ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 17, No. 4, 2024
P. 62-74, Bibliography 63, Engl.
UDC: 633.33^632.577
doi: https://doi.org/10.15407/biotech17.04.062
Full text: (PDF, in English)
Fayomi Omotola Michael 1, Olasan Joseph Olalekan 2, Aguoru Celestine Uzoma 2, Angor Anita Seember 2
1 Department of Chemistry, Joseph Sarwuan Tarka University, Makurdi. Nigeria
2 Department of Botany, Joseph Sarwuan Tarka University, Makurdi. Nigeria
The aim of this work was to investigate the effect of synthesized magnesium oxide nanoparticles of Jatropha tajonensis leaf extract on the growth and yield of cowpea (Vigna unguiculata (L.) Walp.).
Materials and Methods. The preparation and planting of the cowpea seeds; The extraction of extract of Jatropha tajonensis leaves in aqueous solution. The synthesis of MgO nanoparticles from the extract, followed by characterization to confirm the formation — UV-VIS, FTIR, SEM-EDX and PXRD. The effects of MgONPs on cowpea (Vigna unguiculata (L.) Walp.) plants were surveyed under field conditions to assess its uses in improving growth and yield of cowpea.
Results. The results showed that different doses of MgONPs applied to cowpea plant significantly affected all measured parameters of cowpea plantlets under the field condition in a positive way. The best results in growth, yield and the phonological parameters were cowpea plants treated with high MgONP applications (100 mg/L). It has been observed that different MgONPs applications have significant effects on vegetative growth and yield parameters of cowpea. A significant increase in the number of vegetative parameters was observed in the pots with different doses of nano-20, 40, 60, 80 and 100/MgONPs applications compared to the control. Different MgO (with or without NPs) treatments led to significant differences in shoot formation (P < 0.01). According to the effect of different doses of magnesium NPs applied to the cowpea, plant height varied between 18.88 ± 2.51 and 21.35 ± 3.25. The highest value in the height was obtained from nano-100 mg/L MgONPs application with 21.35 ± 3.25 and the lowest value was obtained from the salt 17.48 ± 3.83 mg/L MgONPs application.
Conclusion. This study found that MgONPs greatly influenced the plantlets’ growth parameters and other measured traits; in addition. There was an indication that the efficiency of growth and yield of cowpea could be improved by increased application of MgO in the form of nanoparticles. Also, highlighted was the possibility of using MgONPs in increasing another crop yield to cater for the evergrowing world population.
Key words: Magnesium oxide nanoparticles, Jatropha tajonensis, nano fertilizer, cowpea, phenology.
References
1. Liang Q., Muñoz-Amatriaín M., Shu S., Lo S., Wu X., Carlson J.W., Davidson P., Goodstein D. M., Phillips J., Janis N. M., Lee E. J., Liang C., Morrell P. L., Farmer A. D., Xu, P.., Close T.J., Lonardi. A view of the pan-genome of domesticated Cowpea (Vigna unguiculata [L.] Walp.). Plant Genome. 2024, 17(1): 1–17. https://doi.org/10.1002/tpg2.20319
2. Duraipandian M., Poorani K.E., Abirami H., Anusha M.B. Vigna unguiculata (L.) Walp: A Strategic Crop for Nutritional Security, Well Being and Environmental Protection. Legumes Research. 2022, 2: 1-12. https://doi.org/10.5772/intechopen.103025.
