ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 7, no 5, 2014
https://doi.org/10.15407/biotech7.05.101
Р. 101-107, Bibliography 27, Russian.
Universal Decimal classification: 577.152.087:581.2
THERMOSENSITIVITY OF LIPOXYGENASE AND PHOTOSYNTHESIS PIGMENTS OF WINTER WHEAT
Kosakivska I. V.1, Babenko L. M.1, Skaternya T. D.2, Ustinova A. Yu.1
1Holodniy Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Institute of Bioorganic Chemistry and Oil Chemistry of the National Academy of Sciences
of Ukraine, Kyiv, Ukraine
The effects of temperature regime on the pigment spectrum and lipoxygenase activity of the frost-resistant winter wheat Triticum aestivum L. cv. Volodarka seedlings were analyzed. After short-term cooling (+4 °C, 2 h) the amount of chlorophyll a in 7-day-old seedlings decreased. The chlorophylls a+b/carotenoids ratio increased under high temperature treatment (+40 °C, 2 h.) from 10.9 to 18.5. In 14-day-old seedlings a low temperature resulted in some rise of chlorophyll a content, the chlorophylls a/b ratio raised from 2.13 to 2.97 while the content of chlorophyll b and carotenoids diminished. Two isoforms of lipoxygenase: LO-1 (рН 7.0) and LO–2 (рН 6.0) were revealed in the seedling leaves, in roots — one 9-LO (pH 6.5). After high temperature and cross stress lipoxygenase activity increased both in the leaves and in the roots. After cooling 9-LO from roots some decrease of its activity was shown. The revealed changes in the pigment spectrum and lipoxygenase activity are regarded as components of adaptive response to changes in temperature regime. These results open the possibility to use the quantitative ratios of photosynthetic pigments and lipoxygenase activity as markers for selection for creating new high technology crop varieties.
Key words: Triticum aestivum L., lipoxygenase, pigments, temperature resistance.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Pyatygin S. S. Stress in the plants: a physiological approach. Zh. obshchei biologii. 2008, 69(4), 294–311. (In Russian).
2. Ladygin V. G., Shirshikova G. N. The current concepts of functional role of carotenoids in the eukaryotic chloroplasts. Zh. obshchei biologii. 2006, V. 67, P. 163–189. (In Russian).
3. Andrianova U. E., Tarchevsky I. A. Chlorophyll and plant productivity. Moskva: Nauka. 2000, 135 p. (In Russian).
4. Morgun V. V., Schwartau V. V., Kiriziy D. A. Physiological basis for obtain high yields of wheat. Fiziologiia i biokhimiia kulturnykh rastenii. 2008, 40(6), 463–479. (In Ukrainian).
5. Shadchina T. M. Functional characteristics of the photosyntetic apparatum of the modern varieties of winter wheat. Fiziologiia i biokhimiia kulturnykh rastenii. 2010, 42(4), P. 339–347. (In Ukrainian).
6. Buchko H., Buchko R., Khrunyk N., Romaniuk N., Terek O. The photosynthetic pigments and sugars level in whiat plants under laser irradiation and agrostymulin trenment. Visnyk Lviv. univer. Ser. Biol. 2002, Is. 29, P. 211–217. (In Ukrainian).
7. Dzhavadian N., Karimzade G., Mafuzi S., Ganati F. Coldinduced changes in the activity of enzymes and proline content, carbohydrates and chlorophyll in wheat. Phisiologiia rastenii. 2010, 57(4), 580–588. (In Russian).
8. Stanetska D., Koloval I., Dzhurenko N., Palamarchyk O. Effect of high stress on the pigment complex of species of the genym Solidago L. in the reproductive period. Sci. Bull. Uzhorod. univer. (Ser. Biol.). 2011, V. 30, P. 192–196. (In Ukrainian).
9. Taran N. Yu., Tagel Din M. M., Musiyenko M. M., Okanenko O. A. Heat resistance of different ecologic origin wheat varieties. Ukr. botan. zh. 1996, 53(1–2), 42–47. (In Ukrainian).
