- Details
- Hits: 85
ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
"Biotechnologia Acta" V. 12, No. 5, 2019
P. 85-95, Bibliography. 25, English
Universal Decimal Classification: 635.076:57.043
https://doi.org/10.15407/biotech12.05.089
MATHEMATICAL MODEL FOR DESCRIBING THE POST-CRYOPRESERVATION VIABILITY OF FRUIT AND BERRY CUTTINGS
L. V. Gorbunov1, I. V. Petrov2, O. V. Zviahintseva1
1 Chair of Biotechnology, Biophysics and Analytical Chemistry, National Technical University "Kharkiv Polytechnical Institute", Ukraine
2 Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv
A mathematical model that simplifies the determination of optimal parameters ensuring the maximum viability of frozen-thawed fruit and berry cuttings was developed. Values of the minimum amount of intracellular water η1min, which minimizes the plasmolysis probability, and η2min, which minimizes the probability of intracellular ice formation, were determined with due account for the bioobject heterogeneity.
Free water amounts Δη, forming ice crystals inside the cell during cryopreservation of different of fruit and berry varieties, were calculated. The optimal conditions for cutting dehydration (temperature Ti and incubation time t2, minimum amount of intracellular water ηmin) ensuring the maximum viability after drying and low-temperature adaptation to cryopreservation were selected. The individual features of the viability of frozen-thawed cuttings of different species were quantitatively reflected in the free water index Δη. The maximum viability of frozen-thawed birch and blackcurrant cuttings was achieved, when intracellular water was in the bound, vitrified state Δη = 0. The calculated Δη>0 for cuttings of different varieties of apple- and pear-trees as well as of raspberry-bushes leads to a decrease in the viability, and it is impossible to obtain viable plum, apricot or grape specimens after low-temperature cryopreservation with no bound water ηс at all.
Key words: mathematical model, cryopreservation, fruit and berry cuttings, viability.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Popov A. S., Popova E. V., Nikishina T. V., Vysotskays O. N. Cryobank of plant genetic resources in Russian Academy of Sciences. Int. J. Refriger. 2006, 29 (3), 403?410. https://doi.org/10.1016/j.ijrefrig.2005.07.011
2. Maleckij S. I., Melent'eva S. A., Tatur I. S., Judanova S. S., Maleckaja E. I. Hybrid power conservation in apozygotic progeny of sugar beet (Beta vulgaris L.). Scientific support for the beet industry: Proceedings of the International scientific-practical conference dedicated to the 85th anniversary of RUE "Experimental scientific station for sugar beets": Nesvizh. 2013. (In Russian).
3. Novikova T. I. Use of biotechnological approaches for the conservation of plant biodiversity. Rastitel'nyi mir Aziatskoi Rossii. 2013, 2 (12), 119–128. (In Russian).
4. Sakai A., Nishiyama J. Cryopreservation of winter vegetative buds of hardy fruit trees in liquid nitrogen. Hort. Sci. 1978, 13 (1), 225. https://doi.org/10.2503/jjshs.47.27
5. Engelmann F. Cryopreservation of embryos: an overview. Meth. Mol. Biol. 2011, V. 710, P. 155?184. https://doi.org/10.1007/978-1-61737-988-8_13
6. Teixeira da Silva J. A., Engelmann F. Cryopreservation of oil palm (Elaeis guineensis Jacq.). Cryobiology. 2017, V. 77, P. 82?88. https://doi.org/10.1016/j.cryobiol.2017.04.007
7. Nair D. S., Reghunath B. R., Soni K. B., Alex S. Cryopreservation of Encapsulated Axillary Buds of Clitoria ternatea (L.). Cryo Lett. 2019, 40 (1), 28?35.
8. Hao Y. J., Liu Q. L., Deng X. X. Effect of cryopreservation on apple genetic resources at morphological, chromosomal, and molecular levels. Cryobiology. 2001, 43 (1), 46?53. https://doi.org/10.1006/cryo.2001.2339
9. Wu Y., Zhao Y., Engelmann F., Zhou M., Zhang D., Chen S. Cryopreservation of apple dormant buds and shoot tips. Cryo Lett. 2001, 22 (6), 375?380.
10. Shevchenko N. О., Ivchenko T. V., Mozgovska A. V., Міroshnychenkо Т. М., Bashtan N. О. Survival of Sweet Potato Meristems Under Different Cryopreservation Regimens. Probl. Cryobiol. Cryomed. 2018, 28 (2), 156. https://doi.org/10.15407/cryo28.02.156
11. Pegg D. E. Principles of cryopreservation. Meth. Mol. Biol. 2015, V. 1257, P. 3–19. https://doi.org/10.1007/978-1-4939-2193-5_1
12. Goldstein G., Nobel P. S. Changes in osmotic pressure and mucilage during low-temperature acclimation of Opuntia ficus-indica. Plant Physiol. 1991, 97 (3), 954?961. https://doi.org/10.1104/pp.97.3.954
13. Kabylbekova B. Zh., Koval'chuk I. Ju., Turdiev T. T., Muhitdinova Z. R. The effect of cryoprotectants and preprocessing methods on viability of apple buds during cryopreservation. Vestnik nauki Kazahskogo agrotehnicheskogo universiteta im. S. Sejfullina (mezhdisciplinarnyj). 2017, 3 (94), 9?17. (In Russian).
14. Verzhuk V. G., Pavlov A. V., Tikhonova O. A., Borzhyh N. V., Dorokhov D. S. Evaluation of the viability genoplasmy of fruit crops after cryopreservation at vapor of liquid nitrogen – 183?185 ?С. Faktori eksperimental'noї evolyutsії organіzmіv. 2013, V. 13, P. 27?30. (In Russian).
15. Sakai A. Development of cryopreservation techniques. Cryopreservation of tropical plant germplasm. Current research progress and application. JIRCAS, Tsukuba & IPGRI, Rome. 2000, P. 1–7.
16. Towill L. E., Forsline P. L. Cryopreservation of sour cherry (Prunus cerasus L.) using a dormant vegetative bud method. Cryo Lett. 1999, 20 (4), 215?225.
17. Yi J. Y., Lee G. A., Lee S. Y., Chung J. W., Shin S. Cryopreservation of Winter-dormant Apple Buds Using Two-step Freezing. Plant Breed. Biotechnol. 2013, 1 (3), 283?289. https://doi.org/10.9787/PBB.2013.1.3.283
18. Gorbunov L. V., Shyianova T. P., Riabchun V. K. Optimization of dehydration conditions of fruit and berry cuttings. Henetychni Resursy Roslyn. 2008, V. 5, P. 182?187. (In Ukrainian).
19. Pavlov1 A. V., Verzhuk V. G., Orlova1 S. Yu., Radchenko O. Ye., Yerastenkova M. V., Dodonova A. Sh., Gavrilkova Ye. A., Sitnikov M. N., Filipenko G. I., Murashev S. V. Cryopreservation as a Method to Preserve Some Fruit and Berry Crops and Wild Medicinal Plants. Probl. Cryobiol. Cryomed. 2019, 29 (1), 044–057. https://doi.org/10.15407/cryo29.01.044
20. Liu Y., Wang X., Liu L. Analysis of genetic variation in surviving apple shoots following cryopreservation by vitrification. Plant Sci. 2004, 166 (3), 677?685. https://doi.org/10.1016/j.plantsci.2003.11.003
21. Rey H. Y., Faloci M., Medina R., Dolce N., Engelmann F., Mroginski L. Cryopreservation of Arachis pintoi (leguminosae) somatic embryos. Cryo Lett. 2013, 34 (6), 571?582.
22. Devi S. D., Kumaria S., Das M. C. Development of Cryopreservation Protocol for Aquilaria malaccensis Lam., a Recalcitrant Seeded Tropical Tree Species. Cryo Lett. 2019, 40 (1), 18?27.
23. Gorbunov L. V. Reproducibility results for cryopreservation of different variety cuttings of pomefruit trees. Problemy Kriobiologii. 2009, 19 (4), 473?480. (In Russian).
24. Gorbunov L. V., Petrov I. V. Interrelation between type and cultivar of berry-like crop and cuttings cryopreservation results. Biotechnol. acta. 2013, 6 (2), 121?127. (In Russian). https://doi.org/10.15407/biotech6.02.121
25. Gorbunov L. V., Riabchun V. K., Shyianova T. P., Salina A. S. Method of long-term preservation of fruit and berry cuttings. Ukraine patent UA 47845. 2010 feb 25.
- Details
- Hits: 46
ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
"Biotechnologia Acta" V. 12, No. 5, 2019
P. 79-84, Bibliography. 20, English.
Universal Decimal Classification: 628.3
https://doi.org/10.15407/biotech12.05.079
APPLICATION OF Lemna minor FOR POLLUTED WATER TREATMENT FROM BIOGENIC ELEMENTS
L. Sablii, M. Korenchuk, M. Kozar
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
The aim of this work was to establish the possibility of Lemna minor usage to improve the efficiency of wastewater treatment from nitrogen and phosphorus compounds.
Due to their pollution resistanse, Lemna minor is often used for wastewater remediation. It’s capability of absorption and transformation of various compounds, promotes the deposition of suspended matter, saturates water with oxygen, intensifies the purification processes.
Due to the rapid growth rate, duckweed absorbs a large amount of pollutants, thereby purifying water from them. However, there is insufficient data and information on the efficiency of nitrogen and phosphorous compounds extraction by Lemna minor wastewater. That is why the research direction was to determine the efficiency of wastewater treatment from biogenic nitrogen and phosphorus compounds by higher aquatic plants of Lemna minor.
The necessary conditions for cultivation of higher aquatic plants of Lemna minor in autumn and winter were established. The efficiency of using duckweed of different mass for purification of waste water from biogenic compounds of nitrogen and phosphorus was investigated. The usage of duckweed together with other higher aquatic plants to investigate wastewater from biogenic nitrogen and phosphorus compounds was investigated.
It was found that the efficiency of sewage treatment in the autumn-winter period should adjust the mode of illumination and temperature regime.
Key words: wastewater, biological treatment, phosphates, nitrates, Lemna minor.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Sablii L., Kuzmynskii Y., Zhukova V., Kozar M. New technology of biological treatment of domestic and industrial wastewater. Wat. Sup. Sanit. V. 3, P. 24–33.
2. Tulaydan Y., Malovanyy M., Kochubei V., Sakalova H. Treatment of high-strength wastewater from ammonium and phosphate ions with the obtaining of struvite. Chem. Technol. 2017, P. 463–468. https://doi.org/10.23939/chcht11.04.463
3. Akpor O. B., Muchie M. Bioremediation of polluted wastewater influent: Phosphorus and nitrogen removal. Sci. Res. Essays. 2010, 5 (21), 3222–3230.
