- Details
- Hits: 163
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 4, 2018
https://doi.org/10.15407/biotech11.04.084
Р. 84-90, Bibliography 26, English
Universal Decimal Classification: 615.473.92:571.27
EFFECT OF INTRACRANIAL CATHETER PLACEMENT ON MICROGLIA METABOLIC PROFILE OF RATS
Y. Hurmach, М. Rudyk, V. Svyatetskaya, L. Skivka
Taras Shevchenko National University of Kyiv,, ESC “Institute of Biology and Medicine” Kyiv, Ukraine
The aim of the work was to investigate the effect of the intracranial catheter placement on the metabolic profile of rat microglia. Microglial cells were isolated by the centrifugation in Percoll gradient. Oxidative metabolism and phagocytic activity were investigated by flow cytometry. Arginase activity was examined by colorimetric method. Nitrite level was assayed in Griess reaction. It was found that intracranial catheter placement caused down-regulation of nitrite synthesis by 3 times, augmentation of the reactive oxygen species generation by 1.5 times, and slightly decreased microglia phagocytic activity. Thus, intracranial catheter placement causes long term anti-inflammatory shift of microglia metabolism in rats.
Key words: . phagocytes, microglia, metabolic profile, intracranial catheter.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Abdou E. M., Kandil S. M., Miniawy H. M. Brain targeting efficiency of antimigrain drug loaded mucoadhesive intranasal nanoemulsion. Int. J. Pharm. 2017, 529 (1–2), 667–677. https://doi.org/10.1016/j.ijpharm.2017.07.030
2. Teitelbaum A. M., Gallardo J. L., Bedi J., Giri R., Benoit A. R., Olin M. R., Morizio K. M., Ohlfest J. R., Remmel R. P., Ferguson D. M. 9-Amino acridine pharmacokinetics, brain distribution, and in vitro/in vivo efficacy against malignant glioma. Cancer Chemother. Pharmacol. 2012, 69 (6), 1519–1527. https://doi.org/10.1007/s00280-012-1855-5
3. Fortin D. The blood-brain barrier: its influence in the treatment of brain tumors metastases. Curr. Cancer Drug Targets. 2012, 12 (3), 247–259. https://doi.org/10.2174/156800912799277511
4. Brady M. L., Raghavan R., Mata J., Wilson M., Wilson S., Odland R. M., Broaddus W. C.
Large-Volume Infusions into the Brain: A Comparative Study of Catheter Designs. Stereotact Funct. Neurosurg. 2018, 96 (3), 135–141. https://doi.org/10.1159/000488324
5. Mehta A. M., Sonabend A. M., Bruce J. N. Convection-Enhanced Deliverу. Neuro therapeutics. 2017, 14 (2), 358–371. https://doi.org/10.1007/s13311-017-0520-4
6. Miyake M. M., Bleier B. S. The blood-brain barrier and nasal drug delivery to the central nervous system. Am. J. Rhinol. Allergy. 2015, 29 (2), 124–127. https://doi.org/10.2500/ajra.2015.29.4149
7. Agarwal S., Sane R., Oberoi R., Ohlfest J. R., Elmquist W. F. Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain. Expert Rev. Mol. Med. 2011, 13, 17. https://doi.org/10.1017/S1462399411001888
8. Smilowitz H. M., Meyers A., Rahman K., Dyment N. A., Sasso D., Xue C., Oliver D. L., Lichtler A., Deng X., Ridwan S. M., Tarmu L. J., Wu Q., Salner A. L., Bulsara K. R., Slatkin D. N., Hainfeld J. F. Intravenously-injected gold nanoparticles (AuNPs) access intracerebral F98 rat gliomas better than AuNPs infused directly into the tumor site by convection enhanced deliverу. Int. J. Nanomed. 2018, 13, 3937–3948. https://doi.org/10.2147/IJN.S154555
9. Du L., Zhang Y., Chen Y., Zhu J., Yang Y., Zhang H. L. Role of Microglia in Neurological Disorders and Their Potentials as a Therapeutic Target. Mol. Neurobiol. 2017, 54 (10), 7567–7584. https://doi.org/10.1007/s12035-016-0245-0
10. Orihuela R., McPherson C. A., Harry G. J. Microglial M1/M2 polarization and metabolic states. Br. J. Pharmacol. 2016, 173 (4), 649–665. https://doi.org/10.1111/bph.13139
11. Dheen S. T., Kaur C., Ling E. A. Microglial activation and its implications in the brain diseases. Curr. Med. Chem. 2007, 14 (11), 1189–1197 https://doi.org/10.2174/092986707780597961
12. Reznikov A. Ethics problems during conducting of experimental medical and biological researches on animals. Vestn. NAN Ukrainy. 2001, 1, 5–7. (In Russian).
