ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 15, No. 3, 2022
P. 5-12. Bibliography 33, Engl.
UDC: 579.64; 604; 632.3
https://doi.org/10.15407/biotech15.03.005
N. Hrytseva 1,2, L. Skivka 1
1- Taras Shevchenko National University of Kyiv, Ukraine
2 LLC “Syngenta”, Kyiv, Ukraine
Members of Ralstonia solanacearum species complex (RSSC) are causal agents of vascular wilt disease in more than 450 crop species, including solanaceous plants such as potatoes, tomatoes, bell pepper, eggplant, etc. These phytopathogens cause serious yield loss mostly in solanaceous crops which are grown in tropical, subtropical, and temperate regions of the world. Yield losses comprise 80%–100% in potato, up to 91% for tomato, 10%–30% in tobacco, 33%–90% in banana, and reduce crop productivity and yield. PCR-methods are specific, sensitive and cost-effective approaches for the detection and identification of RSSC members.
The objective of this study was to compare specificity of routinely used primer mix for PCR RSSC detection with the newly developed pairs of species-specific primers for ease of use diagnostics in a laboratory.
Materials and Methods. The conserved genomic regions of the 16S rRNA sequences of R. solanacearum, R. pseudosolanacearum, and R. syzygii were selected for the design of primers for this study. Newly created primer species specificity was tested in PCR using the DNA of the two targets and 13 non-target strains of bacteria.
Results. Three pairs of newly created primers Rs-28(F)/Rs-193(R), Rs-28(F)/OLI-160(R), Rs28(F)/OLI248(R) produced single specific fragments for bacterial strains of Ralstonia solanacearum: 166 bp, 132 bp, and 220 bp. products respectively. No PCR products were obtained during amplification with the negative control or non-target DNA templates from other bacterial species.
Conclusion. Designed primers can be used for the development of PCR system for the qualitative and quantitative detection of RSSC members.
Key words: PCR, Ralstonia solanacearum, RSSC, bacterial wilt.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2022
References
1. EFSA PLH Panel (EFSA Panel on Plant Health), Bragard C., Dehnen-Schmutz K., Di Serio F., Gonthier P., Jaques Miret J. A., Justesen A. F., MacLeod A., Magnusson C. S., Milonas P., Navas-Cortes J. A., Parnell S., Potting R., Reignault P. L., Thulke H-H., Van der Werf W.., Vicent Civera A, Yuen J., Zappal? L.., Van der Wolf J., Kaluski T, Pautasso M and Jacques M-A. Scientific Opinion on the pest categorisation of the Ralstonia solanacearum species complex. EFSA Journal. 2019, 17(2), 5618, 28 pp. https://doi.org/10.2903/j.efsa.2019.5618
2. PM 7/21 (3) Ralstonia solanacearum, R. pseudosolanacearum and R. syzygii (Ralstonia solanacearum species complex). EPPO Bulletin. 2022, 1–37. https://doi.org/10.1111/epp.12837
3. ?lvarez B., L?pez M. M., Biosca E. G. Biocontrol of the Major Plant Pathogen Ralstonia solanacearum in Irrigation Water and Host Plants by Novel Waterborne Lytic Bacteriophages. Front. Microbiol. 2019, 10, 2813. https://doi.org/10.3389/fmicb.2019.02813
4. Sharma K., Kreuze J., Abdurahman A., Parker M., Nduwayezu A., Rukundo P. Molecular Diversity and Pathogenicity of Ralstonia solanacearum Species Complex Associated With Bacterial Wilt of Potato in Rwanda. Plant. Dis. 2021, 105(4), 770?779. https://doi.org/10.1094/PDIS-04-20-0851-RE