4. Wei D., Shi L., Yan T., Zhang G., Wang Y., Du B. Aerobic granules formation and simultaneous nitrogen and phosphorus removal treating high strength ammonia wastewater in sequencing batch reactor. Biores. Technol. 2014, V. 171, P. 211–216. https://doi.org/10.1016/j.biortech.2014.08.001
5. Kim Y. M., Cho H. U., Lee D. S., Park D., Park J. M. Influence of operational parameters on nitrogen removal efficiency and microbial communities in a full-scale activated sludge process. Wat. Res. 2011, 45 (17), 5785–5795. https://doi.org/10.1016/j.watres.2011.08.063
6. Zhukova V., Sabliy L., Lagod G. Biotechnology of the food industry wastewater treatment from nitrogen compounds. Biotechnol. Food Ind. 2011, P. 133–138.
7. Dytczak M. A., Londry K. L., Oleszkiewicz J. A. Activated sludge operational regime has significant impact on the type of nitrifying community and its nitrification rates. Wat. Res. 2008, 42 (8–9), 2320–2328. https://doi.org/10.1016/j.watres.2007.12.018
8. Othman I., Anuar A. N., Ujang Z., Rosman N. H., Harun H., Chelliapan S. Livestock wastewater treatment using aerobic granular sludge. Biores. Technol. 2013, V. 133, P. 630–634. https://doi.org/10.1016/j.biortech.2013.01.149
9. Wang Y., Peng Y., Stephenson T. Effect of influent nutrient ratios and hydraulic retention time (HRT) on simultaneous phosphorus and nitrogen removal in a two-sludge sequencing batch reactor process. Biores. Technol. 2009, 100 (14), 3506–3512. https://doi.org/10.1016/j.biortech.2009.02.026
10. Yang S., Yang F., Fu Z., Wang T., Lei R. Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment. J. Hazard. Mater. 2010, 175 (1–3), 551–557. https://doi.org/10.1016/j.jhazmat.2009.10.040
11. Lemaire R., Yuan Z., Bernet N., Marcos M., Yilmaz G., Keller J. A sequencing batch reactor system for high-level biological nitrogen and phosphorus removal from abattoir wastewater. Biodegradation. 2009, 20 (3), 339–350. https://doi.org/10.1007/s10532-008-9225-z
12. Nielsen P. H., Saunders A. M., Hansen A. A., Larsen P., Nielsen J. L. Microbial communities involved in enhanced biological phosphorus removal from wastewater – a model system in environmental biotechnology. Cur. Opin. Biotechnol. 2012, 23 (3), 452–459. https://doi.org/10.1016/j.copbio.2011.11.027
13. Yuan Z., Pratt S., Batstone D. J. Phosphorus recovery from wastewater through microbial processes. Cur. Opin. Biotechnol. 2012, 23 (6), 878–883. https://doi.org/10.1016/j.copbio.2012.08.001
14. Kadlec R. H., Wallace S. D. Treatment wetlands. Boca Raton, Fl.: CRC Press. 2009, 1016 p. https://doi.org/10.1201/9781420012514
15. Vymazal J. Constructed Wetlands for Wastewater Treatment: A Review. Proceedings of Taal 2007: The 12th World Lake Conference. 2008. P. 965–980.
16. Garc?a J., Rousseau D. P. L., Morat? J. Contaminant Removal Processes in Subsurface-Flow Constructed Wetlands: A Review. Crit. Rev. Environ. Sci. Technol. 2010, 40 (7), 561–661. https://doi.org/10.1080/10643380802471076
17. Rahimi Y., Torabian A., Mehrdadi N., Shahmoradi B. Simultaneous nitrification–denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR). J. Hazard. Mater. 2011, 185 (2–3), 852–857. https://doi.org/10.1016/j.jhazmat.2010.09.098
18. Blackburne R., Yuan Z., Keller J. Demonstra tion of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater. Wat. Res. 2008, 42 (8–9), 2166–2176. https://doi.org/10.1016/j.watres.2007.11.029
19. Kapagiannidis A. G., Zafiriadis I., Aivasidis A. Effect of basic operating parameters on biological phosphorus removal in a continuous-flow anaerobic–anoxic activated sludge system. Bioproc. Biosyst. Engin. 2012, 35 (3), 371–382. https://doi.org/10.1007/s00449-011-0575-2
20. Beuckels A., Smolders E., Muylaert K. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Wat. Res. 2015, V. 77, P. 98–106. https://doi.org/10.1016/j.watres.2015.03.018
- Details
- Hits: 69
ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
Ж-л "Biotechnologia Acta" V. 12, No. 5, 2019
P. 72-78, Bibliography. 19, English.
Universal Decimal Classification: 615.322:616.37
https://doi.org/10.15407/biotech12.05.072
M. Kryvtsova1, J. Ko?cova2, J. Eftimova3, M. J. Spivak 4
1Uzhhorod National University, Faculty of Biology, Department of Genetics, Plant Physiology and Microbiology, Ukraine
2University of Veterinary Medicine and Pharmacy in Ko?ice, Department of Microbiology and Immunology, Slovakia
3University of Veterinary Medicine and Pharmacy in Ko?ice, Department of Pharmacognosy and Botany, Slovakia
4Zabolotny Institute of Microbiology and Virology of the National Academy of Scienses of Ukraine, Kyiv
The purpose of the work was to study the antimicrobial, antibiofilm-forming, antioxidant and some biochemical properties of alcoholic extracts of Potentilla erecta L. rhizome. The plants for the study were gathered around the village of Luta, Velyky Berezny rayon, Transcarpathia. From the Potentilla erecta L. rhizome, ethyl and methyl extracts were produced. The subjects for study were their antioxidant activity (by DPPH method), total tannin and flavonoids (by spectrophotometric method), and antimicrobial activity (by diffusion-into-agar method). The clinical isolates were isolated with the use of differentially diagnostic nutrient media. The antibiofilm activity of the extracts were tested in standard 96-well microtitration plates.
Ethyl and methyl extracts of Potentilla erecta L. rhizome were shown to reveal high antioxidant activity. Antimicrobial activity of the extracts against Staphylococcus genus bacteria and Candida genus fungi was established. The study proved high capacity of ethanol extract for bacterial biofilm destruction.
Thus, the study showed the antimicrobial, antioxidant and antibiofilm-forming activity of tormentil ethyl extract against the isolates from the mouth cavities of patients suffering from parodentium inflammatory diseases, which fact contributes to the application prospects of this extract as an active base for mouth cavity hygiene preparations.
Key words: antimicrobial effect; antibiofilm formation; plant extracts; antioxidant activity, flavonoids, tannins
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Gezici S., ?ekero?lu N. Current Perspectives in the Application of Medicinal Plants Against Cancer: Novel Therapeutic Agents. Anticancer. Agents Med. Chem. 2019, V. 19, P. 101–111. https://doi.org/10.2174/1871520619666181224121004
2. O'Toole G., Kaplan H. B., Kolter R. Biofilm formation as microbial development. Annu Rev. Microbiol. 2000, V. 54, P. 49–79. https://doi.org/10.1146/annurev.micro.54.1.49
3. Kalemba D., Kunicka A. Antibacterial and Antifungal Properties of Essential Oils. Cur. Medicin. Chem. 2003, 10 (10), 813–829. https://doi.org/10.2174/0929867033457719
4. Shunmugaperumal T. Biofilm-Related Infections in the Oral Cavity. Biofilm Eradication and Prevention. 2010, P. 184–225. http://dx.doi.org/10.1002/9780470640463.ch7
5. Kryvtsova M. V., Kostenko Ye. Ya., Salamon I. Compositions of essential oils with antimicrobial properties against isolates from oral cavities of patients with inflammatory diseases of parodentium. Regulatory Mechanisms in Biosystems. 2018, 9 (4), 491–494. https://doi.org/10.15421/021873
6. Kostenko O. Ye., Kryvtsova M. V., Kostenko Ye. Ya., Savchuk O. V. Analiz dominuyuchykh mikrobnykh asotsiatsiy porozhnyny rota ta osoblyvosti yikh chutlyvosti do antybakterialnykh ta antyseptychnykh preparativ (Analysis of dominating microbial associations of mouth cavity and peculiarities of their sensitivity to antibacterial and antiseptic preparations). Suchasna stomatolohiya (Modern Dentistry). 2018, No. 5, P. 37–39.
7. Kryvtsova M. V. Microscopoc Candida genus fungi in the structure of microbial associations in the condition of generalized periodontitis and their sensitivity to antibiotics and essential oils. Bulletin of Problems Biology and Medicine. 2019, 1 (2), 263–266. https://doi.org/10.29254/2077-4214-2019-1-2-149-263-266
8. Sidashenko O. I., Voronkova O. S., Sirokvasha O. A., Vinnikov A. I. Exhibition pathogenicity factors in biofilm-forming and nobiofilm-forming strains of Staphylococcus epidermidis. Mikrobiol. Zh. 2015, 77 (2), 33–37. https://doi.org/10.15407/microbiolj77.02.033
9. Piegerov? A., Ko??ov? J., Schusterov? P., Nemcov? R., Kryvtsova M. In vitro inhibition of biofilm formation by Staphylococcus aureus under the action of selected plant extracts. Folia Veterinaria. 2019, 63 (1), 48–53. https://doi.org/10.2478/fv-2019-0007
10. Kryvtsova M. V., Trush K., Eftimova J., Ko??ov?, J., Spivak M. J. Antimicrobial, antioxidant and some biochemical properties of Vaccinium vitis-idea L. Mikrobiol. Zh. 2019, V. 3, P. 40–52. https://doi.org/10.15407/microbiolj81.03.040
11. Tomczyk M., Latt? K.,P. Potentilla ? a review of its phytochemical and pharmacological profile. J. Ethnopharmacol. 2009, 122 (2), 184–204. https://doi.org/10.1016/j.jep.2008.12.022.
12. Rhos J. L., Recio M. C. Medicinal plants and antimicrobial activity. Journal of Ethnopharmacology. 2005, 100 (1-2), 80–84. http://dx.doi.org/110.1016/j.jep.2005.04.025
13. O’Toole G. A. Microtiter dish biofilm formation assay. Journal of visualized experiments. 2011, V. 47. https://doi.org/10.3791/2437
14. Medini F., Fellah H., Ksouri R., Abdelly C. Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum. Journal of Taibah University for Science. 2014, 8 (3), 216–224. https://doi.org/10.1016/j.jtusci.2014.01.003
15. Djeridane A., Yous M., Nadjemi B., Boutassouna D., Stocker P., Vidal N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, V. 97, P. 654–660. https://doi.org/10.1016/j.foodchem.2005.04.028
16. Synowiec A., Gniewosz M., B?czek K., Przyby? J. L. Antimicrobial effect of an aqueous extract of Potentilla erecta rhizome. Herba Polonica. 2014, 60 (2), 18–28. https://doi.org/10.2478/hepo-2014-0007
17. Tomczyk M., Leszczy?ska K., Jakoniuk P. Antimicrobial activity of Potentilla species. Fitoterapia. 2008, 79 (7–8), 592–594. https://doi.org/10.1016/j.fitote.2008.06.006
18. Pleszczy?ska M., Wiater A., Szczodrak J., Bachanek T. Searching for natural substances inhibiting glucosyltransferases from mutans streptococci. Nowa Stomatologia. 2003, V. 8, P. 163–167.
