- Details
- Hits: 67
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 1, 2018
Р. 5-24, Bibliography 121, English
Universal Decimal Classification: 579.64:581.1
https://doi.org/10.15407/biotech11.01.005
MICROBIAL SYNTHESIS OF PHYTOHORMONES
T. P. Pirog 1, 2, G. O. Iutynska 1, N. O. Leonova 1, K. A. Beregova 2, T. A. Shevchuk 1
1 Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv
2 National University of Food Technologies, Kyiv, Ukraine
The aim of the review was to analyze current literature data and the results of own studies on the synthesis of auxins, cytokinins, and gibberellins by plant-associated microorganisms (living in rhizosphere, endophytic, nitrogen-fixing, and phytopathogenic), and by those not involved in symbiotic interactions. Many microorganisms can generate phytohormones, and microbial synthesis of indole-3-acetic acid can be enhanced which can be used in producing it instead of extracting it from plants or by chemical synthesis. Recent progress in intensifying the synthesis of gibberellic acid in deep and solid-phase producer cultivation allows substantially reducing the prime cost of biotechnological production of that phytohormone. The ability of microorganisms to simultaneously synthesize phytohormones and other biologically active compounds with antimicrobial, nematocidal, and other various effects enables creating complex polyfunctional microbial preparations with various biological properties for use in crop production to stimulate plant growth and pest control.
Key words: phytohormones, microbial synthesis, complex microbial preparations
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Bioregulation of microbial-plant systems (Ed. G.O. Iutynska, S.P. Ponomarenko). Kyiv: Nichlava, 2010. 464 p. (In Russian).
2. Singh R., Kumar M., Mittal A., Mehta P. K. Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech. 2017, 7 (1), 15. https://doi.org/10.1007/s13205-016-0586-4
3. Lale G., Jogdand V. V., Gadre R. V. Morphological mutants of Gibberella fujikuroi for enhanced production of gibberellic acid. J. Appl. Microbiol. 2006, 100 (1), 65–72.
4. Rodrigues C., Vandenberghe L.P.S., Teodoro J., Fraron Oss J., Pandey A., Soccol C. R. A new alternative to produce gibberellic acid by solid state fermentation. Braz. Arch. Biol. Technol. 2009, V. 52 (special), P. 181–188.
5. Rangaswamy V. Improved production ofgibberellic acid by Fusarium moniliforme.J. Microbiol. Res. 2012, 2 (3), 51–55. doi:10.5923/j.microbiology. 20120203.02.
6. Shi T.Q., Peng H., Zeng S.Y., Ji R.Y., Shi K.,Huang H., Ji X.J. Microbial production ofplant hormones: Opportunities and challenges.Bioengineered. 2017, 8(2), 124–128. https://doi.org/10.1080/21655979.2016.1212138
7. Ludwig-M?ller J. Plants and endophytes: equalpartners in secondary metabolite production?Biotechnol. Lett. 2015, 37(7), 1325–1334. https://doi.org/10.1007/s10529-015-1814-4
8. Boivin S., Fonouni-Farde C., Frugier F. How auxinand cytokinin phytohormones modulate rootmicrobe interactions. Front. Plant. Sci. 2016, V. 7, P. 1240. https://doi.org/10.3389/fpls.2016.01240
9. Radhakrishnan R., Hashem A., Abd Allah E.F.Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol. 2017, V. 8, P. 667. https://doi.org/10.3389/fphys.2017.00667
10. Vandeputte O., Oden S., Mol A., Vereecke D., Goethals K., El Jaziri M., Prinsen E. Biosynthesis of auxin by the gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues. Appl. Environ. Microbiol. 2005, 71 (3), 1169–1177.
11. Ahmed A., Hasnain S. Auxins as one of thefactors of plant growth improvement byplant growth promoting rhizobacteria. Pol. J. Microbiol. 2014, 63 (3), 261–266.
12. Singh S. A review on possible elicitormolecules of cyanobacteria: their role inimproving plant growth and providingtolerance against biotic or abiotic stress. J.Appl. Microbiol. 2014, 117(5), 1221–1244. https://doi.org/10.1111/jam.12612
13. Dourado M. N., Camargo Neves A.A.,Santos D. S., Ara?jo W. L. Biotechnological and agronomic potential of endophytic pinkpigmented methylotrophic Methylobacterium spp. Biomed. Res. Int. 2015, 2015:909016. https://doi.org/10.1155/2015/909016
14. Lu Y., Xu J. Phytohormones in microalgae: a new opportunity for microalgal bio tech nology? Trends Plant. Sci. 2015, 20 (5), 273–282.