13. Patent of Ukraine for invention No. 114580 dated June 26, 2017.
14. Cantinieaux B., Hariga C., Courtoy P., Hupin J., Fondu P. Staphylococcus aureus phagocytosis. A new cytofluorometic method using FITC and paraformaldehyde. J. Immunol. Meth. 1989, 121 (2), 203–208. https://doi.org/10.1016/0022-1759(89)90161-0
15. Woo J. M., Shin D. Y., Lee S. J., Joe Y., Zheng M., Yim J. H., Callaway Z., Chung H. T. Curcumin protects retinal pigment epithelial cells against oxidative stress via induction of heme oxygenase 1 expression and reduction of reactive oxygen. Mol. Vis. 2012, 8, 901–908.
16. Classen Andrea. Macrophage Activation: Classical Vs. Alternative. Macrophages and Dendritic Cells. Methods and Protocols. Reiner, Neil E (Ed.). New York: Humana press. 2009, 29–43.
17. Rebrova O. Y. Statistical analysis of medical data. Media sfera. 2002, 312. (In Russian).
18. Hesterberg R. S., Cleveland J. L., Epling-Burnette P. K. Role of Polyamines in Immune Cell Functions. Med. Sci. (Basel). 2018, 6 (1), 22. https://doi.org/10.3390/medsci6010022
19. Hussain T., Tan B., Ren W., Rahu N., Kalhoro D. H., Yin Y. Exploring polyamines: Functions in embryo/fetal development. Anim. Nutr. 2017, 3 (1), 7–10. https://doi.org/10.1016/j.aninu.2016.12.002
20. Martinez F. O., Sica A., Mantovani A., Locati M. Macrophage activation and polarization. Front. Biosci. 2008, 13, 453–461. https://doi.org/10.2741/2692
21. Calabrese V., Cornelius C., Rizzarelli E., Owen J. B., Dinkova-Kostova A. T., Butterfield D. A. Nitric oxide in cell survival: a janus molecule. Antioxid. Redox Signal. 2009, 11 (11), 2717–2739. https://doi.org/10.1089/ARS.2009.2721
22. Rath M., M?ller I., Kropf P., Closs E. I., Munder M. Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages. Front. Immunol. 2014, 5, 532. https://doi.org/10.3389/fimmu.2014.00532
23. Kvietys P. R., Granger D. N. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radic. Biol. Med. 2012, 52 (3), 556–592. https://doi.org/10.1016/j.freeradbiomed.2011.11.002
24. Yang Y., Zhu Y., Xi X. Anti-inflammatory and antitumor action of hydrogen via reactive oxygen species. Oncol. Lett. 2018, 16 (3), 2771–2776. https://doi.org/10.3892/ol.2018.9023
25. Forrester S. J., Kikuchi D. S., Hernandes M. S., Xu Q., Griendling K. K. Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ. Res. 2018, 122 (6), 877–902. https://doi.org/10.1161/CIRCRESAHA.117.311401
26. R?szer T. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators Inflamm. 2015, 2015, 816460. https://doi.org/10.1155/2015/816460
- Details
- Hits: 69
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 4, 2018
https://doi.org/10.15407/biotech11.04.073
Р. 73-83, Bibliography 25, English
Universal Decimal Classification: 604.6:577.218:575.113.3:582.926.2
THE EFFECT OF MONOCOT INTRONS ON TRANSGENE EXPRESSION IN Nicotiana GENUS PLANTS
I. O. Nitovska, M. Yu. Vasylenko, B. V. Morgun
Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine, Kiyv
The aim of the work was to study the effect of introns of the rice OsAct1 and the maize hsp70 genes on the transgene expression in Nicotiana plants in order to find out of their use in the testing of vectors containing these monocot introns. Next methods were used: Agrobacterium-mediated transformation of leaves of greenhouse N. benthamiana and N. tabacum plants by vector pCB271 containing the introns of cereals, light fluorescence microscopy and fluorimetry of GFP. The presence of transgenes was detected by polymerase chain reaction. The transient GFP expression was observed in infiltrated tissue of N. benthamiana. Transgenic plants of N. tabacum resistant to kanamycin were obtained. Fluorescence of GFP in extracts of some transgenic tobacco lines was shown. The impairment of the transgene expression in some N. tabacum transformants has been observed. So, transgenes, containing introns from the hsp70 corn or from the OsAct1 rice genes downstream the promotor, are expressed in Nicotiana plants. Thus, N. benthamiana and N. Tabacum plants can be used to test vectors constructs for cereals transformation. It has been shown that the monocot introns can have the negative impact on the transgene expression in Nicotiana plants.
Key words: . monocot introns, Nicotiana, Agrobacterium-mediated transformation, GFP.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. ISAAA Brief No. 52, 2016: Global Status of Commercialized Biotech/GM Crops. 2016.