19. Synowiec A., Gniewosz M., B?czek K., Przyby? J. L. Antimicrobial effect of an aqueous extract of Potentilla erecta rhizome. Herba Polonica. 2014, 60 (2), 18–28. https://doi.org/10.2478/hepo-2014-0007
- Details
- Hits: 139
ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
Biotechnologia Acta, V. 12, No.5, 2019
P. 63-71, Bibliography. 60, English.
УUniversal Decimal ClassificationДК: 577.1/3
https://doi.org/10.15407/biotech12.05.063
S. V. Gorobets1 , L. A. Yevzhyk1, I. A. Kovalchuk1, O. V. Kovalev2
1Igor Sikorsky National Polytechnic Institute, Kyiv
2KP “UGCG”, Slavutich
The aim of the study was to produce magnetically controlled biosorbent based on fungi of champignon and shiitake, to determine the proportion of the magnetically controlled phase of the biomass of fungi when the magnetic fluid (MF) was added to the substrate and to explore the efficiency of extraction Fe3+ ions by shredded biomass of the fungus. The object of the study was mushrooms champignon Agaricus bisporus and shiitake Lentinula edodes grown in the laboratory. An effective and cheap way to remove waste biosorbent from the working environment is a high-gradient magnetic separation (HGMS), which takes place in high-speed mode. The separation of the magnetically controlled phase of fungi biomass A. bisporus and L. edodes was carried out by HGMS methods. It was investigated that when using the biomass of champignon grown on MF, the properties of the sorbent were significantly improved, the full saturation was 6 times faster in comparison with the biosorbent based on the biomass of the fungus grown without MF.
Key words: biogenic magnetic nanoparticles, magnetite, magnetically controlled biosorbent, champignon Agaricus bisporus, shiitake Lentinula edodes.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Blakemore R. P. Magnetotactic bacteria. Science. 1975, N 190, P. 377–379.
2. Frankel R. B., Blakmore R. P., Wolfe R. S. Magnetite in freshwater magnetotactic bacteria. Science. 1979, N 203, P. 1355–1356.
3. Sakaguchi Т., Burgess J. G., Matsunaga T. Magnetite formation by a sulphate-redusing bacterium. Nature. 1993, N 365, P. 47–49. https://doi.org/10.1038/365047a0
4. Mann S., Sparks N., Frankel R. B., Bzilinski D. A., Jannasch Y. W. Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature. 1990, N 343, P. 258–261. https://doi.org/10.1038/343258a0
5. Hsu Ch.-Y., Ko F.-Y., Li Ch.-W. Magnetoreception System in Honeybees (Apis mellifera). PLoS ONE. 2007, N 4, P. 1–11. https://doi.org/10.1371/journal.pone.0000395
6. Maher B. A. Magnetite biomineralization in termites. Proceedings of the Royal Society. 1998, N 265, P. 733–737. https://doi.org/10.1098/rspb.1998.0354
7. Cranfield C. G., Dawe A., Karloukovski V. Biogenic Magnetite in the Nematode Caenorhabditis elegans. Biological Sciences. 2004, N 271, P. 436–439. https://doi.org/10.1098/rsbl.2004.0209
8. Mann S., Sparks N. H. C., Walker M. M., Kirschvink J. L. J. Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon. Exp. Biol. 1988, N 140, P. 35–49.
9. Lowenstam H. A. Magnetite in denticle capping in recent chitons. Geol. Soc. 1973, 11 (2), 435–438. https://doi.org/10.1130/0016-7606(1962)73[435:MIDCIR]2.0.CO;2
10. Walcott C., Gould J. L., Kirschvink J. L. Pigeons have magnets. Science. 1979, N 184, P. 180–182.
11. Vainshtein M., Suzina N., Kudryashova E., Ariskina E. New magnet-sensitive structures in bacterial and archaeal cells. Biology of the Cell. 2002, N 9, P. 29–35. https://doi.org/10.1016/S0248-4900(02)01179-6
12. De Barros L. Cienciae Congervacaona Serrados Orgaos. Anais da Academia Brasileira de Ci?ncias. 1981, N 54, P. 258.
13. Suzuki Y., Kopp R., Kogure T. Sclerite Formation in the Hydrothermal Vent «Scaly-Foot» Gastropod-Possible Control of Iron Sulfide Biomineralization by the Animal. Earth and Planetary Science Letters. 2006, N 242, P. 39–50.
14. De Oliveira J. F. Wajnberg E., de Souza Esquivel D. M. Ant Antennae: are they sites for magnetoreception. J. Royal Soc. Interface. 2010, N 7, P. 143–152. https://doi.org/10.1098/rsif.2009.0102
15. Gould J. L., Kirschvink J. L., Deffeyes K. S. Bees Have Magnetic Remanence. Science. 1978, N 202, P. 1026–1028. https://doi.org/10.1126/science.201.4360.1026
16. Acosta-Avalos D., Wajnberg Е., Oliveira P. S. Isolation of Маgnetic Nanoparticles from Pachycondyla Marginata Ants. J. Exp. Bio. 1999, N 202, P. 2687–2692.
17. Lohmann K. J. Magnetic Remanence in the Western Atlantic Spiny Lobster, Panulirus Argus. J. Exp. Bio. 1984, N 113, P. 29–41.
18. Brassart J., Kirschvink J. L., Phillips J. B., Borland S. C. Ferromagnetic Material in the Eastern Red-Spotted New Notophthalmus Viridescens. J. Exp. Bio. 1999, 202 (22), 3155–3160.
19. Kirschvink J. L. Magnetite Biomineralization and Geomagnetic Sensitivity in Higher Animals: an update and recommendations for future study. Bioelectromagnetics. 1989, 10 (3), 239–259. https://doi.org/10.1002/bem.2250100304
20. Diebel C. E., Proksch R., Greenk C. R. Magnetite Denes a Vertebrate Magnetoreceptor. Nature. 2000, N 406, P. 299–302. https://doi.org/10.1038/35018561
21. Eder S. H. K., Cadiou H., Muhamad A. Magnetic Characterization of Isolated Candidate Vertebrate Magnetoreceptor Cell. PNAS. 2012, 109 (30), 12022–12027. https://doi.org/10.1073/pnas.1205653109
22. Moore A. Freake S. M., Thomas I. M. Magnetic Particles in the Lateral Line of the Atlantic Salmon. Biol. Sci. 1990, N 329, P. 11–15. https://doi.org/10.1098/rstb.1990.0145
23. Moore A., Riley W. D. Magnetic Particles Associated with the Lateral Line of the European Eel (Anguilla anguilla). Journal of Fish Biology. 2009, N 74, P. 1629–1634. https://doi.org/10.1111/j.1095-8649.2009.02197.x
24. Ogura M., Kato M., Ara N. Magnetic Particles in Chum Salmon (Oncorhynchus keta): extraction and transmission electron microscopy. Canad. J. Zool. 1992, N 70, P. 874–877. https://doi.org/10.1139/z92-124
25. Irwin W. P., Lohmann K. J. Disruption of Magnetic Orientation in Hatchling Loggerhead Sea Turtles by Pulsed Magnetic Fields. J. Compar. Physiol., Neuroethology, Sensory, Neur. Behav. Physiol. 2005, 191 (5), 475–480. https://doi.org/10.1007/s00359-005-0609-9
26. Falkenberg G., Fleissner G., Schuchardt K. Avian Magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds. PLoS ONE. 2010, 5 (2), 9231. https://doi.org/10.1371/journal.pone.0009231
27. Cadiou H., McNaughton P. A. Avian Magnetite-Based Magnetoreception: a Physiologist's Perspective. J. Royal Soc. Interface. 2010, N 7, P. 193–205. https://doi.org/10.1098/rsif.2009.0423.focus
28. Edwards H. H., Schnell G. D., Dubois R. L., Hutchison V. H. Natural and Induced Remanent Magnetism in Birds. The Auk. 1992, 109 (1), 43–56. https://doi.org/10.2307/4088265
29. Edelman N. B., Fritz T., Nimp S. No Evidence for Intracellular Magnetite in Putative Vertebrate Magnetoreceptors Identified by Magnetic Screening. PNAS. 2015, 112 (1), 262–267. https://doi.org/10.1073/pnas.1407915112
30. Holland R. A., Kirschvink J. L., Doak T. G., Wikelski M. Use Magnetite to Detect the Earth’s Magnetic Field. PLoS ONE. 2008, 3 (2), 1676. https://doi.org/10.1371/journal.pone.0001676
31. Zoeger J., Dunn J. R., Fuller M. Magnetic Material in the Head of the Common Pacific Dolphin. Ibid. 1981, 213 (4510), 892–894.
32. Gorobets S. V., Gorobets O. Yu., Medviediev O. V., Golub V. O., Kuzminykh L. V. Biogenic magnetic nanoparticles in lung, heart and liver. Functional Materials. 2017, 24 (3), 405–408.
33. Brem F., Hirt A. M., Winklhofer М. Magnetic Iron Compounds in the Human Brain: a comparison of tumor and hippocampal tissue. J. Royal Soc. Interface. 2006, N 3, P. 833–841. https://doi.org/10.1098/rsif.2006.0133
34. Kirschvink J. L. Ferromagnetic Crystals in Human Tissue. J. Exp. Biology. 1981, N 92, P. 333–335.
35. Gorobets S., Medviediev O., Gorobets O., Ivanchenko A. Biogenic magnetic nanoparticles in human organs and tissues. Progress in Biophysics and Molecular Biology. 2018, N 135, P. 49–57. https://doi.org/10.1016/j.pbiomolbio.2018.01.010
36. Gorobets S., Gorobets O., Magerman A. V., Sharay I. V. Biogenic magnetic nanoparticles in plants. Funct. Mater. 2014, 21 (4), 427–436.
37. Gorobets S., Gorobets O., Duduk A., Bulaievska M., Sharay I. Comparative characteristics of biogenic magnetic nanoparticles in plant, fungi and animal organisms. IEEE AIM. La Thuile, Italy, 4–7 February 2018b.
38. Gorobets O. Yu., Gorobets S. V., Sorokina L. V. Biomineralization and Synthesis of Biogenic Magnetic Nanoparticles and Magnetosensitive Inclusions in Microorganisms and Fungi. Functional Materials. 2014, 21 (4), 427–436. https://doi.org/10.15407/fm21.04.427
39. Gorobets S. V., Gorobets O. Yu., Kovalchuk I. A., Yevzhyk L. A. Identification of producers of biogenic magnetic nanoparticles among representatives of fungi of Ascomycota and Basidiomycota departments. Innov Biosyst. Bioeng. 2018, 2 (4), 232–246. (In Ukrainian). https://doi.org/10.20535/ibb.2018.2.4.147310
40. Gorobets S. V., Gorobets O. Yu., Gorobets Yu. I. Biomineralization of intracellular biogenic magnetic nanoparticles and their possible functions. Scientific news of NTUU «KPI». 2013, N 3, P. 28–33. (In Ukrainian).