15. Rashad F. M., Fathy H. M., El-Zayat A. S., Elghonaimy A. M. Isolation and characte ri zation of multifunctional Streptomyces species with antimicrobial, nematicidal and phytohormone activities from marine environments in Egypt. Microbiol. Res. 2015, V. 175, P. 34–47. https://doi.org/10.1016/j.micres.2015.03.002
16. Samanovic M. I., Darwin K. H. Cytokinins beyond plants: synthesis by Mycobacterium Reviews 19 tuberculosis. Microb. Cell. 2015, 2 (5), 168–170. https://doi.org/10.15698/mic2015.05.203
17. Liu Y. Y., Chen H. W., Chou J. Y. Variation in indole-3-acetic acid production by wild Saccharomyces cerevisiae and S. paradoxus strains from diverse ecological sources and its effect on growth. PLoS One. 2016, 11 (8), e0160524. https://doi.org/10.1371/journal.pone.0160524
18. Gro?kinsky D. K., Tafner R., Moreno M. V., Stenglein S. A., Garc?a de Salamone I. E., Nelson L. M., Nov?k O., Strnad M., van der Graaff E., Roitsch T. Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci Rep. 2016, V. 6, P. 23310. https://doi.org/10.1038/srep23310
19. Boudjeko T., Tchinda R. A., Zitouni M., Nana J. A., Lerat S., Beaulieu C. Streptomyces cameroonensis sp. nov., a geldanamycin producer that promotes Theobroma cacao growth. Microbes Environ. 2017, 32 (1), 24–31. https://doi.org/10.1264/jsme2.ME16095
20. Hramtsova E. A., Zhardetskii S. S., Mak simova N. P. Synthesis of indole-3-acetic acid by rhizosphere bacteria Pseudomonas mendocina. Characterization of regulatory mutants. Newsletter of Bela rusian State University. Ser. 2. 2006, V. 2, P. 69–73. http://elib.bsu. by/bitstream/123456789/23868/2/69-73. pdf. (In Russian).
21. Nutaratat P., Amsri W., Srisuk N., Arunrattiyakorn P., Limtong S. Indole-3- acetic acid production by newly isolated red yeast Rhodosporidium paludigenum. J. Gen. Appl. Microbiol. 2015, 61(1), 1–9. https://doi.org/10.2323/jgam.61.1
22. Dimova S.B. Phytohormones – microbial waste products. Methods of their determination. Agricultural microbiology. 2013, V. 18, P. 159–185. (In Ukraininan).
23. Streletskii R.A. Ecological and taxonomic aspects of the distribution of phytohormonal activity among yeast. Dissertation for the degree of Candidate of Biological Sciences in speciality 03.02.03 (microbiology) and 03.02.08 (ecology). Moskva: 2017, 132 с. (In Russian).
24. Gopalakrishnan S., Sathya A., Vijayabharathi R., Varshney R. K., Gowda C. L., Krishnamurthy L. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech. 2015, 5 (4), 355–377.https://doi.org/10.1007/s13205-014-0241-x
25. Liu Y., Shi Z., Yao L., Yue H., Li H., Li C. Effect of IAA produced by Klebsiella oxytoca Rs-5 on cotton growth under salt stress. J. Gen. Appl. Microbiol. 2013, 59 (1), 59–65.
26. Kisiala A., Laffont C., Emery R. J., Frugier F. Bioactive cytokinins are selectively secreted by Sinorhizobium meliloti nodulating and nonnodulating strains. Mol. Plant Microbe Interact. 2013, 26 (10), 1225–1231. https://doi.org/10.1094/MPMI-02-13-0054-R
27. Brader G., Compant S., Mitter B., Trognitz F., Sessitsch A. Metabolic potential of endophy tic bacteria. Curr. Opin. Biotechnol. 2014, V. 27, P. 30–37. https://doi.org/10.1016/j.copbio.2013.09.012
28. Contreras-Cornejo H.A., Mac?as-Rodr?guez L., del-Val E., Larsen J. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol. Ecol. 2016, 92(4), fiw036.https://doi.org/10.1093/femsec/fiw036
29. Grady E. N., MacDonald J., Liu L., Richman A., Yuan Z. C. Current knowledge and perspectives of Paenibacillus: a review. Microb. Cell Fact. 2016, 15(1), 203. https://doi.org/10.1186/s12934-016-0603-7
30. Pertry I., V?clav?kov? K., Gemrotov? M., Sp?chal L., Galuszka P., Depuydt S., Tem merman W., Stes E., De Keyser A., Riefler M., Biondi S., Nov?k O., Schm?lling T., Strnad M., Tarkowski P., Holsters M., Vereecke D. Rhodococcus fascians impacts plant development through the dynamic fasmediated production of a cytokinin mix. Mol. Plant Microbe Interact. 2010, 23(9), 1164– 1174. https://doi.org/10.1094/MPMI-23-9-1164
31. Kazan K., Lyons R. Intervention of phytohormone pathways by pathogen effectors. Plant Cell. 2014, 26(6), 2285–2309.
32. Nafisi M., Fimognari L., Sakuragi Y. Interplays between the cell wall and phytohormones in interaction between plants and necrotrophic pathogens. Phytochemistry. 2015, V. 112, P. 63–71. doi: 10.1016/j. phytochem.2014.11.008.
33. Fu S. F., Wei J. Y., Chen H. W., Liu Y. Y., Lu H. Y., Chou J. Y. Indole-3-acetic acid: a widespread physiological code in interactions of fungi with other organisms. Plant Signal. Behav. 2015, 10 (8), e1048052. https://doi.org/10.1080/15592324.2015.1048052
34. Ma K. W., Ma W. Phytohormone pathways as targets of pathogens to facilitate infection. Plant Mol. Biol. 2016, 91(6), 713–725.https://doi.org/10.1007/s11103-016-0452-0
35. Chanclud E., Kisiala A., Emery N. R., Chalvon V., Ducasse A., Romiti-Michel C., Gravot A., Kroj T., Morel J. B. Cytokinin production by the rice blast fungus is a pivotal requirement for full virulence. PLoS Pathog. 2016, 12 (2), e1005457. https://doi.org/10.1371/journal.ppat.1005457
36. Trd? L., Bare?ov? M., ?a?ek V., Nov?kov? M., Zahajsk? L., Dobrev P. I., Motyka V., Burketov? L. Cytokinin metabolism of pathogenic fungus Leptosphaeria maculans involves isopentenyltransferase, adenosine kinase and cytokinin oxidase/dehydrogenase. Front. Microbiol. 2017, V. 8, P. 1374. doi: 10.3389/ fmicb.2017.01374.