5. Sedighian N., Taghavi S. M., Hamzehzarghani H., van der Wolf J. M., Wicker E., Osdaghi E. Potato-Infecting Ralstonia solanacearum Strains in Iran Expand Knowledge on the Global Diversity of Brown Rot Ecotype of the Pathogen. Phytopathology. 2020, 110(10), 1647?1656. https://doi.org/10.1094/PHYTO-03-20-0072-R
6. CABI (Commonwealth Agricultural Bureau International), 2018. Datasheet on Ralstonia solanacearum (bacterial wilt of potato). Available online: https://www.cabi.org/isc/datasheet/45009
7. Lopes C. A., Rossato M. History and Status of Selected Hosts of the Ralstonia solanacearum Species Complex Causing Bacterial Wilt in Brazil. Front. Microbiol. 2018, 9, 1228. https://doi.org/10.3389/fmicb.2018.01228
8. Meng F. Ralstonia Solanacearum Species Complex and Bacterial Wilt Disease. J. Bacteriol. Parasitol. 2013, 4, e119. https://doi.org/10.4172/2155-9597.1000e119
9. Paudel S., Dobhal S., Alvarez A. M., Arif M. Taxonomy and Phylogenetic Research on Ralstonia solanacearum Species Complex: A Complex Pathogen with Extraordinary Economic Consequences. Pathogens. 2020, 9(11), 886. https://doi.org/10.3390/pathogens9110886
10. Zhang Y., Hu A., Zhou J., Zhang W., Li P. Comparison of bacterial communities in soil samples with and without tomato bacterial wilt caused by Ralstonia solanacearum species complex. BMC Microbiology. 2020, 20, 89. https://doi.org/10.1186/s12866-020-01774-y
11. Landry D., Gonz?lez-Fuente M., Deslandes L., Peeters N. The large, diverse, and robust arsenal of Ralstonia solanacearum type III effectors and their in planta functions. Mol. Plant. Pathol. 2020, 21(10), 1377?1388. https://doi.org/10.1111/mpp.12977
12. Kumar S., Ahmad K., Behera S. K., Nagrale D. T., Chaurasia A., Yadav M. K., Murmu S., Jha Y., Rajawat M. V. S., Malviya D., Singh U. B., Shankar R., Tripathy M., Singh H. V. Biocomputational Assessment of Natural Compounds as a Potent Inhibitor to Quorum Sensors in Ralstonia solanacearum. Molecules. 2022, 27(9), 3034. https://doi.org/10.3390/molecules27093034
13. Genin S. Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytologist 2010, 187, 920–928. https://doi.org/10.1111/j.1469-8137.2010.03397.x
14. Peeters N., Guidot A., Vailleau F., Valls M. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol. Plant. Pathol. 2013, 14(7), 651?62. https://doi.org/10.1111/mpp.12038
15. Compendium of Potato Diseases (2001) ed. by Stevenson, W. R. and et al, American Phytopathological Society, St. Paul, MN, USA.
16. Yuliar Y. A., Nion, Toyota K. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes and Environments. 2015, 30, 1?11. https://doi.org/10.1264/jsme2.ME14144
17. Garc?a R.O, Kerns J. P., Thiessen L. Ralstonia solanacearum Species Complex: A Quick Diagnostic Guide. Plant Health Progress. 2019, 20(1), 7?13. https://doi.org/10.1094/PHP-04-18-0015-DG
18. Okiro L. A., Tancos M. A., Nyanjom S. G., Smart C. D.,. Parker M. L. Comparative Evaluation of LAMP, qPCR, Conventional PCR, and ELISA to Detect Ralstonia solanacearum in Kenyan Potato Fields. Plant Disease. 2019, 103, 959?965 https://doi.org/10.1094/PDIS-03-18-0489-RE
19. Stulberg M. J, Shao J., Huang Q. A multiplex PCR assay to detect and differentiate select agent strains of Ralstonia solanacearum. Plant Dis. 2015, 99,333?341. https://dx.doi.org/10.1094/PDIS-05-14-0483-RE