3. Gumede M.T., Gerrano A.S., Amelework A.B., Modi A.T. Analysis of Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata (L.) Walp) Genotypes Using Single Nucleotide Polymorphism Markers. Plant. 2022, 11: 3480. https://doi.org/10.3390/plants11243480
4. Agbicodo, E. M., Fatokun, C. A., Bandyopadhyay, R., Wydra, K., Diop, N. N., Muchero, W., Ehlers, J. D., Roberts, P. A., Close, T. J., Visser, R. G.F., van der Linden, C. G. Identification of markers associated with bacterial blight resistance loci in cowpea [Vigna unguiculata (L.) Walp.]. Euphytica. 2010, 175(2): 215–26. https://doi.org/10.1007/s10681-010-0164-5
5. Jamshidi K., Yousefi A.R., Oveisi M. Effect of cowpea (Vigna unguiculata) intercropping on weed biomass and maize (Zea mays) yield. New Zealand Journal of Crop and Horticultural Science. 2013, 41(4): 180–8. httpx://doi.org/10.1080/01140671.2013.807853
6. Gerrano A.S., Thungo Z.G., Shimelis H., Mashilo J., Mathew I. Genotype-by-Environment Interaction for the Contents of Micro-Nutrients and Protein in the Green Pods of Cowpea (Vigna unguiculata L. Walp.). Agriculture. 2022, 12(4): 531. https://doi.org/10.3390/agriculture12040531
7. Abebe B.K., Alemayehu M.T. A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets. Journal of Agriculture and Food Research. 2022, 10:100383. https://doi.org/10.1016/j.jafr.2022.100383
8. Ilesanmi J. O. Y., Gungula D. T. Amino Acid Composition of Cowpea Grains Preserved With Mixtures OF Neem (Azadirachta indica) and Moringa (Moringa oleifera) Seed Oils. American Journal of Food and Nutrition. 2016, 4(6): 150–6. https://doi.org/10.12691/ajfn-4-6-2
9. Jayathilake, C., Visvanathan, R., Deen, A., Bangamuwage, R., Jayawardana, B. C., Nammi, S., Liyanage, R. Cowpea: an overview on its nutritional facts and health benefits. Journal of Science Food and Agriculture. 2018, 28(3): 303–25. https://doi.org/10.1002/jsfa.9074
10. Affrifah N.S., Phillips R.D., Saalia F.K. Cowpeas: Nutritional profile, processing methods and products—A review. Legume Science. 2022, 4(3): 1–12. https://doi.org/10.1002/leg3.131
11. Onuminya T.O., Ogunkanmi M.A., Ogunkanmi L.A. Morphological characterization of selected cowpea [Vigna unguiculata (L.) Walp.] accessions from International Institute of Tropical Agriculture, Ibadan, Nigeria. Nigerian Journal of Basic and Applied Sciences 2023, 31(1): 65–72. https://doi.org/10.4314/njbas.v31i1.8
12. Ajeigbe H.A., Singh B.B., Emechebe A.M. Field evaluation of improved cowpea lines for resistance to bacterial blight, virus and striga under natural infestation in the West African Savannas. African Journal of Biotechnology. 2008, 7(20): 3563–8. https://hdl.handle.net/10568/90808
13. Gomes, A.M.F., Rodrigues, A. P., António, C., Rodrigues, A. M., Leitão, A. E., Batista-Santos P., Nhantumbo, N., Massinga, R., Ribeiro-Barros, A. I., Ramalho, J. C. Drought response of cowpea (Vigna unguiculata (L.) Walp.) landraces at leaf physiological and metabolite profile levels. Environmental and Experimental Botany. 2020, 175: 104060. https://doi.org/10.1016/j.envexpbot.2020.104060
14. Asrat Z, Begna T, Tariku A. Performance Evaluation of Cowpea [Vigna unguiculata (L.) Walp] varieties for yield and yield related traits at West Hararghe zone, Eastern Ethiopia. International Journal of Advanced Research in Biological Science. 2021, 8(7): 110–7. http://dx.doi.org/10.22192/ijarbs.2021.08.06.001
15. Basaran U., Ayan I., Acar Z., Mut H., Asci O.O. Seed yield and agronomic parameters of cowpea (Vigna unguiculata L.) genotypes grown in the Black Sea region of Turkey. African Journal of Biotechnology 2011, 10(62): 13461–4. DOI: 10.5897/AJB11.2489 https://doi.org/10.5897/AJB11.2489
16. Nwofia G. An evaluation of some early maturing cowpea genotypes for yield and yield components in umudike, south eastern Nigeria. Nigeria Agricultural Journal. 2004, 35: 1–12. https://doi.org/10.4314/naj.v35i1.3186
17. Samreen T., Rasool S., Kanwal S., Riaz S., Sidra-Tul-Muntaha, Nazir M.Z. Role of Nanotechnology in Precision Agriculture. Environmental Sciences Proceedings 2022, 23: 17. https://doi.org/10.3390/environsciproc2022023017