2. McElroy D., Zhang W., Cao J., Wu R. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell. 1990, 2 (2),163–171. https://doi.org/10.1105/tpc.2.2.163
3. Peterhans A., Datta S. K., Datta K., Goodall G. J., Potrykus I., Paszkowski J. Recognition efficiency of Dicotyledoneae-specific promoter and RNA processing signals in rice. Mol. Gen. Genet. 1990, 222 (2–3), 361–368. https://doi.org/10.1007/BF00633841
4. Battraw M. J., Hall T. C. Histochemical analysis of CaMV 35S promoter-beta-glucuronidase gene expression in transgenic rice plants. Plant Mol. Biol. 1990, 15 (4), 527–538. https://doi.org/10.1007/BF00017828
5. Christensen A. H., Quail P. H. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transg. Res. 1996, 5, 213–218. https://doi.org/10.1007/BF01969712
6. Maas C., Laufs J., Grant S., Korfhage C., Werr W. The combination of a novel stimulatory element in the first exon of the maize shrunken-1 gene with the following intron enhances reporter gene expression 1000-fold. Plant Mol. Biol. 1991, 16, 199–207. https://doi.org/10.1007/BF00020552
7. He C., Lin Z., McElroy D., Wu R. Identification of a rice Actin 2 gene regulatory region for high-level expression of transgenes in monocots. Plant Biotechnol. Jl. 2009, 7 (3), 227–239. https://doi.org/10.1111/j.1467-7652.2008.00393.x
8. Lu A., Dichn S., Cigan M. Maize protein expression. Springer Science+Business Media, LLC 2015. Recent advancements in gene expression and enabling technologies in crop plants. P. 3–40.
9. McElroy D., Blowers A., Jenes B., Wu R. Construction of expression vectors based on the rice actin 1 (Act 1) 5’region for use in monocot transformation. Mol. Gen. Genet. 1991, 231, 150–160. https://doi.org/10.1007/BF00293832
10. Mascarenhas D., Mettler I. J., Pierce D. A., Lowe H. W. Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol. Biol. 1990, 15, 913–920. https://doi.org/10.1007/BF00039430
11. Morello L., Gian? S., Troina F., Breviario D. Testing the IMEter on rice introns and other aspects of intron-mediated enhancement of gene expression. J. Exp. Bot. 2011, 62, 533–544. https://doi.org/10.1093/jxb/erq273
12. Le Hir H., Nott A., Moor M. J. How introns influence and enhance eukaryotic gene exspression. Trends Biochem. Sci. 2003, 28, 215–220. https://doi.org/10.1016/S0968-0004(03)00052-5
13. Morita S., Tsukamoto S., Sakamoto A., Makino H., Nakauji E., Kaminaka H. Differences in intron-mediated enhancement of gene expression by the first intron of cytosolic superoxide dismutase gene from rice in monocot and dicot plants. Plant Biotechnol. 2012, 29, 115–119. https://doi.org/10.5511/plantbiotechnology.11.1207a
14. Murashige T., Skoog F. A Revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 1962, 15, 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
15. Marillonnet S., Thoeringer C., Kandzia R., Klimyuk V., Gleba Yu. Systemic Agrobacte rium tumefaciens mediated transfection of viral replicons for efficient transient expression in plants. Nat. Biotechnol. 2005, 23, 718–723. https://doi.org/10.1038/nbt1094
16. Voinnet O., Rivas S., Mestre P., Baulcombe D. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 2003, 33, 949–956. https://doi.org/10.1046/j.1365-313X.2003.01676.x
17. Koncz C., Schell J. The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 1986, 204, 383–396. https://doi.org/10.1007/BF00331014
18. Bertani G. Studies on Lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 1952, 62, 293–300.
19. Pang S.-Z., DeBoer D. L., Wan Y., Ye G., Layton J. G., Neher M. K., Armstrong C. L., Fry J. E., Hinchee M. A., Fromm M. E. An improved green fluorescent protein gene as a vital marker in plants. Plant Physiol. 1996, 112 (3), 893–900. https://doi.org/10.1104/pp.112.3.893
20. Curtis I. S., Davey M. R., Power J. B. Leaf disk transformation. Meth. Mol. Biol. 1995, 44, 59–70. https://doi.org/10.1385/0-89603-302-3:59
21. Stewart N. C. Jr., Via L. E. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR application. BioTechnique. 1993, 14 (5), 748–749.
22. Lipp Joаo K. H., Brown T. A. Enhanced transformation of tomato co-cultivated with Agrobacterium tumefaciens C58 C1 Rifr::pGSFR1161 in the presence of acetosyringone. Plant Cell Rep. 1993, 12, 422–425.