41. Gorobets O. Yu., Gorobets S. V., Gorobets Yu. I. Biogenic magnetic nanoparticles: Biomineralization in prokaryotes and eukaryotes. Dekker Encyclopedia of Nanoscience and Nanotechnology, Third Edition. CRC Press: New York. 2014, 300?308.
42. Gorobets O., Gorobets S., Koralewski M. Physiological origin of biogenic magnetic nanoparticles in health and disease: from bacteria to humans. Int. J. Nanomed. 2017, N 12, P. 4371?4395. https://doi.org/10.2147/IJN.S130565
43. Markova M. E., Uryash V. F., Stepanova E. A., Gruzdeva A. E., Grishatova N. V., Demarin V. T., Tumanova A. N. Sorption of heavy metals by higher fungi and chitin of different origin in in vitro experiments. Bull. Nizhny Novgorod University. 2008, N 6, P. 118?124. (In Russian).
44. Stihi C., Radulescu C., Busuioc G., Popescu I. V., Gheboianu A., Ene A. Studies on accumulation of heavy metals from substrate to edible wild mushrooms. Rom. Journ. Phys. 2011, 56 (1–2), 257–264.
45. Abdul-Talib S., Tay C. C., Abdullah-Suhaimi A., Liew H. H. Fungal Pleurotus Ostreatus Biosorbent for Cadmium (II) Removal in Industrial Wastewater. J. of Life Sci. Technol. 2013, 1 (1). https://doi.org/10.12720/jolst.1.1.65-68
46. Wang C., Liu H., Liu Z., Gao Y., Wu B., Xu H. Fe3O4 nanoparticle-coated mushroom source biomaterial for Cr(VI) polluted liquid treatment and mechanism research. R. Soc. Open. Sci. 2018, 5 (5). https://doi.org/10.1098/rsos.171776
47. Dhawale S. S., Lane A. C., Dhawale S. W. Effects of mercury on the white rot fungus Phanerochaete chrysosporium. Bull. Environ. Contam. Toxicol. 1996, N 56, P. 825–832. https://doi.org/10.1007/s001289900120
48. Gabriel J., Kofronova O., Rychlovsky P., Krenzelok M. Accumulation and effect of cadmium in the wood-rotting basidiomycete Daedalea quercina. Bull. Environ. Contam. Toxicol. 1996, N 57, P. 383–390. https://doi.org/10.1007/s001289900202
49. Melgar M. J., Alonso J., Perez-Lopez M., Garcia M. A. Influence of some factors in toxicity and accumulation of cadmium from edible wild macrofungi in NW Spain. J. Environ. Sci. Health B. 1998, N 33, P. 439–455. https://doi.org/10.1080/03601239809373156
50. Cihangir N., Saglam N. Removal of cadmium by Pleurotus sajor-caju basidiomycetes. Acta Biotechnol. 1999, N 19, P. 171–177. https://doi.org/10.1002/abio.370190212
51. Tobin M., White C., Gadd G. M. Metal accumulation by fungi: applications in environmental biotechnology. J. Industr. Microbiol. 1994, N 13, P. 126–130. https://doi.org/10.1007/BF01584110
52. Shazia I. Sumera A. Biosorption of Copper and Lead by Heavy Metal Resistant Fungal. Int. J. Sci. Res. Publ. 2015, N 5, P. 1–5.
53. Gulich M. P., Antomonov M. Yu., Yemchenko N. L. Sorption biometal mushroom mycelium from a nutrient medium enriched in citrate. Trace elements in medicine. 2014, 15 (2), 9–17. (In Ukrainian).
54. Gorobets S. V., Mikhailenko N. A. High-gradient ferromagnetic matrices for purificationof wastewaters by the method of magnitoelectrolysis. J. Wat. Chem. Technol. 2014, 36 (4), 153–159. https://doi.org/10.3103/S1063455X14040018
55. Morozov A. Y. The cultivation of mushrooms. AST "Stalker", 2001, 48 p. (In Ukrainian).
56. Garibova L. The cultivation of mushrooms. Publisher: Veche. 2005. (In Ukrainian).
57. Ahmeda I. A. M., Maherb B. A. Identification and paleoclimatic significance of magnetite nanoparticles in soils. PNAS. 2018, 115 (8). https://doi.org/10.1073/pnas.1719186115
58. Lascu I., Banerjee S. K., Berqu? T. S. Quantifying the concentration of ferrimagnetic particles in sediments using rock magnetic methods. G3. 2011, 11 (8). https://doi.org/10.1029/2010GC003182
59. Vasiliev A. A., Chashchin A. N., Lobanova E. S., Razinsky M. V. Non-Stoichiometric magnetite in soils of urbanized territories of Perm Krai. The Perm agrarian journal. 2014, 2 (6). (In Ukrainian).
60. Gorobets S. V. Method for producing of dry magnetically operated biosorbent. Patent of Ukraine № 118673, 2017. (In Ukrainian).
- Details
- Hits: 158
ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
Biotechnologia Acta, V. 12, No. 5, 2019
P. 42-62, Bibliography 173, English.
Universal Decimal Classification: 615.322:615.244
https://doi.org/10.15407/biotech12.05.042
THE USE OF HERBAL REMEDIES IN THE TREATMENT OF HEPATOBILIARY DISEASES: TRENDS AND PROSPECTS
M. Gahramanova1,2, M. Rudyk2, L. Skivka2
1 Nargiz Medical Center, Baku, Azerbaijan
2 ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Ukraine
Hepatobiliary system diseases represent an important medical and social problem due to increasing morbidity rates worldwide. Liver and biliary diseases are characterized by complex pathophysiology as well as by multi- and comorbidity. The treatment of such diseases necessitates multitarget drug development. The effectiveness of current drugs in the treatment of hepatobiliary disorders remains low and the incidence of side-effects are profound. This actualizes the search and development of highly effective hepatoprotectors with a low incidence of side effects. Medicinal plants potentially constitute a sourse of such preparations. The review summarizes the data concerning mechanisms of hepatoprotective and immunomodulatory effects of medicinal plants and their phytoconstituents. The prospects for the development and use of herbal remedies in the treatment of hepatobiliary diseases are outlined.
Key words: hepatobiliary diseases, medicinal plants, hepatoprotectors, immunomodulators.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Peery A. F., Crockett S. D., Murphy C. C., Lund J. L., Dellon E. S., Williams J. L., Jensen E. T., Shaheen N. J., Barritt A. S., Lieber S .R., Kochar B., Barnes E. L., Fan Y. C., Pate V., Galanko J., Baron T. H., Sandler R. S. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: update 2018. Gastroenterology. 2019, 156 (1), 254–272.e11. https://doi.org/10.1053/j.gastro.2018.08.063
2. Pimpin L., Cortez-Pinto H., Negro F., Corbould E., Lazarus J. V., Webber L., Sheron N. Burden of liver disease in Europe: Epidemiology and analysis of risk factors to identify prevention policies. J. Hepatol. 2018, 69 (3), 718–735. https://doi.org/10.1016/j.jhep.2018.05.011 https://doi.org/10.1016/j.jhep.2018.05.011
3. Das S., Mahakkanukrauh P., Ho C. C. The burden of gastrointestinal, liver, and pancreatic diseases: the global scenario. Gastroenterology. 2016, 150 (4), 1045–1046. https://doi.org/10.1053/j.gastro.2016.01.036
4. Younossi Z., Henry L. Contribution of alcoholic and nonalcoholic fatty liver disease to the burden of liver-related morbidity and mortality. Gastroenterology. 2016, 150 (8), 1778–1785. https://doi.org/10.1053/j.gastro.2016.03.005
5. Rowe I. A. Lessons from epidemiology: the burden of liver disease. Dig. Dis. 2017, 35 (4), 304–309. https://doi.org/10.1159/000456580
6. Shmal'ko O. O. Development of composition and technology of phytosyrup of hepatoprotective and choleretic action. Ph.D. dissertation, Drug Tech., Pharm. Org. and For. Pharmacy. National University of Pharmacy. Kharkiv, Ukraine. 2017. (In Ukrainian).
7. Skubyc'ka L. D., Severynovs'ka O. V. Complex analysis of blood parameters and acid-forming function of the stomach in diseases of the hepatobiliary system with concomitant pathologies. Visnyk Harkivs'kogo nacional'nogo universytetu imeni V.N.Karazina, Serija «Biologija». 2016, V. 27, P. 139–149. (In Ukrainian).
8. Nedel's'ka S. M., Mazur V. I., Shumna T. Je. Diseases of the hepatobiliary system and pancreas in children: a textbook for students of the 6th year of medical faculty, interns, pediatricians, family doctors. Zaporizhzhja: [ZDMU]. 2017, 113 p. (In Ukrainian).
9. Everhart J. E., Ruhl C. E. Burden of digestive diseases in the United States Part III: liver, biliary tract, and pancreas. Gastroenterology. 2009, 136 (4), 1134–1144. https://doi.org/10.1053/j.gastro.2009.02.038
10. Resnetnyak V. I. Concept of pathogenesis and treatment of cholelithiasis. World J. Hepatol. 2012, 4 (2), 18–34. https://doi.org/10.4254/wjh.v4.i2.18
11. Ertel A. E., Bentrem D., Abbott D. E. Gall bladder cancer. Cancer Treat Res. 2016, V. 168, P. 101–120. https://doi.org/10.1007/978-3-319-34244-3_6
12. Li X., Guo X., Ji H., Yu G., Gao P. Gallstones in patients with chronic liver diseases. Biomed. Res. Int. 2017, V. 2017, P. 9749802. https://doi.org/10.1155/2017/9749802
13. Lammert F., Gurusamy K., Ko C. W., Miquel J. F., M?ndez-S?nchez N., Portincasa P., van Erpecum K. J., van Laarhoven C. J., Wang D. Q. Gallstones. Nat. Rev. Dis. Primers. 2016, V. 2, P. 16024. https://doi.org/10.1038/nrdp.2016.24
14. EASL. Clinical practice guidelines: management of cholestatic liver diseases. Journal of Hepatology. 2009, 51 (2), 237–267. https://doi.org/10.1016/j.jhep.2009.04.009
15. Mauss S. et al. Hepatology. Sydney: Flying Publisher. 2015, 655 p.
16. Chekman I. S. Clinical pharmacology of hepatoprotectors. Lik. Sprava. 2001, V. 1, P. 15–19.
17. Gasanova O. V., Sarkisova E. O., Chumak A. A., Ovsyannikova L. M., Nosach O. V., Alohina L. M., Gasanov V. A., Kryzhanivska V. V. Comparative characteristics of hepatoprotectors used for the treatment of non alcoholic steatohepatitis associated with herpesvirus infection in sufferers of the Chornobyl accident. Probl. Radiac. Med. Radiobiol. 2017, V. 22, P. 339–352. https://doi.org/10.33145/2304-8336-2017-22-339-352
18. Somova M. N., Muzalevskaia E. N., Nikolaevski? V. A., Buzlama A. V., Batishcheva G. A., Chernov Iu. N. Drug-induced liver damage and the problem of its pharmacological correction. Eksp. Klin. Farmakol. 2013, 76 (9), 38–43.
