"Biotechnologia Acta" V. 9, No 6, 2016
https://doi.org/10.15407/biotech9.06.028
Р. 28-38, Bibliography 34, English
Universal Decimal Classification: 60-022.532:612.82
1 Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
2 Bakul Institute for Superhard Materials of the National Academy of Sciences of Ukraine, Kyiv
The aim of the study was to compare the effects of detonation nanodiamond preparations from different batches cleaned from impurities by diverse methods of chemical treatment on the membrane potential and glutamate transport characteristics of rat brain nerve terminals.
The size of nanodiamond particles vary from 10–20 nm to 10 μm. There are carbonyl, hydroxyl and carboxyl functional groups on the surface of the particles. Physical-chemical properties such as a magnetic susceptibility and the amount of incombustible residue in samples of detonation nanodia-mond vary depending on the synthesis regime and the method of chemical cleaning of the product and therefore, the neuroactive properties of nanodiamonds from different batches can be different.
It was shown by dynamic light scattering analysis that nanodiamond preparations from different batches treated by diverse technologies of chemical treatment had varied average size of particles and distribution of particles by size. Nanodiamond preparations from different batches changed the plasma membrane potential and caused membrane depolarization of nerve terminals. Analysis of the effects of nanodiamonds on transporter-mediated L-[14C]glutamate uptake by nerve terminals also revealed that all studied nanodiamond preparations decreased abovementioned parameter. Therefore, detonation nanodiamonds from different batches have similar principal effects on functional state of nerve terminals, however variability in their physical and chemical properties is associated with diverse strength of these effects.
Ключові слова: nanodiamond, glutamate, Na+-dependent uptake, brain nerve terminals.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2016
References
1. Perevedentseva E., Lin Y-C., Jani M., Cheng C-L. Biomedical applications of nanodiamonds in imaging and therapy. Nanomedicine (Lond). 2013, V. 8, P. 2041–2060. https://doi.org/10.2217/nnm.13.183
2. Mochalin V. N., Shenderova O., Ho D., Gogotsi Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2012, V. 7, P. 11–23. Available from: https://doi.org/10.1038/nnano.2011.209
3. Man H. B., Ho D. Nanodiamonds as platforms for biology and medicine. J. Lab. Autom. 2013, V. 18, P. 12–18. https://doi.org/10.1177/2211068212456198
4. Butler J. E., Sumant A. V. The CVD of Nanodiamond Materials. Chem. Vap. Depos. 2008, V. 14, P. 145–160. https://doi.org/10.1002/cvde.200700037
5. Dolmatov V. Y. Detonation synthesis ultradispersed diamonds: properties and applications. Russ. Chem. Rev. 2001, V. 70, P. 607–626. https://doi.org/10.1070/RC2001v070n07ABEH000665
6. Orel V. E., Shevchenko A. D., Bogatyreva G. P., Leshchenko O. V., Romanov A. V., Rykhal’s’kii O. Y. Magnetic characteristics and anticancer activity of a nanocomplex consisting of detonation nanodiamond and doxorubicin. J. Superhard Mater. 2012, V. 34, P. 179–185. https://doi.org/10.3103/S1063457612030057
7. Bogatyreva G. P., Marinich M. A., Oleinik G. S. Effect of the Methods of recovering diamond nanopowders on their physicochemical properties. J. Superhard Mater. 2011, 33 (3), 208–216. https://doi.org/10.3103/S1063457611030105
8. Bogatyreva G. P., Novikov N. V. Physical chemistry of nanodiamond surface. Abstracts of 7 International conference ?Carbon: fundamental problems of science, material science, technologies. Constructional and functional materials (including the nanomaterials) and technologies of its production”, 17?19 November 2010, Suzdal, Vladimir region, Russia.
9. Novikov N. V., Danilenko V. V., Bogatyreva G. P., Padalko V. I. Nanodiamonds: synthesis, properties, application. Contenant (Moscow). 2010, V. 1, P. 3–22.
10. Technical standard of Ukraine TU U 26.8-05417377-177:2007 “Ultradispersed diamond powders”.
11. Technical standard of Ukraine TU U 23.9-05417377-219:2010 “Synthetic diamond nanopowders for stable suspension preparation”.