23. Cannell M. E., Doherty A., Lazzeri P. A., Barcelo P. A population of wheat and tritordeum transformants showing a high degree of marker gene stability and heritability. Theor. Appl. Genet. 1999, 99, 772–784. https://doi.org/10.1007/s001220051296
24. Brody J. R., Kern S. E. History and principles of conductive media for standard DNA electrophoresis. Anal. Biochem. 2004, 333, 1–13. https://doi.org/10.1016/j.ab.2004.05.054
25. Larkin G. F. Biometria. Moskva: Vysshaya shkola. 1990, 352 p. (In Russian).
- Details
- Hits: 69
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 4, 2018
https://doi.org/10.15407/biotech11.04.068
Р. 68-72, Bibliography 8, English
Universal Decimal Classification: 79.841.95:577.2.08:579.252.5:619:616.98-076
DEVELOPMENT OF RECOMBINANT POSITIVE CONTROL FOR Francisella tularensis DETECTION BY Q-PCR
O. B. Zlenko, A. P. Gerilovych
National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine” of the National Academy of Agrarian Sciences of Ukraine, Kharkiv
The aim of the work was to construct and test the recombinant positive control for F. tularensis detection by a real-time polymerase chain reaction (qPCR). The molecular TA-cloning of pTZ57_F/R plasmid ligated with tul4 gene PCR product into DH5α E. coli. The minimal detection level in qPCR was one copy number per reaction. The obtained positive control was highly sensitive, specific and safe qPCR in the laboratory tularemia diagnostics.
Key words: . ecombinant positive control, qPCR., tularemia, molecular cloning.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Hestvik G., Warns-Petit E., Smith L. A., Fox N. J., Uhlhorn H., Artois M., Hannant D., Hutchings M. R., Mattsson R., Yon L., Gavier-Widen D. The status of tularemia in Europe in a one-health context: a review. Epidemiol. Infect. 2015, V. 143, P. 2137–2160. https://doi.org/10.1017/S0950268814002398
2. Pearson A. In Zoonoses – Biology, Clinical, Practice and Public health control. Chapter 24. Tularemia. Oxford University Press. 1998, Р. 303–312. https://doi.org/10.1093/med/9780198570028.003.0031
3. Oyston P., Sjostedt A., Titball R. Tularemia: bioterrorism defense renews interest in Francisella tularensis. Nat. Rev. Microbiol. 2004, 2 (12), 967–978. https://doi.org/10.1038/nrmicro1045
4. World Organization for Animal Health. Manual of diagnostic tests and vaccines for terrestrial animals. Chapter 2.1.22. Tularemia. OIE. 2008, P. 361–366.
5. Buzard G., Baker D., Wolcott M. J., Norwood D. A., Dauphin L. A. Multi-platform comparison of ten commercial master mixes for probe-based real-time polymerase chain reaction detection of bioterrorism threat agents for surge preparedness. Forensic Sci. Int. 2012, 223 (1–3), 292–297. https://doi.org/10.1016/j.forsciint.2012.10.003
6. Mandel M., Higa A. Calcium-dependent bacteriophage DNA infection. J. Mol. Biol. 1970, 53 (1), 159–162. https://doi.org/10.1016/0022-2836(70)90051-3
7. Hightower J., Kracalik I. T., Vydayko N., Goodin D., Glass G., Blackburn J. K. Historical distribution and host-vector diversity of Francisella tularensis, the causative agent of tularemia, in Ukraine. Paras. Vectors. 2014, V. 7, P. 453–458. https://doi.org/10.1186/s13071-014-0453-2
8. Reintjes R., Dedushaj I., Gjini A., Rikke T., Cotter J. B., Lieftucht A., D’Ancona F., Dennis D. T., Kosoy M. A., Mulliqi-Osmani G., Grunow R., Kalaveshi A., Gashi L., Humolli I. Tularemia Outbreak Investigation in Kosovo: Case Control and Environmental Studies. Emerg. Infect. Dis. 2002, 8 (1), 69–73. https://doi.org/10.3201/eid0801.010131
- Details
- Hits: 100
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 4, 2018
https://doi.org/10.15407/biotech11.04.057
Р. 57-67, Bibliography 27, English
Universal Decimal Classification: 543.06 + 577.15 + 543.553
APPLICATION OF GLUTAMATE-SENSITIVE BIOSENSOR FOR ANALYSIS OF FOODSTUFF
Kucherenko D. Yu.1, Kucherenko I. S.2, Soldatkin O. O.1, 2, Soldatkin A. P.1, 2
1Institute of High Technologies, Taras Shevchenko Kyiv National University
2Laboratory of Biomolecular Electronics, Institute of Molecular Biology and Genetics, NAS of Ukraine
The aim of the work were the optimization of an amperometric glutamate-sensitive biosensor and its utilization for the determination of the glutamate concentrations in food samples. Amperometric method of measurements was used. The biosensor was based on immobilized glutamate oxidase and platinum disc electrode. The biosensor was connected to the working cell with auxiliary (platinum wire) and reference (Ag/AgCl) electrodes. The biosensor exhibited high sensitivity to glutamate, duration of one analysis was about 5 min. An influence of the ionic strength, pH, and buffer capacity on the biosensor operation was investigated. The sensitivity of biosensor to various possible interfering substances, including amino acids, was studied; high selectivity to glutamate was shown. The reproducibility of analysis of food samples and an impact of sample dilution was evaluated. Glutamate concentrations in different sauces and seasonings were measured by the developed biosensor; the results correlated well with those obtained by the spectrophotometric method (R2 = 0,988). Thus, the amperometric biosensor for glutamate determination was successfully optimized and used for measurement of glutamate concentrations in sauces and seasonings.