37. Glick B. R. Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo). 2012, 2012:963401. https://doi.org/10.6064/2012/963401
38. Santoyo G., Moreno-Hagelsieb G., Orozco- Mosqueda Mdel C., Glick B. R. Plant growthpromoting bacterial endophytes. Microbiol. Res. 2016, V. 183, P. 92–99. doi: 10.1016/j. micres.2015.11.008.
39. Tsavkelova E. A., Klimova S. Y., Cherdyntseva T. A., Netrusov A. I. Microbial producers of plant growth stimulators and their practical use: a review. Appl. Biochem. Microbiol. 2006, 42 (2), 117–126. doi: org/10.1134/ S0003683806020013.
40. Patten C. L., Glick B. R. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 1996, V. 42, P. 207–220.
41. Vejan P., Abdullah R., Khadiran T., Ismail S., Nasrulhaq Boyce A. Role of plant frowth promoting rhizobacteria in agri cultural sustainability — a review. Molecules. 2016, 21(5), E573. https://doi.org/10.3390/molecules21050573
42. Majeed A., Abbasi M. K., Hameed S., Imran A., Rahim N. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front. Microbiol. 2015, V. 6, P. 198. https://doi.org/10.3389/fmicb.2015.00198
43. Vessey K. J. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 2003, V. 255, P. 571–586.
44. Gray E. J., Smith D. L. Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol. Biochem. 2005, V. 37, 395–412.
45. Prinsen E., Chauvaux N., Schmidt J., John M., Wieneke U., De Greef J., Schell J., Van Onckelen H. Stimulation of indole-3-acetic acid production in Rhizobium by flavonoids. FEBS Lett. 1991, 282(1), 53–55.
46. Shao J., Li S., Zhang N., Cui X., Zhou X., Zhang G., Shen Q., Zhang R. Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9. Microb. Cell Fact. 2015, V. 14, P. 130. https://doi.org/10.1186/s12934-015-0323-4
47. Dutta J., Handique P.J., Thakur D. Assessment of culturable tea rhizobacteria isolated from tea estates of Assam, India for growth promotion in commercial tea cultivars. Front. Microbiol. 2015, V. 6, P. 1252. https://doi.org/10.3389/fmicb.2015.01252
48. Giassi V., Kiritani C., Kupper K. C. Bacteria as growth-promoting agents for citrus rootstocks. Microbiol Res. 2016, V. 190, P. 46–54. https://doi.org/10.1016/j.micres.2015.12.006
49. Liu Y., Chen L., Zhang N., Li Z., Zhang G., Xu Y., Shen Q., Zhang R. Plant-microbe communication enhances auxin biosynthesis by a root-associated bacterium, Bacillus amyloliquefaciens SQR9. Mol. Plant Microbe Interact. 2016, 29(4), 324–330. doi:10.1094/ MPMI-10-15-0239-R.
50. Egamberdieva D. Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol. Plant. 2009, 31(4), 861–864.
51. Sachdev D. P., Chaudhari H. G., Kasture V. M., Dhavale D. D., Chopade B. A. Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Indian J. Exp. Biol. 2009, 47 (12), 993–1000.
52. Celloto V. R., Oliveira A. J., Gon?alves J. E., Watanabe C. S., Matioli G., Gon?alves R. A. Biosynthesis of indole-3-acetic acid by new Klebsiella oxytoca free and immobilized cells on inorganic matrices. The Sci. World J. 2012, V. 2012, P. 495970. https://doi.org/10.1100/2012/495970
53. Shokri D., Emtiazi G. Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by Taguchi design. Curr. Microbiol. 2010, 61(3), 217–225. https://doi.org/10.1007/s00284-010-9600-y
54. Leonova N. O., Dankevych L. A., Dragovoz I. V., Patykа V. F., Iutynska G. O. Synthesis of extracellular phytohormones-stimulators by nodule bacteria and bacteria phytopathogenic for soybean. Reports NAAS Ukraine. 2013, V. 3, P. 165–171. (In Ukrainian).
55. Kielak A. M., Cipriano M. A., Kuramae E. E. Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria. Arch. Microbiol. 2016, 198 (10), 987–993. https://doi.org/10.1007/s00203-016-1260-2
56. Khan A. L., Halo B.A., Elyassi A., Ali S., Al- Hoshi K., Hussian J., Al-Harrasi A., Lee I. J. Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electr. J. Biotechnol. 2016, V. 21, P. 58–64.
57. Weselowski B., Nathoo N., Eastman A. W., MacDonald J., Yuan Z. C. Isolation, iden ti fication and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. BMC Microbiol. 2016, 16 (1), 244. doi: 10.1186/ s12866-016-0860-y.
58. Palaniyandi S. A., Yang S. H., Zhang L., Suh J. W. Effects of actinobacteria on plant disease suppression and growth promotion. Appl. Microbiol. Biotechnol. 2013, 97 (22), 9621– 9636. https://doi.org/10.1007/s00253-013-5206-1
59. Kaur T., Manhas R. K. Antifungal, insecticidal, and plant growth promoting potential of Streptomyces hydrogenans DH16. J. Basic Microbiol. 2014, 54 (11), 1175–1185. https://doi.org/10.1002/jobm.201300086
60. Hamedi J., Mohammadipanah F. Biotech nological application and taxonomical distribution of plant growth promoting actinobacteria. J. Ind. Microbiol. Biotechnol. Reviews 21 2015, 42(2), 157-171. doi:10.1007/s10295- 014-1537-x.