12. Borisova T., Nazarova A., Dekaliuk M., Krisanova N., Pozdnyakova N., Borysov A. Neuromodulatory properties of fluorescent carbon dots: effect on exocytotic release, uptake and ambient level of glutamate and GABA in brain nerve terminals. Int. J. Biochem. Cell Biol. 2015, V. 59, P. 203–215. https://doi.org/10.1016/j.biocel.2014.11.016
13. Pastukhov A., Krisanova N., Maksymenko V., Borisova T. Personalized approach in brain protection by hypothermia: individual changes in non- pathological and ischemia-related glutamate transport in brain nerve terminals The EPMA J. https://doi.org/10.1186/s13167-016-0075-1
14. Hor?k D., Benes M., Proch?zkov? Z., Trchov? M., Borysov A., Pastukhov A., Paliienko K., Borisova T. Effect of O-methyl--cyclodextrin-modified magnetic nanoparticles on the uptake and extracellular level of l-glutamate in brain nerve terminals. Colloids and Surfaces B: Biointerfaces. 2016, V. 149, P. 64?71. https://doi.org/10.1016/j.colsurfb.2016.10.007
15. Borysov A., Krisanova N., Chunihin O., Ostapchenko L., Pozdnyakova N., Borisova T. A comparative study of neurotoxic potential of synthesized polysaccharide-coated and native ferritin-based magnetic nanoparticles. Croat. Med. J. 2014, V. 55, P. 195–205. https://doi.org/10.3325/cmj.2014.55.195
16. Danbolt N. C. Glutamate uptake. Prog. Neurobiol. 2001, V. 65, P. 1–105. https://doi.org/10.1016/S0301-0082(00)00067-8
17. Fonnum F. Glutamate: a neurotransmitter in mammalian brain. J. Neurochem. 1984, V. 42, P. 1–11. https://doi.org/10.1111/j.1471-4159.1984.tb09689.x
18. Waseem T. V., Lapatsina L. P., Fedorovich S. V. Influence of integrin-blocking peptide on gadolinium- and hypertonic shrinking-induced neurotransmitter release in rat brain synaptosomes. Neurochem. Res. 2008, V. 33, P. 1316–1324. https://doi.org/10.1007/s11064-007-9585-5
19. Cotman C. W. Isolation of synaptosomal and synaptic plasma membrane fractions. Meth. Enzymol. 1974, V. 31, P. 445–452. https://doi.org/10.1016/0076-6879(74)31050-6
20. Borisova T., Borysov A., Pastukhov A., Krisanova N. Dynamic gradient of glutamate across the membrane: glutamate/aspartate-induced changes in the ambient level of L-[(14)C]glutamate and D-[(3)H]aspartate in rat brain nerve terminals. Cell. Mol. Neurobiol. 2016. https://doi.org/10.1007/s10571-015-0321-4
21. Larson E., Howlett B., Jagendorf A. Artificial reductant enhancement of the Lowry method for protein determination. Anal. Biochem. 1986, N 155, P. 243–248. https://doi.org/10.1016/0003-2697(86)90432-X
22. Pozdnyakova N., Dudarenko M., Borisova T. New effects of GABAB receptor allosteric modulator rac-BHFF on ambient GABA, uptake/release, Em and synaptic vesicle acidification in nerve terminals. Neuroscience. 2015, N 304, P. 60–70. https://doi.org/10.1016/j.neuroscience.2015.07.037
23. Borisova T. The neurotoxic effects of heavy metals: Alterations in acidification of synaptic vesicles and glutamate transport in brain nerve terminals. Horizons Neurosci. Res. 2014, V. 14, P. 89–112.
24. Borisova T. Cholesterol and presynaptic glutamate transport in the brain. Springer Science & Business Media. 2013. https://doi.org/10.1007/978-1-4614-7759-4
25. Sudhof T. C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 2004, V. 27, P. 509–547. https://doi.org/10.1146/annurev.neuro.26.041002.131412
26. Borisova T., Sivko R., Borysov A., Krisanova N. Diverse presynaptic mechanisms underlying methyl-?-cyclodextrin-mediated changes in glutamate transport. Cell. Mol. Neurobiol. 2010, V. 30, P. 1013–1023. https://doi.org/10.1007/s10571-010-9532-x
27. Borisova T., Krisanova N., Himmelreich N. Exposure of animals to artificial gravity conditions leads to the alteration of the glutamate release from rat cerebral hemispheres nerve terminals. Adv. Space Res. 2004, V. 33, P. 1362–1367. https://doi.org/10.1016/j.asr.2003.09.039
28. Borisova T. A., Himmelreich N. H. Centrifuge-induced hypergravity: [3H]GABA and l-[14C]glutamate uptake, exocytosis and efflux mediated by high-affinity, sodium-dependent transporters. Adv. Sp. Res. 2005, V. 36, P. 1340–1345. https://doi.org/10.1016/j.asr.2005.10.007
29. Pozdnyakova N., Dudarenko M., Yatsenko L., Himmelreich N., Krupko O., Borisova T. Perinatal hypoxia: different effects of the inhibitors of GABA transporters GAT1 and GAT3 on the initial velocity of [3H]GABA uptake by cortical, hippocampal, and thalamic nerve terminals. Croat. Med. J. 2014, V. 55, P. 250–258. https://doi.org/10.3325/cmj.2014.55.250
30. Borisova T. Permanent dynamic transporter-mediated turnover of glutamate across the plasma membrane of presynaptic nerve terminals: arguments in favor and against. Rev. Neurosci. 2016, 27 (1), 71?81. https://doi.org/10.1515/revneuro-2015-0023
31. Borisova T., Borysov A. Putative duality of presynaptic events. Rev. Neurosci. 2016, 27 (4), 377?384. https://doi.org/10.1515/revneuro-2015-0044
32. Kanyuk M. I. Use of nanodiamonds in biomedicine. Biotechnol. acta. 2015, 8 (2), 9–25.
33. Borisova T., Krisanova N., Borуsov A., Sivko R., Ostapchenko L., Babic M. Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated ?-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport. Beilstein J. Nanotechnol. 2014, V. 5, P. 778–788.
34. Dolmatov V. Y., Gorbunov E. K., Veretennikova M. V., Rudometkin K. A., Vehanen A., Myllym?ki V. Radioactive nanodiamonds. J. Superhard Mater. 2013, V. 35, P. 251–255. https://doi.org/10.3103/S1063457613040072