Key words: amperometric biosensor, glutamate oxidase, poly(phenylenediamine), glutamate, food samples.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Raiten D. J., Talbot J. M., Fisher K. D. Executive Summary from the Report: Analysis of Adverse Reactions to Monosodium Glutamate (MSG). J. Nutr. 1995, 125(11), 2891S-2906S. https://doi.org/10.1093/jn/125.11.2891S
2. Ghobadi S., Gorton L. Bienzyme Carbon Paste Electrodes for L-Glutamate Determination. Curr. Sep. 1996, 4, 94–102.
3. Chapman J., Zhou M. Microplate-based fluorometric methods for the enzymatic determination of l-glutamate: application in measuring l-glutamate in food samples. Anal. Chim. Acta. 1999, 402 (1–2), 47–52. https://doi.org/10.1016/S0003-2670(99)00533-4
4. Meldrum B. S. Glutamate as a Neurotransmitter in the Brain: Review of Physiology and Pathology. J. Nutr. 2000, 130(4), 1007S-1015S. https://doi.org/10.1093/jn/130.4.1007S
5. Church W. H., Shawn Lee C., Dranchak K. M. Capillary electrophoresis of glutamate and aspartate in rat brain dialysate Improvements in detection and analysis time using cyclodextrins. J. Chromatogr. B. Biomed. Sci. Appl. 1997, 700 (1–2), 67–75. https://doi.org/10.1016/S0378-4347(97)00314-9
6. G?nd?z T., G?nd?z N., K?l?? E., K?seo?lu F., ?ztas S. G. Titrations in non-aqueous media. Part X. Potentiometric and conductimetric titrations of amino acids with tetrabutylammonium hydroxide in pyridine and acetonitrile solvents. Analyst. 1988,113 (5), 715–719. https://doi.org/10.1039/AN9881300715
7. Kondrat R. W., Kanamori K., Ross B. D. In vivo microdialysis and gas-chromatography/massspectrometry for 13C-enrichment measurement of extracellular glutamate in rat brain. J. Neurosci. Meth. 2002, 120 (2), 179–192. https://doi.org/10.1016/S0165-0270(02)00201-7
8. Valero E., Garcia-Carmona F. A Continuous Spectrophotometric Method Based on Enzymatic Cycling for Determiningl-Glutamate. Anal. Biochem. 1998, 259 (2), 265–271. https://doi.org/10.1006/abio.1998.2650
9. Murachi T., Tabata M. Use of A Bioreactor Consisting of Sequentially Aligned L-Glutamate Dehydrogenase and L-Glutamate Oxidase for the Determination of Ammonia by Chemiluminescence. Biotechnol. Appl. Biochem. 1987, 9 (4), 303–309. https://doi.org/10.1111/j.1470-8744.1987.tb00479.x
10. Lateef M., Siddiqui K., Saleem M., Iqbal L. Estimation of Monosodium Glutamate by Modified HPLC Method in Various Pakistani Spices Formula. J. Chem. Soc. Pak. 2012, 34 (1), 39–42.