61. Golinska P., Wypij M., Agarkar G., Rathod D., Dahm H., Rai M. Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek. 2015, 108 (2), 267–289. https://doi.org/10.1007/s10482-015-0502-7
62. Andreolli M., Lampis S., Zapparoli G., Angelini E., Vallini G. Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control. Microbiol. Res. 2016, V. 183, P. 42–52. doi: 10.1016/j. micres.2015.11.009.
63. Viaene T., Langendries S., Beirinckx S., Maes M., Goormachtig S. Streptomyces as a plant’s best friend? FEMS Microbiol. Ecol. 2016, 92 (8). https://doi.org/10.1093/femsec/fiw119
64. Tchinda R. A., Boudjeko T., Simao-Beaunoir A. M., Lerat S., Tsala ?., Monga E., Beaulieu C. Morphological, physiological, and taxonomic characterization of actinobacterial Isolates living as endophytes of cacao pods and cacao seeds. Microbes Environ. 2016, 31 (1), 56–62. https://doi.org/10.1264/jsme2.ME15146
65. Boudjeko T., Tchinda R. A., Zitouni M., Nana J. A., Lerat S., Beaulieu C. Streptomyces cameroonensis sp. nov., a geldanamycin producer that promotes Theobroma cacao growth. Microbes Environ. 2017, 32 (1), 24–31. https://doi.org/10.1264/jsme2.ME16095
66. Matsumoto A., Takahashi Y. Endophytic actinomycetes: promising source of novel bioactive compounds. J. Antibiot. (Tokyo). 2017, 70 (5), 514–519. doi: 10.1038/ ja.2017.20.
67. El-Sayed W. S., Akhkha A., El-Naggar M. Y., Elbadry M. In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Front. Microbiol. 2014, V. 5, P. 651. https://doi.org/10.3389/fmicb.2014.00651
68. Ali S., Hameed S., Imran A., Iqbal M., Lazarovits G. Genetic, physiological and biochemical characterization of Bacillus sp. strain RMB7 exhibiting plant growth promoting and broad spectrum antifungal activities. Microb. Cell Fact. 2014, V. 13, P. 144. https://doi.org/10.1186/s12934-014-0144-x
69. Dutta J., Thakur D. Evaluation of multifarious plant growth promoting traits, antagonistic potential and phylogenetic affiliation of rhizobacteria associated with commercial tea plants grown in Darjeeling, India. PLoS One. 2017, 12 (8), e0182302. https://doi.org/10.1371/journal.pone.0182302
70. Passari A. K., Mishra V. K., Singh G., Singh P., Kumar B., Gupta V., Sharma R. K., Saikia R., Donovan A. O., Singh B. Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production. Sci Rep. 2017, 7 (1). https://doi.org/10.1038/s41598-017-12235-4
71. Srividya S., Adarshana T., Deepika V. B., Kajingailu G., Nilanjan D. Streptomyces sp. 9p as effective biocontrol against chilli soilborne fungal phytopathogens. Eur. J. Exp. Biol. 2012, 2 (1), 163–173.
72. Palaniyandi S. A., Yang S. H., Zhang L., Suh J. W. Effects of actinobacteria on plant disease suppression and growth promotion. Appl. Microbiol. Biotechnol. 2013, 97 (22), 9621–9636. https://doi.org/10.1007/s00253-013-5206-1
73. Law J. W., Ser H. L., Khan T. M., Chuah L. H., Pusparajah P., Chan K. G., Goh B. H., Lee L. The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Front. Microbiol. 2017, V. 8, P. 3. https://doi.org/10.3389/fmicb.2017.00003
74. Sutthinan K., Akira Y., John F. P., Saisamorn L. Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. Eur. Asia J. BioSci. 2010, 4, 23–32.
75. Biliavska L. A., Kozyritska V. E., Kolomiets Y. V., Babich A. G., Iutynska G. O. Phytoprotective and growth-regulatory properties of bioformulations on the base of soil streptomycetes metabolites. Reports NAAS Ukraine. 2015, V. 1, P. 131–137 (In Ukrainian).
76. Biliavska L. A., Efimenko T. A., Efremenkova O. V., Koziritska V. Ye., Iutynska G. A. Identification and antagonistic properties of the soil streptomycete Streptomyces sp. 100. Mikrobiol. Zh. 2016, 78 (2), 27–38. (In Russian).
77. Iutynska G. O., Biliavska L. O., Kozyritska V. Ye. Development strategy for the new environmentally friendly multifunctional bioformulations based on soil streptomycetes. Mikrobiol. Zh. 2017, 79 (1), 22–33.
78. Bilkay I. S., Karako? ?., Aks?z N. Indole-3- acetic acid and gibberellic acid production in Aspergillus niger. Turk. J. Biol. 2010, V. 34, P. 313–318. doi: 10.3906/biy-0812-15.
79. Shimada A., Takeuchi S., Nakajima A., Tanaka S., Kawano T., Kimura Y. Phytotoxicity of indole-3-acetic acid produced by the fungus, Pythium aphanidermatum. Biosci. Biotechnol. Biochem. 2000, 64 (1), 187–189.
80. Reineke G., Heinze B., Schirawski J., Buettner H., Kahmann R., Basse C. W. Indole-3- acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Mol. Plant. Pathol. 2008, 9 (3), 339–355. doi: 10.1111/j.1364- 3703.2008.00470.x.
81. Nassar A. H., El-Tarabily K. A., Sivasithamparam K. Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol. Fertil. Soils. 2005, 42 (2), 97–108.