18. El-Ramady, H., Abdalla, N., Sári, D., Ferroudj, A., Muthu, A., Prokisch, J., Fawzy, Z. F., Brevik, E. C., Solberg, S. Nanofarming: Promising Solutions for the Future of the Global Agricultural Industry. Agronomy. 2023, 13(6): 1600. https://doi.org/10.3390/environsciproc2022023017
19. Barkataki M.P., Singh T. Plant-nanoparticle interactions: Mechanisms, effects, and approaches. 1st ed. Comprehensive Analytical Chemistry. Elsevier B.V.; 2019, 87: 55–83. http://dx.doi.org/10.1016/bs.coac.2019.09.007
20. Ahmadian K, Jalilian J, Pirzad A. Nano-fertilizers improved drought tolerance in wheat under deficit irrigation. Agricultural Water Management. 2021, 244: 106544. https://doi.org/10.1016/j.agwat.2020.106544
21. Yassen A, Abdallah E, Gaballah M, Zaghloul S. Role of Silicon Dioxide Nano Fertilizer in Mitigating Salt Stress on Growth, Yield and Chemical Composition of Cucumber (Cucumis sativus L.). International Journal of Agricultural Research. 2017, 12(3):130–5. https://doi.org/10.3923/ijar.2017.130.135
22. Zhou P., Adeel M., Shakoor N., Guo M., Hao Y., Azeem I., Li M., Liu M., Rui, Y. Application of nanoparticles alleviates heavy metals stress and promotes plant growth: An overview. Nanomaterials. 2021, 1(1): 1–18. https://doi.org/10.3923/ijar.2017.130.135
23. Abdel-Hakim S.G., Shehata A.S.A., Moghannem S.A., Qadri M., El-Ghany M.F.A., Abdeldaym E.A., Darwish, O. S. Nanoparticulate Fertilizers Increase Nutrient Absorption Efficiency and Agro-Physiological Properties of Lettuce Plant. Agronomy. 2023, 13(3): 691. https://doi.org/10.3390/agronomy13030691
24. Verma K.K., Song X.P., Joshi A., Tian D.D., Rajput V.D., Singh M., Arora J., Minkina T., Li Y. R. Recent Trends in Nano-Fertilizers for Sustainable Agriculture under Climate Change for Global Food Security. Nanomaterials. 2022, 12(1): 1–25. https://doi.org/10.3390/nano12010173
25. El-Saadony M.T., ALmoshadak A.S., Shafi M.E., Albaqami N.M., Saad A.M., El-Tahan A.M., Desoky El S. M., Elnahal A.S.M., Almakas, A., Abd El-Mageed, T. A., Taha A. E., Elrys A. S., Helmy A. M. Vital roles of sustainable nano-fertilizers in improving plant quality and quantity-an updated review. Saudi Journal of Biological Sciences. 2021, 28(12): 7349–59. https://doi.org/10.1016/j.sjbs.2021.08.032
26. Dutta S., Pal S., Panwar P., Sharma R.K., Bhutia P.L.. Biopolymeric Nanocarriers for Nutrient Delivery and Crop Biofortification. ACS Omega. 2022, 7(30): 25909–20. https://doi.org/10.1021/acsomega.2c02494
27. Sembada A.A., Lenggoro I.W. Transport of Nanoparticles into Plants and Their Detection Methods. Nanomaterials. 2024, 14(2): 1–29. https://doi.org/10.3390/nano14020131
28. Wang X., Xie H., Wang P., Yin H. Nanoparticles in Plants: Uptake, Transport and Physiological Activity in Leaf and Root. Materials. 2023, 16(8): 1–21. https://doi.org/10.3390/ma16083097
29. Mayekar J. Study on the Synthesis and Characterization of Magnesium Oxide Nanoparticles Synthesized By Precipitation Method. International Journal of Engineering and Science Invention. 2024, 13(3): 10–4. DOI: 10.35629/6734-13030105
30. Singh A., Gogoi H.P., Barman P. Synthesis of metal oxide nanoparticles by facile thermal decomposition of new Co(II), Ni(II), and Zn(II) Schiff base complexes- optical properties and photocatalytic degradation of methylene blue dye. Inorganica Chimica Acta. 2023, 546: 121292. https://doi.org/10.1016/j.ica.2022.121292
31. Abhilash M.R., Gangadhar A., Krishnegowda J., Chikkamadaiah M., Srikantaswamy S. Hydrothermal synthesis, characterization and enhanced photocatalytic activity and toxicity studies of a rhombohedral Fe2O3 nanomaterial. RSC Advances. 2019, 9(43): 25158–69. https://doi.org/10.3390/ma16083097
32. Wang Y., Yang C., Liu Y., Fan Y., Dang F., Qiu Y., Zhou H., Wang W., Liu Y. Solvothermal Synthesis of ZnO Nanoparticles for and p-Nitrophenol. Water. 2021, 13: 3224. https://doi.org/10.3390/ma16083097
33. Javed M, Sajid A, Bangash K, Abbas M, Ahmed S, Kaplan A, Iqbal S., Khan N., Adnan M., Ali A., Zaman F., Wahab S. Potential and Challenges in Green Synthesis of Nanoparticles: A Review. Journal of Xi'an Shiyou University 2023, 19(2): 1155–65.