19. Gu X., Manautou J. E. Molecular mechanisms underlying chemical liver injury. Expert Rev. Mol. Med. 2012, V. 14, P. e4. https://doi.org/10.1017/S1462399411002110
20. Kumar A. A review on hepatoprotective herbal drugs. IJRPC. 2012, 2 (1), 92–102.
21. Kurkina A. V., Galyamova V. R., Kurkin V. A., Avdeeva E. V. Possibilities of phytotherapy at digestive system diseases. Pharmacy & Pharmacology. 2016, 2 (15), 26–40. https://doi.org/10.19163/2307-9266-2016-4-2(15)-26-40
22. Ali M., Khan T., Fatima K., Ali Q. U. A., Ovais M., Khalil A. T., Ullah I., Raza A., Shinwari Z. K., Idrees M. Selected hepatoprotective herbal medicines: Evidence from ethnomedicinal applications, animal models, and possible mechanism of actions. Phytother. Res. 2018, 32 (2), 199–215. https://doi.org/10.1002/ptr.5957
23. Bedi O., Bijjem K. R. V., Kumar P., Gauttam V. Herbal induced hepatoprotection and hepatotoxicity: a critical review. Indian J. Physiol. Pharmacol. 2016, 60 (1), 6–21.
24. Ilyas U., Katare D. P., Aeri V., Naseef P. P. A review of hepatoprotective and immunomodulatory herbal plants. Pharmacogn. Rev. 2016, 10 (19), 66–70. https://doi.org/10.4103/0973-7847.176544
25. Enioutina E. Y., Salis E. R., Job K. M., Gubarev M. I., Krepkova L. V., Sherwin C. M. Herbal Medicines: challenges in the modern world. Part 5. status and current directions of complementary and alternative herbal medicine worldwide. Expert Rev. Clin. Pharmacol. 2017, 10 (3), 327–338. https://doi.org/10.1080/17512433.2017.1268917
26. Treister-Goltzman Y., Peleg R. Trends in publications on complementary and alternative medicine in the medical literature. Journal of Complementary and Integrative Medicine. 2015, 12 (2), 111–115. https://doi.org/10.1515/jcim-2014-0055
27. Efferth T., Zacchino S., Georgiev M. I., Liu L., Wagner H., Panossian A. Nobel Prize for artemisinin brings phytotherapy into the spotlight. Phytomedicine. 2015, 22 (13), A1–A3. https://doi.org/10.1016/j.phymed.2015.10.003
28. Hertweck C. Natural products as source of therapeutics against parasitic diseases. Angew. Chem. Int. Ed. Engl. 2015, 54 (49), 14622–14624. https://doi.org/10.1002/anie.201509828
29. Sahoo N., Manchikanti P., Dey S. Herbal drugs: standards and regulation. Fitoterapia. 2010, 81 (6), 462–471. https://doi.org/10.1016/j.fitote.2010.02.001
30. Zhang J., Wider B., Shang H., Li X., Ernst E. Quality of herbal medicines: challenges and solutions. Complement Ther. Med. 2012, 20 (1–2), 100–106. https://doi.org/10.1016/j.ctim.2011.09.004
31. Govindaraghavan S., Sucher N. J. Quality assessment of medicinal herbs and their extracts: Criteria and prerequisites for consistent safety and efficacy of herbal medicines. Epilepsy Behav. 2015, 52 (Pt B), 363–371. https://doi.org/10.1016/j.yebeh.2015.03.004.
32. Kolomojec' M. Ju., Vashenjak O. O. Comorbidity and polymorbidity in therapeutic practice. Ukrai'ns'kyj medychnyj chasopys. 2012, 5 (91), 140–143. (In Ukrainian).
33. Tarlovskaya E. I. Comorbidity and polymorbidity – a modern interpretation and urgent tasks facing the therapeutic community. Kardiologiia. 2018, 58 (9), 29–38. https://doi.org/10.18087/cardio.2562
34. Samorodskaja I. V., Bolotova E. V. Terminological and demographic aspects of comorbidity. Adv. Gerontol. 2016, 29 (3), 471–477.
35. Jakovljevi? M., Ostoji? L. Comorbidity and multimorbidity in medicine today: challenges and opportunities for bringing separated branches of medicine closer to each other. Psychiatr. Danub. 2013, 25 (1), 18–28.
36. Meghani S. H., Buck H. G., Dickson V. V., Hammer M. J., Rabelo-Silva E. R., Clark R., Naylor M. D. The conceptualization and measurement of comorbidity: a review of the interprofessional discourse. Nurs. Res. Pract. 2013, V. 2013, P. 192782. https://doi.org/10.1155/2013/192782
37. Jepsen P. Comorbidity in cirrhosis. World J. Gastroenterol. 2014, 20 (23), 7223–7230. https://doi.org/10.3748/wjg.v20.i23.7223
38. Scheen A. J. Beneficial effects of SGLT2 inhibitors on fatty liver in type 2 diabetes: A common comorbidity associated with severe complications. Diabetes Metab. 2019, 45 (3), 213–223. https://doi.org/10.1016/j.diabet.2019.01.008
39. Zhang Z. M., Liu Z., Liu L. M., Zhang C., Yu H. W., Wan B. J., Deng H., Zhu M. W., Liu Z. X., Wei W. P., Song M. M., Zhao Y. Therapeutic experience of 289 elderly patients with biliary diseases. World J. Gastroenterol. 2017, 23 (13), 2424–2434. https://doi.org/10.3748/wjg.v23.i13.2424
40. Lawler E., Avila A. Alzheimer disease: monotherapy vs. combination therapy. Am. Fam. Physician. 2017, 95 (7), 452.
41. Ohar J. A., Donohue J. F. Mono- and combination therapy of long-acting bronchodilators and inhaled corticosteroids in advanced COPD. Semin. Respir. Crit. Care Med. 2010, 31 (3), 321–333. https://doi.org/10.1055/s-0030-1254072
42. Zhou Z., Tang D. H., Xie J., Ayyagari R., Wu E., Niravath P. A. Systematic literature review of the impact of endocrine monotherapy and in combination with targeted therapy on quality of life of postmenopausal women with HR+/HER2-advanced breast cancer. Adv. Ther. 2017, 34 (12), 2566–2584. https://doi.org/10.1007/s12325-017-0644-2
43. Zhang A., Sun H., Wang X. Potentiating therapeutic effects by enhancing synergism based on active constituents from traditional medicine. Phytother Res. 2014, 28 (4), 526–533. https://doi.org/10.1002/ptr.5032
44. Liu J., Liu J., Shen F., Qin Z., Jiang M., Zhu J., Wang Z., Zhou J., Fu Y., Chen X., Huang C., Xiao W., Zheng C., Wang Y. Systems pharmacology analysis of synergy of TCM: an example using saffron formula. Sci. Rep. 2018, 8 (1), 380. https://doi.org/10.1038/s41598-017-18764-2
45. Izzo A. A., Hoon-Kim S., Radhakrishnan R., Williamson E. M. A critical approach to evaluating clinical efficacy, adverse events and drug interactions of herbal remedies. Phytotherapy research. 2016, 30 (5), 691–700. https://doi.org/10.1002/ptr.5591
46. Marignani M., Gallina S., Di Fonzo M., Deli I., Begini P., Gigante E., Epifani M., Angeletti S., Delle Fave G. Use and safety perception of herbal remedies in patients with liver/biliary tract disorders: an Italian study. J. Clin. Gastroenterol. 2010, 44 (1), S54–57. https://doi.org/10.1097/MCG.0b013e3181e658bb
47. Sultana B., Yaqoob S., Zafar Z., Bhatti H. N. Escalation of liver malfunctioning: A step toward Herbal Awareness. J. Ethnopharmacol. 2018, V. 216, P. 104–119. https://doi.org/10.1016/j.jep.2018.01.002
48. Soleimani V., Delghandi P. S., Moallem S. A., Karimi G. Safety and toxicity of silymarin, the major constituent of milk thistle extract: An updated review. Phytother. Res. 2019, 33 (6), 1627–1638. https://doi.org/10.1002/ptr.6361
49. Watychowicz K., Janda K., Jakubczyk K., Wolska J. Chaenomeles – health promoting benefits. Rocz. Panstw. Zakl. Hig. 2017, 68 (3), 217–227.
50. Rjeibi I., Ben Saad A., Hfaiedh N. Oxidative damage and hepatotoxicity associated with deltamethrin in rats: The protective effects of Amaranthus spinosus seed extract. Biomed. Pharmacother. 2016, V. 84, P. 853–860. https://doi.org/10.1016/j.biopha.2016.10.010
51. Ibadullayeva S., Gasimov H., Gahramanova M., Zulfugarova P., Novruzova L. Medico-Ethnobotanical Inventory (Liver and Gallbladder Ducts Illnesses) of Nakhchivan AR, Azerbaijan. International Journal of Sciences. 2015, 1 (06), 80–88. https://doi.org/10.18483/ijSci.739
52. Gahramanova M., Dovhyi R., Rudyk M., Molozhava O., Svyatetska V., Skivka L. Phytochemical screening of polyherbal composition based on Portulaca oleracea and it’s effect on macrophage oxidative metabolism. Biotechnol. acta. 2019, 12 (2) 63–70. https://doi.org/10.15407/biotech12.02.063
53. Zhang A., Sun H., Wang X. Recent advances in natural products from plants for treatment of liver diseases. Eur. J. Med. Chem. 2013, V. 63, P. 70–77. https://doi.org/10.1016/j.ejmech.2012.12.062
54. Bansal J., Kumar N., Malviya R., Sharma P. K. Hepatoprotective models and various natural product used in hepatoprotective agents: a review. Pharmacogn. Commun. 2014, V. 4, P. 1–30. https://doi.org/10.5530/pc.2014.3.2
55. Domitrovic R., Potocnjak I. A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives. Arch. Toxicol. 2016, 90 (1), 39–79. https://doi.org/10.1007/s00204-015-1580-z
56. Balasundram N., Sundram K., Samman S. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem. 2006, V. 99, P. 191–203. https://doi.org/10.1016/j.foodchem.2005.07.042
57. Manach C., Scalbert A., Morand C., R?m?sy C., Jim?nez L. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79 (5), 727–747. https://doi.org/10.1093/ajcn/79.5.727
58. Mohib M., Afnan K., Paran T. Z., Khan S., Sarker J., Hasan N., Hasan I., Sagor A. T. Beneficial role of citrus fruit polyphenols against hepatic dysfunctions: a review. J. Diet. Suppl. 2018, 15 (2), 223–250. https://doi.org/10.1080/19390211.2017.1330301
59. Pereira C., Barros L., Ferreira I. C. Extraction, identification, fractionation and isolation of phenolic compounds in plants with hepatoprotective effects. J. Sci. Food Agric. 2016, 96 (4), 1068–1084. https://doi.org/10.1002/jsfa.7446
60. Kurkin V. A., Kurkina A. V., Avdeeva E. V. Flavonoids as biologically active compounds of medicinal plants. Fundamental'nye issledovanija. 2013, 11 (9), 1897–1901. (In Russian).