11. Shi R., Stein K. Flow injection methods for determination of L-glutamate using glutamate decarboxylase and glutamate dehydrogenase reactors with spectrophotometric detection. Analyst. 1996, 121 (9), 1305. https://doi.org/10.1039/an9962101305
12. Villarta R. L., Cunningham D. D., Guilbault G. G. Amperometric enzyme electrodes for the determination of l-glutamate. Talanta. 1991, 38 (1), 49–55. https://doi.org/10.1016/0039-9140(91)80008-Nhttps://doi.org/10.1016/0039-9140(91)80008-Nhttps://doi.org/10.1016/0039-9140(91)80008-N
13. Liu Z., Niwa O., Horiuchi T., Kurita R., Torimitsu K. NADH and glutamate on-line sensors using Os-gel-HRP/GC electrodes modified with NADH oxidase and glutamate dehydrogenase. Biosens. Bioelectron. 1999, 14 (7), 631–638. https://doi.org/10.1016/S0956-5663(99)00041-Xhttps://doi.org/10.1016/S0956-5663(99)00041-Xhttps://doi.org/10.1016/S0956-5663(99)00041-X
14. Ling D., Wu G., Wang C., Wang F., Song G. The preparation and characterization of an immobilized l-glutamic decarboxylase and its application for determination of l-glutamic acid. Enzyme Microb. Technol. 2000, 27 (7), 516–521. https://doi.org/10.1016/S0141-0229(00)00242-8
15. Kusakabe H., Midorikawa Y., Fujishima T. Methods for Determining L-Glutamate in Soy Sauce with L-Glutamate Oxidase. Agric. Biol. Chem. 1984, 48 (1), 181–184. https://doi.org/10.1080/00021369.1984.10866090
16. Ye B.-C., Li Q.-S., Li Y.-R., Li X.-B., Yu J.-T. L-Glutamate biosensor using a novel l-glutamate oxidase and its application to flow injection analysis system. J. Biotechnol. 1995, 42 (1), 45–52. https://doi.org/10.1016/0168-1656(95)00058-X
17. Almeida N. F., Mulchandani A. K. A mediated amperometric enzyme electrode using tetrathiafulvalene and l-glutamate oxidase for the determination of l-glutamic acid. Anal. Chim. Acta. 1993, 282 (2), 353–361. https://doi.org/10.1016/0003-2670(93)80221-6
18. Dremel B. A. A., Schmid R. D., Wolfbeis O. S. Comparison of two fibre-optic l-glutamate biosensors based on the detection of oxygen or carbon dioxide, and their application in combination with flow-injection analysis to the determination of glutamate. Anal. Chim. Acta. 1991, 248 (2), 351–359. https://doi.org/10.1016/S0003-2670(00)84651-6
19. Muslim N. Z. M., Ahmad M., Heng L. Y., Saad B. Optical biosensor test strip for the screening and direct determination of l-glutamate in food samples. Sens. Actuators B. Chem. 2012, 161 (1), 493–497. https://doi.org/10.1016/j.snb.2011.10.066
20. Mizutani F., Sato Y., Hirata Y., Yabuki S. High-throughput flow-injection analysis of glucose and glutamate in food and biological samples by using enzyme/polyion complexbilayer membrane-based electrodes as the detectors. Biosens. Bioelectron. 1998, 13 (7–8), 809–815. https://doi.org/10.1016/S0956-5663(98)00046-3
21. Isa I. M., Ab Ghani S. A non-plasticized chitosan based solid state electrode for flow injection analysis of glutamate in food samples. Food. Chem. 2009, 112 (3), 756–759. https://doi.org/10.1016/j.foodchem.2008.06.043
22. Borisova T., Kucherenko D., Soldatkin O., Kucherenko I., Pastukhov A., Nazarova A., Galkin M., Borysov A., Krisanova N., Soldatkin A., El’skaya A. An amperometric glutamate biosensor for monitoring glutamate release from brain nerve terminals and in blood plasma. Anal. Chim. Acta. 2018, 1022, 113–123. https://doi.org/10.1016/j.aca.2018.03.015
23. Soldatkin O., Nazarova A., Krisanova N., Borуsov A., Kucherenko D., Kucherenko I., Pozdnyakova N., Soldatkin A., Borisova T. Monitoring of the velocity of highaffinity glutamate uptake by isolated brain nerve terminals using amperometric glutamate biosensor. Talanta. 2015, 135, 67–74. https://doi.org/10.1016/j.talanta.2014.12.031
24. Killoran S. J., O’Neill R. D. Characterization of permselective coatings electrosynthesized on Pt–Ir from the three phenylenediamine isomers for biosensor applications. Electrochim. Acta. 2008, 53(24), 7303–7312. https://doi.org/10.1016/j.electacta.2008.03.076.