82. El-Tarabily K. A., Sivasithamparam K. Potential of yeasts as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Mycoscience. 2006, 47 (1), 25–35.
83. Xin G., Glawe D., Doty S. L. Characterization of three endophytic, indole-3-acetic acidproducing yeasts occurring in Populus trees. Mycol. Res. 2009, 113 (9), 973–980.
84. Limtong S., Koowadjanakul N. Yeasts from phylloplane and their capability to produce indole-3-acetic acid. World J. Microbiol. Biotechnol. 2012, 28 (12), 3323–3335. https://doi.org/10.1007/s11274-012-1144-9
85. Limtong S., Kaewwichian R., Yongmanitchai W., Kawasaki H. Diversity of culturable yeasts in phylloplane of sugarcane in Thailand and their capability to produce indole-3-acetic acid. World J. Microbiol. Biotechnol. 2014, 30 (6), 1785–1796. https://doi.org/10.1007/s11274-014-1602-7
86. Nutaratat P., Srisuk N., Arunrattiyakorn P., Limtong S. Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biol. 2014, 118 (8), 683–694. doi: 10.1016/j.funbio. 2014.04.010.
87. Apine O. A., Jadhav J. P. Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM. J. Appl. Microbiol. 2011, 110 (5), 1235–1244. https://doi.org/10.1111/j.1365-2672.2011.04976.x
88. Phillips D. A., Torrey J. G. Studies on cytokinin production by Rhizobium. Plant Physiol. 1972, 49 (1), 11–15.
89. Podle??kov? K., Fardoux J., Patrel D., Bonal di K., Nov?k O., Strnad M., Giraud E., Sp?chal L., Nouwen N. Rhizobial synthesized cytokinins contribute to but are not essential for the symbiotic interaction between photosynthetic Bradyrhizobia and Aeschynomene legumes. Mol. Plant Microbe Interact. 2013, 26 (10), 1232–1238. https://doi.org/10.1094/MPMI-03-13-0076-R
90. Van Zeijl A., Op den Camp R. H., Deinum E. E., Charnikhova T., Franssen H., Op den Camp H. J., Bouwmeester H., Kohlen W., Bisseling T., Geurts R. Rhizobium lipo-chitooligosaccharide signaling triggers accumulation of cytokinins in Medicago truncatula roots. Mol. Plant. 2015, 8 (8), 1213–1226. doi: 10.1016/j. molp.2015.03.010.
91. Hussain A., Hasnain S. Cytokinin production by some bacteria: its impact on cell division in cucumber cotyledons. Afr. J. Microbiol. Res. 2009, 3 (11), 704–712.
92. Dragovoz I. V., Leonova N. O., Lapa S. V., Piskova E. V., Kryuchkova L. A., Avdeeva L. V. Synthesis of extracellular phytohormons by Bacillus straind isolated from different ecological sources. Mikrobiol. Zh. 2013, 75 (3), 41–45. (In Ukrainian).
93. Asari S., Tarkowsk? D., Rol??k J., Nov?k O., Palmero D. V., Bejai S, Meijer J. Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCM B-5113 using Arabidopsis thaliana as host plant. Planta. 2017, 245 (1), 15–30. doi: 10.1007/ s00425-016-2580-9.
94. Pallai R., Hynes R. K., Verma B., Nelson L. M. Phytohormone production and colonization of canola (Brassica napus L.) roots by Pseudomonas fluorescens 6-8 under gnotobiotic conditions. Can. J. Microbiol. 2012, 58 (2), 170–178. https://doi.org/10.1139/w11-120
95. Jiang C. J., Shimono M., Sugano S., Kojima M., Liu X., Inoue H., Sakakibara H., Takatsuji H. Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Mol. Plant Microbe Interact. 2013, 26 (3), 287–96. doi:10.1094/MPMI-06-12- 0152-R.
96. Bruce S. A., Saville B. J., Emery R. J. N. Ustilago maydis produces cytokinins and abscisic acid for potential regulation of tumor formation in maize. J. Plant Growth Regul. 2011, V. 30, P. 51–63. doi: 10.1007/ s00344-010-9166-8.
97. Hinsch J., Vrabka J., Oeser B., Nov?k O., Galuszka P., Tudzynski P. De novo biosynthesis of cytokinins in the biotrophic fungus Claviceps purpurea. Environ. Microbiol. 2015, V. 17, P. 2935–2951. https://doi.org/10.1111/1462-2920.12838
98. Behr M., Motyka V., Weihmann F., Malbeck J., Deising H. B., Wirsel S. G. Remodeling of cytokinin metabolism at infection sites of Colletotrichum graminicola on maize leaves. Mol. Plant Microbe Interact. 2012, V. 25, P. 1073–1082. doi: 10.1094/MPMI-01-12- 0012-R.
99. Maruyama A., Maeda M., Simidu U. Occurrence of plant hormone (cytokinin) — producing bacteria in the sea. J. Аppl. Microbiol. 1986, 61 (6), 569–574.
100. Sch?fer M., Br?tting C., Baldwin I.T., Kallenbach M. High-throughput quantification of more than 100 primary- and secondarymetabolites, and phytohormones by a single solid-phase extraction based sample preparation with analysis by UHPLC-HESIMS/ MS. Plant Meth. 2016, V. 12, P. 30. https://doi.org/10.1186/s13007-016-0130-x
101. Doaa Abd El monem Emam Sleem. Studies on the bioproduction of gibberellic acid Reviews 23 from fungi. A Thesis for the degree of Doctor Philosophy of Science in Botany (Microbiology). Benha University — Egypt. 2013, 163 p.