34. Ashour M., Mansour A.T., Abdelwahab A.M., Alprol A.E. Metal Oxide Nanoparticles’ Green Synthesis by Plants: Prospects in Phyto- and Bioremediation and Photocatalytic Degradation of Organic Pollutants. Processes. 2023, 11(12): 3356. https://doi.org/10.3390/pr11123356
35. Radulescu D.M., Surdu V.A., Ficai A., Ficai D., Grumezescu A.M., Andronescu E. Green Synthesis of Metal and Metal Oxide Nanoparticles: A Review of the Principles and Biomedical Applications. International Journal of Molecular Sciences. 2023, 24(20): 15397. https://doi.org/10.3390/ijms242015397
36. Alzahrani B, Elderdery AY, Alsrhani A, Alzerwi NAN, Althobiti MM, Rayzah M, Idrees, B., Elkhalifa, A M.E., Alabdulsalam, A. A., Alsultan, A. Bakhsh, E., ALSuhaymi N., Kumar, S.M., Pooi L. Manganese and copper-coated nickel oxide nanoparticles synthesized from Carica papaya leaf extract induce antimicrobial activity and breast cancer cell death by triggering mitochondrial caspases. Green Processing and Synthesis 2024, 13(1): 101193. https://doi.org/10.1515/gps-2023-0087
37. Rajeshwari KM, Suhasini MR, Bindya S, Hemavathi AB, Ali N, Amachawadi RG, Shivamallu C., Hallur R. L.S., Majani S. S., Shiva P. K. Photocatalytic efficacy of Magnesium oxide nanoparticles in dye Degradation: A sustainable One-Pot synthesis utilizing Syzygium samarangense L. Extract. Green Processing and Synthesis. 2023, 13(2): 101193. https://doi.org/10.1016/j.rechem.2023.101193
38. Silveira C., Shimabuku Q.L., Fernandes S. M., Bergamasco R. Iron-oxide nanoparticles by the green synthesis method using Moringa oleifera leaf extract for fluoride removal. Environmental Technology. 2018, 39(22): 2926–36. · https://doi.org/10.1080/09593330.2017.1369582
39. Cota-Ruiz K., Ye Y., Valdes C., Deng C., Wang Y., Hernández-Viezcas J.A.,Duarte-Gardea, M., Gardea-Torresdey, J. L. Copper nanowires as nanofertilizers for alfalfa plants: Understanding nano-bio systems interactions from microbial genomics, plant molecular responses and spectroscopic studies. Science of the Total Environment. 2020, 742: 140572. https://doi.org/10.1016/j.scitotenv.2020.140572
40. Linh T.M., Mai N.C., Hoe P.T., Lien L.Q., Ban N.K., Hien L.T.T., Chau N. H., Van, N. T. Metal-Based Nanoparticles Enhance Drought Tolerance in Soybean. Journal of Nanomaterials 2020, 20 June: 1-13. https://doi.org/10.1155/2020/4056563
41. Tian G., Qin H., Liu C., Xing Y., Feng Z., Xu X., Liu J., Lyu M., Jiang H., Zhu Z., Jiang Y., Ge S. Magnesium improved fruit quality by regulating photosynthetic nitrogen use efficiency, carbon–nitrogen metabolism, and anthocyanin biosynthesis in ‘Red Fuji’ apple. Frontiers in Plant Science 2023, 14: 1136179. https://doi.org/10.3389/fpls.2023.1136179
42. Chaudhry AH, Nayab S, Hussain SB, Ali M, Pan Z. Current understandings on magnesium deficiency and future outlooks for sustainable agriculture. International Journal of Molecular Sciences 2021, 22(4): 1–18. https://doi.org/10.3390/ijms22041819