61. Ghosh N., Ghosh R., Mandal V., Mandal S. C. Recent advances in herbal medicine for treatment of liver diseases. Pharm. Biol. 2011, 49 (9), 970–988. https://doi.org/10.3109/13880209.2011.558515
62. Federico A., Dallio M., Loguercio C. Silymarin/silybin and chronic liver disease: a marriage of many years. Molecules. 2017, 22 (2), pii: E191. https://doi.org/10.3390/molecules22020191
63. Vovk E. I. Milk thistle in modern hepatology: the relay race of generations from Ancient Greece to nowadays. Rus. Med. zh. 2010, V. 30, P. 18–37. (In Russian).
64. An Z., Qi Y. M., Huang D. J., Gu X., Tian Y., Li P., Li H., Zhang Y. EGCG inhibits Cd2+-induced apoptosis through scavenging ROS rather than chelating Cd2+ in HL-7702 cells. Toxicol. Mech. Method. 2014, 24 (4), 259–267. https://doi.org/10.3109/15376516.2013.879975
65. Zhang T. S., Kimura Y., Jiang S. Y., Harada K., Yamashita Y., Ashida H. Luteolin modulates expression of drug-metabolizing enzymes through the AhR and Nrf2 pathways in hepatic cells. Arch. Biochem. Biophys. 2014, V. 557, P. 36–46. https://doi.org/10.1016/j.abb.2014.05.023
66. Li S., Tan H. Y., Wang N., Cheung F., Hong M., Feng Y. The potential and action mechanism of polyphenols in the treatment of liver diseases. Oxid. Med. Cell Longev. 2018, V. 2018, P. 8394818. https://doi.org/10.1155/2018/8394818
67. Sun X., Duan X., Wang C., Liu Z., Sun P., Huo X., Ma X., Sun H., Liu K., Meng Q. Protective effects of glycyrrhizic acid against non-alcoholic fatty liver disease in mice. Eur. J. Pharmacol. 2017, V. 806, P. 75–82. https://doi.org/10.1016/j.ejphar.2017.04.021
68. Sil R., Ray D., Chakraborti A. S. Glycyrrhizin ameliorates metabolic syndrome-induced liver damage in experimental rat model. Mol. Cell Biochem. 2015, 409 (1–2), 177–189. https://doi.org/10.1007/s11010-015-2523-y
69. Xu G. B., Xiao Y. H., Zhang Q. Y., Zhou M., Liao S. G. Hepatoprotective natural triterpenoids. Eur. J. Med. Chem. 2018, V. 145, P. 691–716. https://doi.org/10.1016/j.ejmech.2018.01.011
70. S?nchez-Cris?stomo I., Fern?ndez-Mart?nez E., Cari?o-Cort?s R., Betanzos-Cabrera G., Bobadilla-Lugo R. A. Phytosterols and triterpenoids for prevention and treatment of metabolic-related liver diseases and hepatocellular carcinoma. Curr. Pharm. Biotechnol. 2019, 20 (3), 197–214. https://doi.org/10.2174/1389201020666190219122357
71. Kandanur S. G. S., Tamang N., Golakoti N. R., Nanduri S. Andrographolide: A natural product template for the generation of structurally and biologically diverse diterpenes. Eur. J. Med. Chem. 2019, V. 176, P. 513–533. https://doi.org/10.1016/j.ejmech.2019.05.022
72. Tan W. S. D., Liao W., Zhou S., Wong W. S. F. Is there a future for andrographolide to be an anti-inflammatory drug? Deciphering its major mechanisms of action. Biochem. Pharmacol. 2017, V. 139, P. 71–81. https://doi.org/10.1016/j.bcp.2017.03.024
73. Jia R., Du J. L., Cao L. P., Liu Y. J., Xu P., Yin G. J. Protective action of the phyllanthin against carbon tetrachloride-induced hepatocyte damage in Cyprinus carpio. In Vitro Cell. Dev. Biol. Anim. 2016, 52 (1), 1–9. https://doi.org/10.1007/s11626-015-9946-3
74. Lu K. L., Wang L. N., Zhang D. D., Liu W. B., Xu W. N. Berberine attenuates oxidative stress and hepatocytes apoptosis via protecting mitochondria in blunt snout bream Megalobrama amblycephala fed high-fat diets. Fish Physiol. Biochem. 2017, 43 (1), 65–76. https://doi.org/10.1007/s10695-016-0268-5
75. Neag M. A., Mocan A., Echeverr?a J., Pop R. M., Bocsan C. I., Cri?an G., Buzoianu A. D. Berberine: botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front. Pharmacol. 2018, V. 9, P. 557. https://doi.org/10.3389/fphar.2018.00557
76. Chernyh V. P. Pharmaceutical encyclopedia. 2nd ed., revised and enlarged. National University of Pharmacy of Ukraine. Kyiv: Morion. 2010, 1632 p. (In Ukrainian).
77. Glushchenko A., Vladymyrova I., Georgiyants V. The substantiation of the selection of medicinal plants and their rational application in diseases of the hepatobiliary system. ScienceRise. Pharmaceutical Science. 2018, V. 2, P. 9–16. https://doi.org/10.15587/2519-4852.2018.129642
78. Fifi A. C., Axelrod C. H., Chakraborty P., Saps M. Herbs and spices in the treatment of functional gastrointestinal disorders: a review of clinical trials. Nutrients. 2018, 10 (11), pii: E1715. https://doi.org/10.3390/nu10111715
79. Kelber O., Bauer R., Kubelka W. Phytptherapy in functional gastrointestinal disorders. Dig. Dis. 2017, V. 35, P. 36–42. https://doi.org/10.1159/000485489
80. Daniyal M., Akram M., Zainab R., Munir N., Sharif A., Shah S. M. A., Liu B., Wang W. Prevalence and current therapy in chronic liver disorders. Inflammopharmacology. 2019, 27 (2), 213–231. https://doi.org/10.1007/s10787-019-00562-z
81. Verhelst X., Dias A. M., Colombel J. F., Vermeire S., Van Vlierberghe H., Callewaert N., Pinho S. S. Protein glycosylation as a diagnostic and prognostic marker of chronic inflammatory gastrointestinal and liver diseases. Gastroenterology. 2019, pii: S0016-5085(19)41451-0. https://doi.org/10.1053/j.gastro.2019.08.060
82. Chen P., Wang Y. Y., Chen C., Guan J., Zhu H. H., Chen Z. The immunological roles in acute-on-chronic liver failure: An update. Hepatobiliary Pancreat. Dis. Int. 2019, 18 (5), 403–411. https://doi.org/10.1016/j.hbpd.2019.07.003
83. Martin-Mateos R., Alvarez-Mon M., Albillos A. Dysfunctional immune response in acute-on-chronic liver failure: it takes two to tango. Front. Immunol. 2019, V. 10, P. 973. https://doi.org/10.3389/fimmu.2019.00973
84. Laleman W., Claria J., Van der Merwe S., Moreau R., Trebicka J. Systemic inflammation and acute-on-chronic liver failure: too much, not enough. Can. J. Gastroenterol. Hepatol. 2018, V. 2018, P. 1027152. https://doi.org/10.1155/2018/1027152
85. Li S., Hong M., Tan H. Y., Wang N., Feng Y. Insights into the role and interdependence of oxidative stress and inflammation in liver diseases. Oxid. Med. Cell. Longev. 2016, V. 2016, P. 4234061. https://doi.org/10.1155/2016/4234061
86. Das S. K., DesAulniers J., Dyck J. R., Kassiri Z., Oudit G. Y. Resveratrol mediates therapeutic hepatic effects in acquired and genetic murine models of iron-overload. Liver Int. 2016, 36 (2), 246–257. https://doi.org/10.1111/liv.12893
87. Jiang S. L., Hu X. D., Liu P. Immunomodulation and liver protection of Yinchenhao decoction against concanavalin A-induced chronic liver injury in mice. J. Integr. Med. 2015, 13 (4), 262–268. https://doi.org/10.1016/S2095-4964(15)60185-6
88. Simon A. K., Hollander G. A., McMichael A. Evolution of the immune system in humans from infancy to old age. Proc. Biol. Sci. 2015, 282 (1821), 20143085. https://doi.org/10.1098/rspb.2014.3085
89. Scully, Georgakopoulou E. A., Hassona Y. The immune system: basis of so much health and disease: 3. Adaptive Immunity. Dent. Update. 2017, 44 (4), 322–324, 327. https://doi.org/10.12968/denu.2017.44.4.322
90. Ganeshan K., Chawla A. Metabolic regulation of immune responses. Annu. Rev. Immunol. 2014, V. 32, P. 609–634. https://doi.org/10.1146/annurev-immunol-032713-120236
91. Baraya Y. S., Wong K. K., Yaacob N. S. The immunomodulatory potential of selected bioactive plant-based compounds in breast cancer: a review. Anticancer Agents Med. Chem. 2017, 17 (6), 770–783. https://doi.org/10.2174/1871520616666160817111242
92. Akram M., Hamid A., Khalil A., Ghaffar A., Tayyaba N., Saeed A., Ali M., Naveed A. Review on medicinal uses, pharmacological, phytochemistry and immunomodulatory activity of plants. Int. J. Immunopathol. Pharmacol. 2014, 27 (3), 313–319. https://doi.org/10.1177/039463201402700301
93. Singh R. K. Tinospora cordifolia as an adjuvant drug in the treatment of hyper-reactive malarious splenomegaly – case reports. J. Vect. Borne. Dis. 2005, V. 3, P. 36–38.
94. Dhama K., Latheef S. K., Mani S., Samad H., Karthik A. K., Tiwari R., Khan R. U. Multiple beneficial applications and modes of action of herbs in poultry health and production-A review. Inter. J. Pharmacol. 2015, 11 (3), 152–176.