25. Kucherenko I. S., Didukh D. Y., Soldatkin O. O., Soldatkin A. P. Amperometric biosensor system for simultaneous determination of adenosine-5’-triphosphate and glucose. Anal. Chem. 2014, 86 (11), 5455–5462. https://doi.org/10.1021/ac5006553
26. Soldatkina O. V., Kucherenko I. S., Pye shkova V. M., Alekseev S. A., Soldatkin O. O., Dzyadevych S. V. Improvement of amperometric transducer selectivity using nanosized phenylenediamine films. Nanosc. Res. Lett. 2017, 12 (1), 594. https://doi.org/10.1186/s11671-017-2353-9
27. Kwong A. W. K., Gr?ndig B., Hu J., Renneberg R. Comparative study of hydrogel-immobilized l-glutamate oxidases for a novel thick-film biosensor and its application in food samples. Biotechnol. Lett. 2000, 22 (4), 267–272. https://doi.org/10.1023/A:1005694704872
- Details
- Hits: 81
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 4, 2018
https://doi.org/10.15407/biotech11.04.050
Р. 50-56, Bibliography 31, English
Universal Decimal Classification: 577.29:661.8
O. V. Shtapenko1, I. I. Gevkan1, Yu. I. Slyvchyk1, Ye. O. Dzen1, V. Ya. Syrvatka2, N. M. Matvienko3
1Institute of Animal Biology of the National Academy of Agrarian Sciences of Ukraine, Lviv
2Ivan Franko National University of Lviv, Ukraine
3 Institute of Fisheries of the National Academy of Agrarian Sciences of Ukraine, Kyiv
The purpose of this study was to investigate the effect of supplementation with organic zinc, manganese and chromium in the form of liposomal complex on the fertilizing ability and the level of antioxidant responses of female rabbits. Feeding of female rabbits with supplementation of organic forms of trace elements prior to insemination resulted in increase the numbers of corpora lutea, implantation and living fetuses compared to the control group. Moreover, there were the 4.4% and 1.7% decrease in pre- and post-implantation losses in animals receiving the organic microelements prior to insemination, respectively. The level of thiobarbituric-acid-reacting substances in ovary of experimental group was significantly higher (P ≤ 0.05) compare to the control group, while the level of lipid hydroperoxides in experimental group was decreased. In the uterus of rabbits after addition organic compound of trace elements significantly decreasing the thiobarbituric-acid-reacting substances level was by compare to the control animals (P ≤ 0.001). The level of the superoxide dismutase activity in uterus and ovary of female rabbits in the experimental group were significantly higher than in the control group (P ≤ 0,01). Our studies indicated that supplementation organic microelements in liposomal form to the basal diet for 2 weeks before insemination had a beneficial effect on the metabolism intensity and maintaining antioxidant-prooxidant balance in reproductive organs that improve fertilization and mbryo implantation.
Key words:. organic forms of trace elements, female rabbits, antioxidant reactions.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Fortun-Lamothe L. Energy balance and reproductive performance in rabbit does. J. Anim. Reprod. Sci. 2006, 93 (1–2), 1–15. https://doi.org/10.1016/j.anireprosci.2005.06.009
2. Marai M., Rashwan A. A. Rabbits behaviour under modern commercial production conditions. Arch. Tierz., Dummerstorf. 2003, 46 (4), 357–376.
3. Manal A. F., Tony M. A., Ezzo O. H. Feed restriction of pregnant nulliparous rabbit does: consequences on reproductive performance and maternal behaviour. Anim. Reprod. Sci. 2010, 120, 179–186. https://doi.org/10.1016/j.anireprosci.2010.03.010
4. Nafeaa A., Ahmed S. A. E., Hallah S. F. Effect of feed restriction during pregnancy on performance and productivity of New Zealand white rabbit does. Veter. Med. Intern. 2011, ID 839737, 5 p.
5. Goliomytis M., Skoupa E.-P., Konga A., Symeon G. K., Charismiadou M. A., Deligeorgis S. G. Influence of gestational maternal feed restriction on growth performance and meat quality of rabbit offsprings. Animal. 2016, 10 (1), 157–162. https://doi.org/10.1017/S1751731115001871
6. Hostetler C. E., Kincaid R. L., Mirando M. A. The role of essential trace elements in embryonic and fetal development in livestock. The Veterinary J. 2003, 166, 125–139. https://doi.org/10.1016/S1090-0233(02)00310-6
7. Mahan D. C., Vallet J. L. Vitamin and mineral transfer during fetal development and the early postnatal period in pigs. J. Anim. Sci. 1997, 75, 2731–2738. https://doi.org/10.2527/1997.75102731x
8. Terrin G., Canani R. B., Chiara D. M., Pietravalle A., Aleandri V., Conte F., Curtis M. D. Zinc in early life: a key element in the fetus and preterm neonate. Nutrients. 2015, 7 (12), 10427–10446. https://doi.org/10.3390/nu7125542
9. Johnston L., Shurson J., Whitney M. Nutritional effects on fetal imprinting in swine. Proceeding of 2008 Minnesota Nutrition Conference, Owatonna, MN. 2008, 207–222.
10. Aurousseau B., Gruffat D., Durand D. Gestation linked radical oxygen species fluxes and vitamins and trace mineral deficiencies in the ruminant. Reprod. Nutr. Dev. 2006, 46 (6), 601–620. https://doi.org/10.1051/rnd:2006045
11. Kamyshnikov V. S. Reference book on clinic and biochemical researches and laboratory diagnostics. MEDpress-inform, Moskva. 2004. (In Russian).