43. Ahmed N, Zhang B, Bozdar B, Chachar S, Rai M, Li J, Li Y., Hayat F., Chachar, Z.,, Tu P. The power of magnesium: unlocking the potential for increased yield, quality, and stress tolerance of horticultural crops. Frontiers in Plant Science. 2023, 14: 1285512. https://doi.org/10.3389/fpls.2023.1285512
44. Ishfaq M, Wang Y, Yan M, Wang Z, Wu L, Li C, et al. Physiological Essence of Magnesium in Plants and Its Widespread Deficiency in the Farming System of China. Front Plant Sci. 2022, 13(April): 1–17. https://doi.org/10.3389/fpls.2022.802274
45. Gerendás J, Führs H. The significance of magnesium for crop quality. Plant and Soil. 2013, 368: 101–128. https://doi.org/10.3390/ijms22041819
46. Koçak R., Okcu M., Haliloğlu K., Türkoğlu A., Pour-Aboughadareh A, Jamshidi B, Janda T., Alaylı A., Nadaroğlu H. Magnesium Oxide Nanoparticles: An Influential Element in Cowpea (Vigna unguiculata L. Walp.) Tissue Culture. Agronomy. 2023, 13(6): 1646. https://doi.org/10.3390/agronomy13061646
47. Zhao L., Bai T., Wei H., Gardea-Torresdey JL, Keller A., White J.C. Nanobiotechnology-based strategies for enhanced crop stress resilience. Nature Food. 2022, 3(10): 829–36. https://doi.org/10.3390/ijms22041819
48. Tauseef A., Hisamuddin, Khalilullah A., Uddin I. Role of MgO nanoparticles in the suppression of Meloidogyne incognita, infecting cowpea and improvement in plant growth and physiology. Experimental Parasitology. 2021, 220: 108045. https://doi.org/10.1016/j.exppara.2020.108045
49. Khan A.U., Khan M., Khan A.A., Parveen A., Ansari S., Alam M. Effect of Phyto-Assisted Synthesis of Magnesium Oxide Nanoparticles (MgO-NPs) on Bacteria and the Root-Knot Nematode. Bioinorganic Chemistry and Applications. 2022, 2022: 1-11. https://doi.org/10.1155/2022/3973841
50. Abdel-Aal Amin M., Abu-Elsaoud A.M., Ibrahim Nowwar A., Abdelwahab A.T., Awad M.A., Hassan S.E.D., Boufahja F., Fouda, A., Elkelish, A. Green synthesis of magnesium oxide nanoparticles using endophytic fungal strain to improve the growth, metabolic activities, yield traits, and phenolic compounds content of Nigella sativa L. Green Processing and Synthesis 2024, 13(1): 1-13. https://doi.org/10.1515/gps-2023-0215
51. Attah A.F., Moody J.O., Sonibare M.A., Salahdeen H.H., Akindele O.O., Nnamani P.O., Diyaolu, O. A., Raji, Y. Aqueous extract of Moringa oleifera leaf used in Nigerian ethnomedicine alters conception and some pregnancy outcomes in Wistar rat. South African Journal of Botany. 2020, 129: 255–62. https://doi.org/10.1016/j.sajb.2019.07.041
52. Essien E.R., Atasie V.N., Okeafor A.O., Nwude D.O. Biogenic synthesis of magnesium oxide nanoparticles using Manihot esculenta (Crantz) leaf extract. International Nano Letters. 2020, 10(1): 43–8. https://doi.org/10.1007/s40089-019-00290-w
53. Aho I.M., Akpen G.D., Ojo O.O. Rainfall variability and trend analysis in Makurdi metropolis, benue state, Nigeria. Nigerian Journal of Engineering 2019, 2020(1): 473–84.