95. Wagner H. K. M. Immunostimulants and Adaptogens from Plants. In: Recent Advances in Phytochemistry. Arnason J. T., Mata R., Romeo J. T. (eds). Boston: Springer. 1995, P. 1–18.https://doi.org/10.1007/978-1-4899-1778-2_1
96. Kumar D., Arya V., Kaur R., Bhat Z. A., Gupta V. K., Kumar V. A review of immunomodulators in the Indian traditional healthcare system. J. Microbiol. Immunol. Infect. 2012, 45 (3), 165–184. https://doi.org/10.1016/j.jmii.2011.09.030
97. Massa S., Franconi R. Plant genes and plants proteins as adjuvants in cancer vaccination. Medicinal and Aromatic Plant Science and Biotechnology. 2012, 6 (special issue 2), 1–9.
98. Sander V. A., Corigliano M. G., Clemente M. Promising plant-derived adjuvants in the development of coccidial vaccines. Front. Vet. Sci. 2019, V. 6, P. 20. https://doi.org/10.3389/fvets.2019.00020
99. Massa S., Paolini F., Curzio G., Cordeiro M. N., Illiano E., Demurtas O. C., Franconi R., Venuti A. A plant protein signal sequence improved humoral immune response to HPV prophylactic and therapeutic DNA vaccines. Hum. Vaccin Immunother. 2017, 13 (2), 271–282. https://doi.org/10.1080/21645515.2017.1264766
100. Illiano E., Demurtas O. C., Massa S., Di Bonito P., Consalvi V., Chiaraluce R., Zanotto C., De Giuli Morghen C., Radaelli A., Venuti A., Franconi R. Production of functional, stable, unmutated recombinant human papillomavirus E6 oncoprotein: implications for HPV-tumor diagnosis and therapy. J. Transl. Med. 2016, 14 (1), 224. https://doi.org/10.1186/s12967-016-0978-6
101. Shah S. A., Sander S., White C. M., Rinaldi M., Coleman C. I. Evaluation of echinacea for the prevention and treatment of the common cold: a meta-analysis. Lancet. Infect. Dis. 2007, 7 (7), 73–80. https://doi.org/10.1016/S1473-3099(07)70160-3
102. Haria E. N., Perera M. A. D. N., Senchina D. S. Immunomodulatory effects of Echinacea laevigata ethanol tinctures produced from different organs. Bioscience Horizons: The International Journal of Student Research. 2016, V. 9, P. hzw001. https://doi.org/10.1093/biohorizons/hzw001
103. Li Y., Wang Y., Wu Y., Wang B., Chen X., Xu X., Chen H., Li W., Xu X. Echinacea pupurea extracts promote murine dendritic cell maturation by activation of JNK, p38 MAPK and NF-?B pathways. Dev. Comp. Immunol. 2017, V. 73, P. 21–26. https://doi.org/10.1016/j.dci.2017.03.002
104. EL-mahmood M. A. Efficacy of crude extracts of garlic (Allium sativum Linn) against nosocomial Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniea and Pseudomonas aeruginosa. J. Med. Plants Res. 2009, V. 3, P. 179–185.
105. Weber N. D., Andersen D. O., North J. A., Murray B. K., Lawson L. D., Hughes B. G. In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta. Med. 1992, 58 (2), 417–423. https://doi.org/10.1055/s-2006-961504
106. Mikaili P., Maadirad S., Moloudizargari M., Aghajanshakeri S., Sarahroodi S. Therapeutic uses and pharmacological properties of Garlic, Shallot, and their biologically active compounds. Iran. J. Basic Med. Sci. 2013, 16 (10), 1031–1048.
107. Lee J. S., Lee Y., Lee Y., Hwang H. S., Kim K., Ko E., Kim M., Kang S. Ginseng protects against respiratory syncytial virus by modulating multiple immune cells and inhibiting viral replication. Nutrients. 2015, 7 (2), 1021–1036. https://doi.org/10.3390/nu7021021
108. Quan F. S., Compans R. W., Cho Y. K., Kang S. M. Ginseng and Salviae herbs play a role as immune activators and modulate immune responses during influenza virus infection. Vaccine. 2007, V. 25, P. 272–282. https://doi.org/10.1016/j.vaccine.2006.07.041
109. Sakure S., Negi V. D., Mitra S. K., Nandakumar K. S., Chakravortty D. Vaccine with herbal adjuvant—a better cocktail to combat the infection. Vaccine. 2008, 26 (2008), 3387–3388. https://doi.org/10.1016/j.vaccine.2008.01.060
110. Ulbricht C., Basch E., Cheung L., Goldberg H., Hammerness P., Isaac R., Khalsa K. P., Romm A., Rychlik I., Varghese M., Weissner W., Windsor R. C., Wortley J. An evidence-based systematic review of Elderberry and Elderflower (Sambucus nigra) by the natural standard research collaboration. J. Diet. Suppl. 2014, 11 (1), 80–120. https://doi.org/10.3109/19390211.2013.859852
111. Okonkwo C., Oladele O., Nwiyi P. The pattern of immunomodulation of ImmuPlus on the Infectious Bursal Disease (IBD) antibody of vaccinated broiler chickens. J. Vet. Adv. 2015, 5 (1), 808–813. https://doi.org/10.5455/jva.20141213022835
112. Kumar K. M., Ramaiah S. Pharmacological importance of Echinacea Purpurea. Int. J. Pharma. Bio. Sci. 2011, 2 (4), 304–314.
113. Janeway C. A. Jr., Travers P., Walport M., Shlomchik M. J. Immunobiology: The Immune System in Health and Disease: 5th edition. NY: Garland Publishing. 2001, 884 p.
114. Tisoncik J. R., Korth M. J., Simmons C. P., Farrar J., Martin T. R., Katze M. G. Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev. 2012, 76 (1), 16–32. https://doi.org/10.1128/MMBR.05015-11
115. Liu Q., Zhou Y. H., Yang Z. Q. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell. Mol. Immunol. 2016, 13 (1), 3–10. https://doi.org/10.1038/cmi.2015.74
116. Wheatley D. Stress-induced insomnia treated with kava and valerian: singly and in combination. Hum. Psychopharmacol. 2001, 16 (4), 353–356. https://doi.org/10.1002/hup.299
117. Scholey A. B., Kennedy D. O. Acute, dose-dependent cognitive effects of Ginkgo biloba, Panax ginseng and their combinationin healthy young volunteers: differential interactions with cognitie demand. Hum. Psychopharmacol. 2002, 17 (1), 35–44. https://doi.org/10.1002/hup.352
118. Gupta V. K., Fatima A., Faridi U., Negi A. S., Shanker K., Kumar J. K., Rahuja N., Luqman S., Sisodia B. S., Saikia D., Darokar M. P., Khanuja S. P. Antimicrobial potential of Glycyrrhiza glabra roots. J. Ethnopharmacol. 2008, 116 (2), 377–380. https://doi.org/10.1016/j.jep.2007.11.037
119. Guo A., He D., Xu H., Geng C., Zhao J. Promotion of regulatory T cell induction by immunomodulatory herbal medicine licorice and its two constituents. Scient. Rep. 2016, V. 5, P. 14046. https://doi.org/10.1038/srep14046
120. Balaji B., Chempakam B. Pharmacokinetics prediction and drugability assessment of diphenyl-heptanoids from turmeric (Curcuma longa L). Med. Chem. 2015, 5 (2), 130–138. https://doi.org/10.2174/157340609787582873
121. Grant K. L., Lutz R. B. Ginger. Am. J. Health-Syst. Pharm. 2000, 57 (10), 945–947. https://doi.org/10.1093/ajhp/57.10.945
122. Hajhashemi V., Ghannadi A., Jafarabadi H. Black cumin seed essential oil, as a potent analgesic and antiinflammatory drug. Phytother. Res. 2004, 18 (3), 195–199. https://doi.org/10.1002/ptr.1390
123. Jantan I., Ahmad W., Bukhari S. N. A. Corrigendum: Plant-derived immunomodulators:an insight on their preclinical evaluation and clinical trials. Front. Plant. Sci. 2018, V. 9, P. 1178. https://doi.org/10.3389/fpls.2018.01178
124. Hollman P. C. H. Evidence for health benefits of plant phenols: local or systemic effects? J. Sci. Food Agric. 2001, V. 81, P. 842–852. https://doi.org/10.1002/jsfa.900
125. Ma Y., Kosi?ska-Cagnazzo A., Kerr W. L., Amarowicz R., Swanson R. B., Pegg R. B. Separation and characterization of soluble esterified and glycoside-bound phenolic compounds in dry-blanched peanut skins by liquid chromatography–electrospray ionization mass spectrometry. J. Agric. Food Chem. 2014, 62 (47), 11488–11504. https://doi.org/10.1021/jf503836n
126. Pandey K. B., Rizvi S. I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2 (5), 270–278. https://doi.org/10.4161/oxim.2.5.9498
127. Ding S., Jiang H., Fang J. Regulation of immune function by polyphenols. J. Immunol. Res. 2018, V. 2018, P. 1264074. https://doi.org/10.1155/2018/1264074
128. Magrone T., Kumazawa Y., Jirillo E. Polyphenol-mediated beneficial effects in healthy status and disease with special reference to immune-based mechanisms. Polyphenols in Human Health and Disease. 2014, V. 1, P. 467–479. https://doi.org/10.1016/b978-0-12-398456-2.00035-9
129. Zhu D., Ma Y., Ding S., Jiang H., Fang J. Effects of melatonin on intestinal microbiota and oxidative stress in colitis mice. Biomed. Res. Int. 2018, V. 2018, P. 2607679. https://doi.org/10.1155/2018/2607679
130. Tachibana H. Green tea polyphenol sensing. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 2011, 87 (3), 66–80. https://doi.org/10.2183/pjab.87.66
131. Sprangers S., de Vries T. J., Everts V. Monocyte heterogeneity: consequences for monocyte-derived immune cells. J. Immunol. Res. 2016, V. 2016, P. 1475435. https://doi.org/10.1155/2016/1475435
132. Yang C. S., Wang X. Green tea and cancer prevention. Nutr. Cancer. 2010, 62 (7), 931–937. https://doi.org/10.1080/01635581.2010.509536
133. Arce-Sillas A., ?lvarez-Luqu?n D. D., Tamaya-Dom?nguez B., Gomez-Fuentes S., Trejo-Garc?a A., Melo-Salas M., C?rdenas G., Rodr?guez-Ram?rez J., Adalid-Peralta L. Regulatory T cells: molecular actions on effector cells in immune regulation. J. Immunol. Res. 2016, V. 2016, P. 1720827. https://doi.org/10.1155/2016/1720827
134. Ranjith-Kumar C. T., Lai Y., Sarisky R. T., Cheng Kao C. Green tea catechin, epigallocatechin gallate, suppresses signaling by the dsRNA innate immune receptor RIG-I. PLoS One. 2010, 5 (9), e12878. https://doi.org/10.1371/journal.pone.0012878