12. Deiana L., Carru C., Pes G., Tadolini B. Spectrophotometric measurement of hydroperoxides at increased sensitivity by oxidation of Fe2+ in the presence of xylenol orange. Free Radic. Res. 1999, 31 (3), 237–244. https://doi.org/10.1080/10715769900300801
13. Chiang S. P., Lowry O. H., Senturia B. H. Micro-chemical studies on normal cerumen. II. The percentage of lipid and protein in casual and fresh cerumen. J. Invest. Dermatol. 1957, 28 (1), 63–68. https://doi.org/10.1038/jid.1957.7
14. Kostiuk V. A., Potapovich A. I., Kovaleva Zh. V. A simple and sensitive method of determination of superoxide dismutase activity based on the reaction of quercetin oxidation. Vopr. Med. Khim. 1990, 36 (2), 88–91. (Article in Russian, abstract in English).
15. Koroliuk M. A., Ivanova L. I., Ma?orova I. G., Tokarev V. E. A method of determining catalase activity. Lab. Delo. 1988, 1, 16–19. (In Russian).
16. Stanton T. L., Whittier J. C., Geary T. W., Kimberling C. V., Johnson A. B. Effects of trace mineral supplementation on cow-calf performance, reproduction, and immune function. Prof. Anim. Sci. 2000, 16, 121–127. https://doi.org/10.15232/S1080-7446(15)31674-0
17. Phiri E. C. J. H., Nkya R., Pereka A. E., Mgasa M. N., Larsen T. The effects of calcium, phosphorus and zinc supplementation on reproductive performance of crossbred dairy cows in Tanzania. Trop. Anim. Health Prod. 2007, 39, 317–323. https://doi.org/10.1007/s11250-007-9016-2
18. Tang Xiao-lin, Ding Lin-lin, YANG Yang, X. U. Qing-song1, L. I. Shuguang1, Wang Xiu-Wu. Effect of chitooligosaccharide-zinc on growth and reproduction performance in female kunming mice. Acta Nutrimenta Sinica. 2013, N 3.
19. Adam B., Malatyalioglu E., Alvur M., Talu C. Magnesium, zinc and iron levels in preeclampsia. J. Matern. Fetal Med. 2001, 10, 246–250. https://doi.org/10.1080/jmf.10.4.246.250-14
20. Srivastava S., Mehrotra P. K., Srivastava S. P., Siddiqui M. K. Some essential elements in maternal and cord blood in relation to birth weight and gestational age of the baby. Biol. Trace Elem. Res. 2001, 86 (2), 97–105.
21. Diaz E., Halhali A., Luna C., Diaz L., Avila E., Larrea F. Newborn birth weight correlates with placental zinc, umbilical insulin-like growth factor I, and leptin levels in preeclampsia. Arch. Med. Res. 2002, 33, 40–47. https://doi.org/10.1016/S0188-4409(01)00364-2
22. Mahomed K., Bhutta Z., Middleton P. Zinc supplementation for improving pregnancy and infant outcome. Cochrane Database Syst. Rev. 2007, 2, CD000230. https://doi.org/10.1002/14651858.CD000230.pub3
23. Reddi A. R., Jensen L. T., Naran U. A., Rosenfeld L., Leung E., Shah R., Culotta V. C. The overlapping roles of manganese and Cu/ZnSOD in oxidative stress protection. Free Radical. Biol. Med. 2009, 46, 154–162. https://doi.org/10.1016/j.freeradbiomed.2008.09.032
24. Ramos R. S., Oliveira M. L., Izaguirry A. P., Vargas L. M., Soares M. B., Mesquite F. S.,Santos F. W., Binelli M. The periovulatory endocrine milieu affects the uterine redox environment in beef cows. Reprod. Biol. Endocrinol. 2015, 13, 39. https://doi.org/10.1186/s12958-015-0036-x
25. Bansal A. K. Manganese as an antioxidant in semen. Iran. J. Appl. Anim. Sci. 2013, 3 (2), 217–221.
26. Anand R. J. K., Kanwar U. Role of same trace metal ions in placental membrane lipid peroxidation. Biol. Trace. Elem. Res. 2001, 82, 61–75. https://doi.org/10.1385/BTER:82:1-3:061
27. Swati S., Sarvesh K., Saurabh S. Free radicals and antioxidants enzymes status in normal pregnant women. Sch. J. App. Med. Sci. 2015, 3 (4B), 1703–1706.
28. Mistry H. D., Williams P. J. The importance of antioxidant micronutrients in pregnancy. Oxid. Med. Cell. Longevity. 2011, Article ID 841749, 12 pages. https://doi.org/10.1155/2011/8417492011
29. Haddad A. S., Subbiah V., Lichtin A. E. Hypocupremia and bone marrow failure. Haematology. 2008, 93, 1–5. https://doi:10.3324/haematol.12121
30. Tian X., Diaz F. J. Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development. Devel. Biol. 2013, 376, 51–61. https://doi.org/10.1016/j.ydbio.2013.01.015
31. Tian X., Diaz F. J. Zinc depletion causes multiple defects in ovarian function during the periovulatory period in mice. Endocrinology. 2012, 153, 873–886. https://doi.org/10.1210/en.2011-1599