54. Audu M.O., Terwase A.S., Isikwue B.C. Investigation of wind speed characteristics and its energy potential in Makurdi, north central, Nigeria. SN Applied Sciences 2019, 1(2): 178. https://doi.org/10.1155/2022/3973841
55. Sanatu A.M., Abubakari A. Assessment of cowpea (Vigna unguiculata (L.) Walp) F1 lines response to drought tolerance. Ghana Journal of Science, Technology and Development 2022, 8(1): 48–60. https://doi.org/10.47881/307.967x
56. Edematie V.E., Fatokun C., Boukar O., Adetimirin V.O., Kumar P.L. Inheritance of pod length and other yield components in two cowpea and yard-long bean crosses. Agronomy. 2021, 11(4): 1–17. https://doi.org/10.1155/2022/3973841
57. Vergheese M, Vishal S.K. Green synthesis of magnesium oxide nanoparticles using Trigonella foenum-graecum leaf extract and its antibacterial activity. Journal of Pharmacognosy and Phytochemistry. 2018, 7(3): 1193–200.
58. Barzegar M., Ahmadvand D., Sabouri Z., Darroudi M. Phytoextract-mediated synthesis of magnesium oxide nanoparticles using Caccinia macranthera extract and examination of their photocatalytic and anticancer effects. Materials Research Bulletin. 2024, 169: 112514. https://doi.org/10.1016/j.materresbull.2023.112514
59. Mushtaq S, Yousaf Z, Anjum I, Arshad S, Aftab A, Maqbool Z, Shahzadi, Z., Ullah, R.
Essam A. A. Application of green synthesized magnesium oxide nanoparticles to prolong commercial availability of Vitis vinifera L. Food Chemistry: X. 2024, 21: 101157. https://doi.org/10.1016/j.fochx.2024.101157
60. Rajeshwari K.M., Suhasini M.R., Bindya S., Hemavathi A.B., Ali N., Amachawadi R.G., Shivamallu C., Hallur R. L.S., Majani S. S., Kollur P. S. Photocatalytic efficacy of Magnesium oxide nanoparticles in dye Degradation: A sustainable One-Pot synthesis utilizing Syzygium samarangense L. Extract. Results in Chemistry. 2023, 6: 101193. https://doi.org/10.1016/j.rechem.2023.101193
61. Shaktawat S., Verma R., Singh K.R., Singh J. Biogenic-magnesium oxide nanoparticles from Bauhinia variegata (Kachnar) flower extract: a sustainable electrochemical approach for vitamin-B12 determination in real fruit juice and milk. Sustainable Food Technology 2024, 2: 447–60. https://doi.org/10.1016/j.rechem.2023.101193
62. Geetha Malini P.S., Rani S. Photocatalytic Degradation of Acid Violet Dye by Sunlight Exposure using Green Synthesized Magnesium Oxide Nanoparticles. Chemical Physics Impact. 2024, 8: 100628. https://doi.org/10.1016/j.chphi.2024.100628
63. Proniewicz E., Vijayan A.M., Surma O., Szkudlarek A., Molenda M. Plant-Assisted Green Synthesis of MgO Nanoparticles as a Sustainable Material for Bone Regeneration: Spectroscopic Properties. International Journal of Molecular Sciences. 2024,25(8): 4242. https://doi.org/10.3390/ijms25084242
64. Owusu Adjei M., Zhou X., Mao M., Xue Y., Liu J., Hu. H, Luo J., Zhang H., Yang W., Feng L., Ma, J. Magnesium Oxide nanoparticle effect on the growth, development, and microRNAs expression of Ananas comosus var. bracteatus. Journal of Plant Interactions. 2021, 16(1): 247–57. https://doi.org/10.1080/17429145.2021.1931720
65. Segatto C., Souza C.A., Fiori M.A., Lajús C.R., Silva L.L., Riella H.G. Seed treatment with magnesium nanoparticles alters phenology and increases grain yield and mineral content in maize. Australian Journal of Crop Science 2023, 17(2): 165–78. https://doi.org/10.1016/j.rechem.2023.101193
66. Kanjana D. Foliar application of magnesium oxide nanoparticles on nutrient element concentrations, growth, physiological, and yield parameters of cotton. Journal of Plant Nutrition. 2020, 43(20): 3035–49. https://doi.org/10.1080/01904167.2020.1799001
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2024