10. Ivanov L. A, Ronzhina D. A., Yudin P. K. Changes in the Chlorophyll and Carotenoid Contents in the Leaves of Steppe Plants along a Latitudinal Gradient in South Ural. Russian Journal of Plant Physiology. 2013, 60(6), 856–864.
http://dx.doi.org/10.1134/S1021443713050075
11. Kolypaev Yu., Karpets Yu. Formation of plants adaptive reactions to abiotic stressors influence. Kyiv: Osnova, 2010. 352 p. (In Russian).
12. Porta H., RochaSosa M. Plant lipoxygenases. Physiological and molecular features. Plant Physiol. 2002, 130(1), 15–21.
http://dx.doi.org/10.1104/pp.010787
13. Feussner I., Wasternack C. The lipoxygenase pathway. Annual Review of Plant Biology. 2002, V. 53, P. 275–297.
http://dx.doi.org/10.1146/annurev.arplant.53.100301.135248
14. Tarchevsky I. A. Signaling systems of plant cells. Moskva: Nauka. 2002, 294 p. (In Russian).
15. Zherebtsov N. A., Popova T. N., Zyablova T. V. Fumaric acid is a competitive inhibitor of wheat germ lipoxygenase. Biochem. (Moskva). 2000, 65(5), 620–621.
16. Nemchenko A., Kunze S., Feussner I. Duplicate maize 13lipoxygenase genes are differentially regulated by circadian rhythm, cold stress, wounding, pathogen infection, and hormonal treatments. J. Exp. Bot. 2006, 57(14), 3767–3779.
http://dx.doi.org/10.1093/jxb/erl137
17. Laxalt A. M. Phospholipids signaling in plant defense. Curr. Opin. Plant Biol. 2002, 5 (4), 332–338.
http://dx.doi.org/10.1016/S1369-5266(02)00268-6
18. Morgun V. V., Sanin E. V., Schwartau V. V. Club 100 centners. Kyiv: Lohos. 2008, 87 p. (In Ukrainian).
19. Musienko M. M., Parshikova T. V., Slavnuy P. S. Methods of spektrofotometriya in practice of physiology, biochemistry and plant ecology. Kyiv: Fitosotsiotsentr. 2001, 201 p. (In Ukrainian).
20. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal. Biochem. 1976, V. 2, P. 248–254.
http://dx.doi.org/10.1016/0003-2697(76)90527-3
21. Butovich I. A., Tsys E. V., Mogilevich T. V. Linoleic asid and methyl linoleate oxidation by potato and soybean lipoxygenases: a comparative study. Biochemistry. 1992, V. 57, Publ. 10, P. 1472–1480.
22. Gibtan M., Vanderberger B. Product yield on oxygenation of linoleate by soybean lipoxygenase: the value of the molar extinction coefficient in the spectrophotometric assay. Anal. Biochem. 1987, 63(2), 343–349.
23. Babenko L. M., Kosakivska I. V., Skaterna T. D. Ustinova A.Yu. Influence of hypo and hyperthermia on lipoxygenase activity, content of pigments and soluble proteins in Triticum aestivum L. cv. Yatran 60 seedlings. Plant Physiol. Gen. 2014, 46(3), 212–220.
24. Babenko L. M., Kosakivska I. V., Skaterna T. D., Kharchenko O. V. Plant lipoxygenases in adaptation to abiotic stresses. Bull. Kharkiv natsional ahr. univer. (Ser. Biol.). 2013, 2(29), 6–19. (In Ukrainian).
25. Kopich V. M., Kharchenko O. V. Study of the effect of salt stress and abscisic acid on lipoxygenase activity of maize. Dopovidi Nats. acad. nauk Ukrainy. 2011, N 12, P. 148–152. (In Ukrainian).
26. Braidot E., Petrussa E., Micolini S. Biochemical and immunochemical evidences for the presence of lipoxygenase in plant mitochondria. J. Exp. Bot. 2004, 55(403), 1655–1662.
http://dx.doi.org/10.1093/jxb/erh197
27. Kosakivska I. V., Babenko L. M., Ystinova A. U., Skaterna T. D., Demievska K. The influence of temperature conditions on lipoxygenase activity in seedling of rape Brassica napus var. Oleifera. Dopovidi Nats. acad. nauk Ukrainy. 2012. N 6, P. 134–137 (In Ukrainian).