102. Muddapur U. M., Gadkari M. V., Kulkarni S. M., Sabannavar P. G., Niyonzima F. N., More S. S. Isolation and characterization of gibberellic acid 3 producing Fusarium sp. from Belgaum agriculture land Andits impact on green pea and rice growth promotion. Aperito J. Adv. Plan. Biol. 2015, 1 (2), 106. http://dx.doi.org/10.14437/AJAPB-1-106.
103. Khan A. L., Hussain J., Al-Harrasi A., Al-Rawahi A., Lee I. J. Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit. Rev. Biotechnol. 2015, 35 (1), 62–74. doi: https://doi.org/10.3109/07388551.2013.800018
104. Leit?o A. L., Enguita F. J. Gibberellins in Penicillium strains: Challenges for endophyte-plant host interactions under salinity stress. Microbiol. Res. 2016, V. 183, P. 8–18. https://doi.org/10.1016/j.micres.2015.11.004
105. Jaroszuk-?cise? J., Kurek E., Trytek M. Efficiency of indoleacetic acid, gibberellic acid and ethylene synthesized in vitro by Fusarium culmorum strains with different effects on cereal growth. Biologia. 2014, 69 (3), 281–292.
106. Atzorn R., Crozier A., Wheeler C. T., Sandberg G. Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta. 1988, 175 (4), 532–538.
107. Meleigy S. A., Khalaf M. A. Biosynthesis of gibberellic acid from milk permeate in repeated batch operation by a mutant Fusarium moniliforme cells immobilized on loofa sponge. Bioresour. Technol. 2009, 100 (1), 374–379. doi: 10.1016/j. biortech.2008.06.024.
108. Lale G., Gadre R. Enhanced production of gibberellin A4 (GA4) by a mutant of Gibberella fujikuroi in wheat gluten medium. Ind. Microbiol. Biotechnol. 2010, 37 (3), 297–306.
109. Kobomoje O. S., Mohammed A. O., Omojasola P. F. The production of gibberellic acid from shea nut shell (Vitellaria paradoxa) using Fusarium moniliforme. Asian J. Plant Sci. Res. 2013, 3 (2), 23–26.
110. Muromtsev G. S., Krasnopolskaya L. M. Micromycetes strain Fusarium monili forme — producer of phytohormons gibberellins A4, A7. RF Patent № 2084531. Publ. 20.07.1997. (In Russian).
111. Eleazar M. E. S., Dendooven L., Maga?a I. P., Parra R., De laTorre M. Optimization of gibberellic acid production by immobilized Gibberella fujikuroi, mycelium in fluidized bioreactors. J. Biotechnol. 2000, 76 (2–3), 147–155.
112. Bandelier S., Renaud R., Durand A. Production of gibeberellic acid by fed-batch solid state fermentation in as aseptic pilot-scale reactor. Proc. Biochem. 1997, V. 32, P. 141–145.
113. Machado C. M. M., Soccol C. R., Pandey A. Gibberellic acid production by solid state fermentation in coffee husk. Appl. Biochem. Biotechnol. 2002, V. 102, P. 179–192.
114. Corona A., Sanchez D., Agostin E. Effect of water activity on gibberellic acid production by Gibberella fujikuroi under solid-state fermentation conditions. Proc. Biochem. 2005, V. 40, P. 2655–2658.
115. de Oliveira J., Rodrigues C., Vandenberghe L. P. S., C?mara M. C., Libardi N., Soccol C. R. Gibberellic acid production by different fermentation systems using citric pulp as substrate/support. Biomed. Res. Int. 2017; 2017:5191046. https://doi.org/10.1155/2017/5191046
116. Hori K., Ichinohe R., Unno H., Marsudi S. Simultaneous syntheses of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa IFO3924 at various temperatures and from various fatty acids. Biochem. Eng. J. 2011, 53 (2), 196–202.
117. Liang T. W., Wu C. C., Cheng W. T., Chen Y. C., Wang C. L., Wang I. L., Wang S. L. Exopolysaccharides and antimicrobial biosurfactants produced by Paenibacillus macerans TKU029. Appl. Biochem. Biotechnol. 2014, 172 (2), 933–950.
118. Sharma D., Singh Saharan B. Simultaneous production of biosurfactants and bacteriocins by probiotic Lactobacillus casei MRTL3. Int. J. Microbiol. 2014, 2014:698713. https://doi.org/10.1155/2014/698713
119. Pirog T. P., Konon A. D., Sofilkanich A. P., Iutinskaya G. A. Effect of surface-active substances of Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017, and Nocardia vaccinii K-8 on phytopathogenic bacteria. Appl. Biochem. Microbiol. 2013, 49 (4), 3604–367. https://doi.org/ 10.1134/S000368381304011X.
120. Pirog T. P., Leonova N. O., Shevchuk T. A., Panasuk E. V., Beregovaya K. A., Iutynskaya G. A. Synthesis of phytohormones by Nocardia vaccinii IMV B-7405 — producer of surfactants. Mikrobiol. Zh. 2015, 77 (6), 21–30. (In Russian).