135. Gong S. Q., Sun W., Wang M., Fu Y. Y. Role of TLR4 and TCR or BCR against baicalin-induced responses in T and B cells. Int. Immunopharmacol. 2011, 11 (12), 2176–2180. https://doi.org/10.1016/j.intimp.2011.09.015
136. Guo T. L., Chi R. P., Zhang X. L., Musgrove D. L., Weis C., Germolec D. R., White K. L. Jr. Modulation of immune response following dietary genistein exposure in F0 and F1 generations of C57BL/6 mice: evidence of thymic regulation. Food Chem. Toxicol. 2006, 44 (3), 316–325. https://doi.org/10.1016/j.fct.2005.08.001
137. Yum M., Jung M., Cho D., Kim T. Suppression of dendritic cells’ maturation and functions by daidzein, a phytoestrogen. Toxicol. Appl. Pharmacol. 2011, 257 (2), 174–181. https://doi.org/10.1016/j.taap.2011.09.002
138. Kim M., Kim H., Park H., Kim D., Chung H., Lee J. Baicalin from Scutellaria baicalensis impairs Th1 polarization through inhibition of dendritic cell maturation. J. Pharmacol. Sci. 2013, 121 (2), 148–156. https://doi.org/ 10.1254/jphs.12200FP
139. Yoshimura M., Akiyama H., Kondo K., Sakata K., Matsuoka H., Amakura Y., Teshima R., Yoshida T. Immunological effects of oenothein B, an ellagitannin dimer, on dendritic cells. Int. J. Mol. Sci. 2012, 14 (1), 46–56. https://doi.org/10.3390/ijms14010046
140. Ramstead A., Schepetkin I., Quinn M., Jutila M. Oenothein B, a cyclic dimeric ellagitannin isolated from Epilobium angustifolium, enhances IFN? production by lymphocytes. PloS One. 2012, 7 (11), e50546. https://doi.org/10.1371/journal.pone.0050546
141. Ramstead A., Schepetkin I., Todd K., Loeffelholz J., Berardinelli J., Quinn M., Jutila M. Aging influences the response of T cells to stimulation by the ellagitannin, oenothein B. Int Immunopharmacol. 2015, 26 (2), 367–377. https://doi.org/10.1016/j.intimp.2015.04.008
142. Abd-Alla H., Moharram F., Gaara A., El-Safty M. Phytoconstituents of Jatropha curcas L. leaves and their immunomodulatory activity on humoral and cell-mediated immune response in chicks. Z. Naturforsch C. 2009, 64 (7–8), 495–501. https://doi.org/10.1515/znc-2009-7-805
143. Kumazawa Y., Takimoto H., Matsumoto T., Kawaguchi K. Potential use of dietary natural products, especially polyphenols, for improving type-1 allergic symptoms. Curr. Pharm. Des. 2014, 20 (6), 857–863. https://doi.org/10.2174/138161282006140220120344
144. Magrone T., Tafaro A., Jirillo F., Amati L., Jirillo E., Covelli V. Elicitation of immune responsiveness against antigenic challenge in age-related diseases: effects of red wine polyphenols. Curr. Pharm. Des. 2008, 14 (26), 2749–2757. https://doi.org/10.2174/138161208786264043
145. Yin Y., Sun Y., Gu L., Zheng W., Gong F., Wu X., Shen Y., Xu Q. Jaceosidin inhibits contact hypersensitivity in mice via down-regulating IFN-?/STAT1/T-bet signaling in T cells. Eur. J. Pharmacol. 2011, 651 (1–3), 205–211. https://doi.org/10.1016/j.ejphar.2010.10.068
146. Sun Y., Wu X., Yin Y., Gong F., Shen Y., Cai T., Zhou X., Wu X., Xu Q. Novel immunomodulatory properties of cirsilineol through selective inhibition of IFN-gamma signaling in a murine model of inflammatory bowel disease. Biochem. Pharmacol. 2010, 79 (2), 229–238. https://doi.org/10.1016/j.bcp.2009.08.014
147. Xiao J., Zhai H., Yao Y., Wang C., Jiang W., Zhang C., Simard A., Zhang R., Hao J. Chrysin attenuates experimental autoimmune neuritis by suppressing immuno-inflammatory responses. Neuroscience. 2014, V. 262, P. 156–164. https://doi.org/10.1016/j.neuroscience.2014.01.004
148. Zhang X., Wang G., Gurley E., Zhou H. Flavonoid apigenin inhibits lipopolysaccharideinduced inflammatory response through multiple mechanisms in macrophages. PloS One. 2014, 9 (9), e107072. https://doi.org/10.1371/journal.pone.0107072
149. Liu Z., Zhong J., Gao E., Yang H. Effects of glycyrrhizin acid and licorice flavonoids on LPS-induced cytokines expression in macrophage. Zhongguo Zhong Yao Za Zhi. 2014, 39 (19), 3841–3845.
150. Cho Y., You S., Kim H., Cho C., Lee I., Kang B. Xanthohumol inhibits IL-12 production and reduces chronic allergic contact dermatitis. Int. Immunopharmacol. 2010, 10 (5), 556–561. https://doi.org/10.1016/j.intimp.2010.02.002
151. Yasui M., Matsushima M., Omura A., Mori K., Ogasawara N., Kodera Y., Shiga M., Ito K., Kojima S., Kawabe T. The suppressive effect of quercetin on toll-like receptor 7-mediated activation in alveolar macrophages. Pharmacology. 2015, 96 (5–6), 201–209. https://doi.org/10.1159/000438993
152. Wong C., Nguyen L., Noh S., Bray T., Bruno R., Ho E. Induction of regulatory T cells by green tea polyphenol EGCG. Immunol Lett. 2011, 139 (1–2), 7–13. https://doi.org/10.1016/j. imlet.2011.04.009
153. Mossalayi M., Rambert J., Renouf E., Micouleau M., M?rillon J. Grape polyphenols and propolis mixture inhibits inflammatory mediator release from human leukocytes and reduces clinical scores in experimental arthritis. Phytomedicine. 2014, 21 (3), 290–297. https://doi.org/10.1016/j.phymed.2013.08.015
154. Saroni Arwa P., Zeraik M. L., Ximenes V. F., da Fonseca L. M., Bolzani Vda S., Siqueira Silva D. H. Redox-active biflavonoids from Garcinia brasiliensis as inhibitors of neutrophil oxidative burst and human erythrocyte membrane damage. J. Ethnopharmacol. 2015, V. 174, P. 410–418. https://doi.org/10.1016/j.jep.2015.08.041
155. Chang M. C., Chang H. H., Wang T. M., Chan C. P., Lin B. R., Yeung S. Y., Yeh C. Y., Cheng R. H., Jeng J. H. Antiplatelet effect of catechol is related to inhibition of cyclooxygenase, reactive oxygen species, ERK/p38 signaling and thromboxane A2 production. PLoS One. 2014, 9 (8), e104310. https://doi.org/10.1371/journal.pone.0104310
156. Hopkins A. L. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4 (11), 682–690. https://doi.org/10.1038/nchembio.118
157. Boezio B., Audouze K., Ducrot P., Taboureau O. Network-based Approaches in Pharmacology. Mol. Inform. 2017, 36 (10). https://doi.org/10.1002/minf.201700048
158. Zang W. J. Network pharmacology: A further description. Network Pharmacology. 2016, 1 (1), 1–14.
159. Zhang G., Li Q., Chen Q., Su S. Network pharmacology: a new approach for chinese herbal medicine research. Evid. Based Complement. Alternat. Med. 2013, V. 2013, P. 621423. https://doi.org/10.1155/2013/621423
160. Di S., Han L., Wang Q., Liu X., Yang Y., Li F., ZhaoL., Tong X. A network pharmacology approach to uncover the mechanisms of Shen-Qi-Di-Huang decoction against diabetic nephropathy. Evid. Based Complement. Alternat. Med. 2018, V. 2018, P. 7043402. https://doi.org/10.1155/2018/7043402
161. Van Vuuren S., Viljoen A. Plant-based antimicrobial studies--methods and approaches to study the interaction between natural products. Planta. Med. 2011, 77 (11), 1168–1182. https://doi.org/10.1055/s-0030-1250736
162. Spinella M. The importance of pharmacological synergy in psychoactive herbal medicines. Altern. Med. Rev. 2002, 7 (2), 130–137. https://doi.org/10.1006/ebeh.2002.0328
163. Williamson E. M. Synergy and other interactions in phytomedicines. Phytomedicine. 2001, 8 (5), 401–409. https://doi.org/10.1078/0944-7113-00060
164. Efferth T., Koch E. Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy. Curr. Drug. Targets. 2011, 12 (1), 122–132. https://doi.org/10.2174/138945011793591626
165. Malongane F., McGaw L. J., Mudau F. N. The synergistic potential of various teas, herbs and therapeutic drugs in health improvement: a review. J. Sci. Food Agric. 2017, 97 (14), 4679–4689. https://doi.org/10.1002/jsfa.8472
166. Bahmani M., Taherikalani M., Khaksarian M., Rafieian-Kopaei M., Ashrafi B., Nazer M., Soroush S., Abbasi N., Rashidipour M. The synergistic effect of hydroalcoholic extracts of Origanum vulgare, Hypericum perforatum and their active components carvacrol and hypericin against Staphylococcus aureus. Future Sci. OA. 2019, 5 (3), FSO371. https://doi.org/10.4155/fsoa-2018-0096
167. Gadisa E., Weldearegay G., Desta K., Tsegaye G., Hailu S., Jote K., Takele A. Combined antibacterial effect of essential oils from three most commonly used Ethiopian traditional medicinal plants on multidrug resistant bacteria. BMC Complement. Altern. Med. 2019, 19 (1), 24. https://doi.org/10.1186/s12906-019-2429-4
168. Su S., Hua Y., Wang Y., Gu W., Zhou W., Duan J. A., Jiang H., Chen T., Tang Y. Evaluation of the anti-inflammatory and analgesic properties of individual and combined extracts from Commiphora myrrha, and Boswellia carterii. J. Ethnopharmacol. 2012, 139 (2), 649–656. https://doi.org/10.1016/j.jep.2011.12.013
169. Gonulalan E. M., Nemutlu E., Demirezer L. O. A new perspective on evaluation of medicinal plant biological activities: The correlation between phytomics and matrix metalloproteinases activities of some medicinal plants. Saudi Pharm. J. 2019, 27 (3), 446–452. https://doi.org/10.1016/j.jsps.2019.01.006
170. Gonulalan E. M., Nemutlu E., Bayazeid O., Ko?ak E., Yal??n F. N., Demirezer L. O. Metabolomics and proteomics profiles of some medicinal plants and correlation with BDNF activity. Phytomedicine. 2019, 152920. https://doi.org/10.1016/j.phymed.2019.152920
171. Yang Y., Zhang Z., Li S., Ye X., Li X., He K. Synergy effects of herb extracts: pharmacokinetics and pharmacodynamic basis. Fitoterapia. 2014, V. 92, P. 133–147. https://doi.org/10.1016/j.fitote.2013.10.010