksch, S., Meiners, M., Meyerdierks, A., Probandt, D., Wegener, G., Titschack, J., Jensen, M.A., Ellrott, A., …, Knittel K. (2021). Bacterial communities in temperate and polar coastal sands are seasonally stable. ISME Commun, 1, 1–11. https://doi.org/10.1038/s43705-021-00028-w
- Herrera-Álvarez, S., Karlsson, E., Ryder, O.A., Lindblad-Toh, K., Crawford, A.J. (2021). How to make a rodent giant: genomic basis and tradeoffs of gigantism in the capybara, the world's largest rodent. Mol Biol Evol., 38(5), 715–1730. . https://doi.org/10.1093/molbev/msaa285
- Merchant, N.N., Ivanova, A., Hart, D.W., García, C., Bennett, N.C., Portugal, S.J., Faulkes, C.G. (2024). Patterns of Genetic Diversity and Gene Flow Associated With an Aridity Gradient in Populations of Common Mole-rats, Cryptomys hottentotus hottentotus, Genome Biology and Evolution, 16(7), evae144. https://doi.org/10.1093/gbe/evae144
62. Provost, K., Yun Shue, S., Forcellati, M., Smith, B.T. (2022). The Genomic Landscapes of Desert Birds Form over Multiple Time Scales, Molecular Biology and Evolution, 39(10), msac200. https://doi.org/10.1093/molbev/msac200
63. Liu, M., Song, Y., Zhang, S., Yu, L., Yuan, Z., Yang, H., Zhang, M., ..., Yang, H. (2024). A chromosome-level genome of electric catfish (Malapterurus electricus) provided new insights into order Siluriformes evolution. Mar Life Sci Technol., 6, 1–14. https://doi.org/10.1007/s42995-023-00197-8
65. Balza, U., Baldi, R., Rodríguez-Planes, L., Ojeda, R, Schiavini, A. (2023). Scientific evidence does not support the translocation of guanacos in Argentina. Conserv Sci Pract., 5(11), e13031. https://doi.org/10.1111/csp2.13031.
66. Diaz-Maroto, P., Rey-Iglesia, A., Cartajena, I., Núñez, L., Westbury, M.V., Varas, V., Moraga, M., ..., Hansen, J. (2021). Ancient DNA reveals the lost domestication history of South American camelids in Northern Chile and across the Andes. eLife, 10, e63390. https://doi.org/10.7554/eLife.63390.
67. Flores, C., Lichtenstein, G., Schiavini,A. (2023). Human–wildlife conflicts in Patagonia: ranchers’ perceptions of guanaco Lama guanicoe abundance. Oryx, 57(5), 615–625 . https://doi.org/10.1017/S0030605322001508.
68. Iranzo, E.C., Smith, C., Moraga, C.A., Radic-Schilling, S., Corti, P. (2022). Patterns of guanaco distribution and microhabitat use in Tierra del Fuego: from protected to sheep ranching areas. Acta Oecol., 116, 103853. https://doi.org/10.1016/j.actao.2022.103853.
69. Mesas, A., Cuéllar-Soto, E., Romero, K., Zegers, T., Varas, V., González, B.A., Johnson, W.E., Marín, J.C. (2021). Assessing patterns of genetic diversity and connectivity among guanacos (Lama guanicoe) in the Bolivian Chaco: implications for designing management strategies. Stud Neotrop Fauna Environ., 58(1), 94–103 https://doi.org/10.1080/01650521.2021.1914294.
70. Mesas, A., Baldi, R., González, B.A., Burgi, V., Chávez, A., Johnson, W.E., Marín, J.C. (2021). Past and recent effects of livestock activity on the genetic diversity and population structure of native guanaco populations of arid patagonia. Animals (Basel), 11(5), 1218 . https://doi.org/10.3390/ani11051218.