121. Pacwa-P?ociniczak M., P?ociniczak T., Iwan J., ?arska M., Chor??ewski M., Dzida M., Piotrowska-Seget Z. Isolation of hydrocarbon-degrading and biosurfactantproducing bacteria and assessment their plant growth-promoting traits. J. Environ. Manage. 2016, V. 168, P. 175–84. https://doi.org/10.1016/j.jenvman.2015.11.058
- Details
- Hits: 139
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 1, 2018
Р. 76-81, Bibliography 25, English
Universal Decimal Classification: 576.3+612.014.2/3
https://doi.org/10.15407/biotech11.01.076
ISOLATION OF MULTIPOTENT MESENCHIMAL STROMAL CELLS FROM MINIMAL HUMAN ENDOMETRIUM BIOPSY
1State Institute of Genetic and Regenerative Medicine of National Academy of Medical Sciences of Ukraine, Kiev
2Biotechnology Laboratory “ilaya Regeneration”, Medical Company ilaya, Kiev
3Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine, Kyiv
The aim of the research was establishing a cell culture from a minimal human endometrial biopsy and assessment its conformity with the criteria for multipotent mesenchymal stromal cells. It was shown that cells in the culture possess adhesion to plastic, have characteristic fibroblast-like morphology, express CD73+CD90+CD105+, and are negative for hematopoietic markers (CD34-CD45-HLA-DR-), have the ability to directed adipogenic, osteogenic and chondrogenic differentiation. Due to these properties, the cell population isolated from the minimal endometrial biopsy can be attributed to multipotent mesenchymal stromal cells.
Key words: human endometrium, multipotent mesenchymal stromal cells.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Kasius A., Smit J. G., Torrance H. L., Eijkemans M. J., Mol B. W., Opmeer B. C., Broekmans F. J. Endometrial thickness and pregnancy rates after IVF: a systematic review and meta-analysis. Hum. Reprod. Update.2014, 20(4), 530–541. https://doi.org/10.1093/humupd/dmu011
2. Margalioth E.J., Ben-Chetrit A., Gal M. Eldar-Geva T. Investigation and treatment of repeated implantation failure following IVF-ET. Hum. Reprod. 2006, 21(12), 3036–3043. https://doi.org/10.1093/humrep/del305
3. Korneeva I.E. Modern concept of diagnosis and treatment of infertility in marriage. (Doctoral dissertation). Available from disserCat database 2006. (UMI No. 395491). (In Russian)
4. Haydukov S.N., Boiarskiy Y.K., Palchenko N.A. Modern view on the problem of receptivity and
thin endometrium in ART programs. Problemy reproduktsiyi.2013, V. 4, P. 51–60. (In Russian).
5. Murphy M.B., Moncivais K., Caplan A.I. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp. Mol. Med. 2013, V. 45, P. 54. https://doi.org/10.1038/emm.2013.94
6. Doorn J., Moll G., Le Blanc K. Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. Tissue Eng. 2012, 18(2), 101–115. https://doi.org/10.1089/ten.teb.2011.0488
7. Caplan A.I. Why are MSCs therapeutic? New data: new insight. 2009, V. 217, P. 318–324.
https://doi.org/10.1002/path.2469
8. Gnecchi M1, Melo LG.Bone marrow-derived mesenchymal stem cells: isolation, expansion,
characterization, viral transduction, and production of conditioned medium. Meth. Mol. Biol. 2009, V. 482, P. 281–294. https://doi.org/10.1007/978-1-59745-060-7_18
9. Dhanasekaran M., Indumathi S., Poojitha R., Kanmani A., Rajkumar J.S., Sudarsanam D.
Plasticity and banking potential of cultured adipose tissue derived mesenchymal stem cells. Cell Tissue Bank.2013, 14(2), 303–315. https://doi.org/10.1007/s10561-012-9311-7
10. Kara?z E., Do?an B. N., Aksoy A., Gacar G., Aky?z S., Ayhan S., Gen?Z. S., Y?r?ker S., Duruksu G., Demircan P. C., Sariboyaci A. E.Isolation and in vitro characterisation of dental pulp stem cells from natal teeth. Histochem. Cell Biol. 2010, 133(1), 95–112.
https://doi.org/10.1007/s00418-009-0646-5
11.Manini I., Gulino L., Gava B., Pierantozzi E., Curina C., Rossi D., Brafa A., D’Aniello C., Sorrentino V.Multipotent progenitors in freshly isolated and cultured human mesenchymal stem
cells: a comparison between adipose and dermal tissue. Cell Tissue Res. 2011, 344(1), 85–95.
https://doi.org/10.1038/emboj.2012.301
12. Romanov Y. A., Svintsitskaya V. A., Smirnov V. N. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells. 2003, 21(1), 105–10. https://doi.org/10.1634/stemcells.21-1-105
13. Fukuchi Y., Nakajima H., Sugiyama D., Hirose I., Kitamura T., Tsuji K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells.2004, 22(5), 649–58. https://doi.org/10.1634/stemcells.22-5-649
14. Sasson I. E., Taylor H. S. Stem cells and the pathogenesis of endometriosis. Ann. N. Y.
Acad. Sci. 2008, V. 1127, P. 106–15. https://doi.org/10.1196/annals.1434.014
15. Padykula H. A. Regeneration in the primate uterus: the role of stem cells. Ann. N. Y, Acad.
Sci. 1991, V. 622, P. 47–56.
16. Gargett C. E.Stem cells in gynaecology. Aust. N. Z. J. Obstet. Gynecol.,2004, 44(5), 380-386.
https://doi.org/10.1111/j.1749-6632.2011.05969.x
17. Gargett C. E. Identification and characte-ri zation of human endometrial stem/progenitor cells.
Austr. New Zealand J. Experimental articles 81Obstetrics Gynecol. 2006, V. 46, P. 250–253.
https://doi.org/10.1530/REP-07-0428
18. Xiaolong Meng. Endometrial regenerative cells: A novel stem cell population. J. Transl. Med.
2007, V. 5, P. 57. https://doi.org/10.1186/1479-5876-5-57
19. Dominici M1, Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy.
2006, 8(4), 315–317. https://doi.org/10.1080/14653240600855905
20. Prockop D., Phinney D., Blundell B. Mesenchymal stem cells: methods and protocols. Meth. Mol. Biol 2008, V. 449, P. 192.