20. Prior P., Ailloud F., Dalsing B. L., Remenant B., Sanchez B., Allen C. Genomic and proteomic evidence supporting the division of the plant pathogen Ralstonia solanacearum into three species. BMC Genomics. 2016,17, 90. https://doi.org/10.1186/s12864-016-2413-z
21. She X., Yu L., Lan G., Tang Y., He Z. Identification and Genetic Characterization of Ralstonia solanacearum Species Complex Isolates from Cucurbita maxima in China. Front Plant. Sci. 2017, 8, 1794. https://doi.org/10.3389/fpls.2017.01794
22. Seal S. E., Jackson L. A., Young J. P., Daniels M. J. Differentiation of Pseudomonas solanacearum, Pseudomonas syzygii, Pseudomonas pickettii and the Blood Disease Bacterium by partial 16S rRNA sequencing: construction of oligonucleotide primers for sensitive detection by polymerase chain reaction. J Gen. Microbiol. 1993, 139(7), 1587?1594. https://doi.org/10.1099/00221287-139-7-1587
23. Hayes M. M., MacIntyre A. M., Allen C. Complete Genome Sequences of the Plant Pathogens Ralstonia solanacearum Type Strain K60 and R. solanacearum Race 3 Biovar 2 Strain UW551. Genome Announc. 2017, 5(40), e01088-17. https://doi.org/10.1128/genomeA.01088-17
24. Ukrainian Collection of Microorganisms (UCM). Available online: http://ucm.org.ua/
25. Young J. P., Downer H. L., Eardly B. D. Phylogeny of the phototrophic rhizobium strain BTAi1 by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J. Bacteriol. 1991, 173(7), 2271?2277. https://doi.org/10.1128/jb.173.7.2271-2277.1991
26. Vargason J. M., Henderson K., Ho P. S. A crystallographic map of the transition from B-DNA to A-DNA. Proc. Natl. Acad. Sc.i U S A. 2001, 98(13), 7265?7270. https://doi.org/10.1073/pnas.121176898
27. Pastor N. The B- to A-DNA transition and the reorganization of solvent at the DNA surface. Biophys. J. 2005, 88(5), 3262?3275. https://doi.org/10.1529/biophysj.104.058339
28. Feng X. Z., Bash R., Balagurumoorthy P., Lohr D., Harrington R. E., Lindsay S. M. Conformational transition in DNA on a cold surface. Nucleic. Acids. Res. 2000, 28(2), 593?596. https://doi.org/10.1093/nar/28.2.593
29. PM 7/42 (3) Clavibacter michiganensis subsp. michiganensis. EPPO Bull. 2016, 46, 202?225. https://doi.org/10.1111/epp.12302
30. Gry? G., Pietraszko M., Przewodowski W., Franke K, Nowakowski Miroslaw, Nowakowski Mateusz. Reaction of selected potato varieties to Clavibacter sepedonicus infestation under changing weather conditions. Eur. J. Plant. Pathol. 2021, 160, 113–125. https://doi.org/10.1007/s10658-021-02226-7
31 Charkowski A. O. The Changing Face of Bacterial Soft-Rot Diseases. Annu. Rev. Phytopathol. 2018, 56, 269?288. https://doi.org/10.1146/annurev-phyto-080417-045906
32. Potnis N. Harnessing Eco-Evolutionary Dynamics of Xanthomonads on Tomato and Pepper to Tackle New Problems of an Old Disease. Annu. Rev. Phytopathol. 2021, 59, 289?310. https://doi.org/10.1146/annurev-phyto-020620-101612
33. Guti?rrez-Barranquero J. A., Cazorla F. M., de Vicente A. Pseudomonas syringae pv. syringae Associated With Mango Trees, a Particular Pathogen Within the “Hodgepodge” of the Pseudomonas syringae Complex. Front. Plant. Sci. 2019, 10, 570. https://doi.org/10.3389/fpls.2019.00570
34. Vicente J. G., Holub E. B. Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol. Plant. Pathol. 2013, 14(1), 2?18. https://doi.org/10.1111/j.1364-3703.2012.00833.x