21. Gimble J. M., Guilak F.Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003, 5(5), 362–369. https://doi.org/10.1080/14653240310003026
22. Baer P., Geiger Н.Adipose-Derived Mesen chymal Stromal/Stem Cells: Tissue Localization,
Characterization, and Heterogeneity.Stem Cells Int. 2012, V. 2012, P. 1–11.
https://doi.org/10.1155/2012/812693
23. Timper K., Seboek D., Eberhardt M. “Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem. Biophys. Res. Commun. 2006, 341(4), 1135–1140. https://doi.org/10.1016/j.bbrc.2006.01.072
24. Pittenger M., Mackay A., Beck S., Jaiswal R., Douglas R. Multilineage Potential of Adult
Human Mesenchymal Stem Cells. Science. 1999, 284(5411), 143–147. https://doi.org/10.1126/science.284.5411.143
25. Kilroy G. E., Foster S. J., Wu X. et al.“Cytokine profile of human adipose-derived stem cells:
expression of angiogenic, hematopoietic, and pro-inflammatory factors,” J. Cell. Physiol.
2007, 212(3), 702–709.
- Details
- Hits: 209
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 1, 2018
Р. 70-75, Bibliography 10, English
Universal Decimal Classification: 616.096.578.828
https://doi.org/10.15407/biotech11.01.070
T. Y. Trokhymchuk 1, L. A. Ganova 2, N. Ya. Spivak 2
1 PJSC “SPC “Diaproph-Med”, Kyiv
2 Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv
The purpose of the work was to study the ability of test systems DIA-HIV 1/2 and DIA-HIV-Ag/Ab produced by PJSC “SPC “Diaproph-Med” to detect HIV infection. Reference blood serum of HIV-positive patients was tested using immunoassay analysis. It was shown that early detection of HIV infection is more effective using test kits of the fourth generation, which should be used for primary screening for HIV, and third-generation test systems should be used to confirm the positive results of primary analysis.
Key words: ELISA, early diagnosis of HIV, enzyme immunoassay test systems.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. HIV infection in Ukraine. Newsletter. Kyiv: Ministry of Health of Ukraine. 2016, 46, 7–14. (In Ukrainian).
2. Laboratory testing for the diagnosis of HIV infection. CDC. National Center for HIV/AIDS. 2013, 234.
3. Fiebig E. W., Wright D. J., Rawal B. D. Dynamics of HIV viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of primary HIV infection. AIDS. 2003. 17 (13), 1871?1879. https://doi.org/10.1097/01
4. Kislih O. M. Application of combined antigenantibody tests for immuno-enzymatic diagnosis of HIV infection. Lab. dіagnostika. 2003. N 4, P. 37–42. (In Ukrainian).
5. Pokrovsky V. V., Ermak T. Y., Beljaeva V. V., Yurin O. G. HIV-infection: clinics, diagnostics and treatments. Мoskva: Geotar Medic. 2000, 489.
6. National Program of the Ministry of Health of Ukraine. Order dated December 21, 2010 No 1141. (In Ukrainian).
7. Kotova N. V., Babіj N. O., Andrіanova І. V., Lyul’chuk M. G., Ringach N. O. Assessment of the current state of early diagnosis of HIV in children born to HIV-positive mothers. Kyiv: PC «Folіant», 2013,60. (In Ukrainian).
8. Lapach S. N., Gubenko A. E., Babich P. N. Statistical methods in biomedical research using Excel. Kyiv: Morion. 2002, 407. (In Russian).
9. Hemelaar J., Gouws E., Ghys P. D., Osmanov S. WHO-UNAIDS Network for HIV Isolation and Characterisation: Global trends in molecular epidemiology of HIV-1 during 2000– 2007. AIDS. 2011 (25), 679. doi: 10.1097/QAD. 0b013e328342ff93.
10. Zhang M., Foley B., Schultz A. K., Macke J. P., Bulla I., Stanke M., Morgenstern B., Korber B., Leitner T. The role of recombination in the emergence of a complex and dynamic HIV epidemic. Retrovirology. 2010, 7, 25. https://doi.org/10.1186/1742-4690-7-25
- Details
- Hits: 140
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 1, 2018
Р. 64-69, Bibliography 13, English
Universal Decimal Classification: 577.115:663.12
https://doi.org/10.15407/biotech11.01.064
1 National University of Food Technologies, Kyiv, Ukraine
2 SE “Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine”, Kyiv
The aim of the research was to study the accumulation of yeast lipids in the process of cultivation of strains P. anomala IMB Y-5067 and R. gracilis IMB Y-5075 with the use of peat as growing substrate. The object of researches was strains P. anomala IMB Y-5067 and R. gracilis IMB Y-5075 from “Collection of strains of microorganisms and plant lines for food and agricultural biotechnology” of SE “Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine”. As a raw material, lowland peat which was preliminarily processed with the help of cavitation or explosive autohydrolysis was used. The accumulation of lipids over the course of cultivation P. anomala IMB Y-5067 and R. gracilis IMB Y-5075 on non-food substrate ? lowland peat was shown. The effect of pulp explosive autohydrolysis and pulp cavitation processing on biomass accumulation and lipids synthesis by strains P. аnomala IMB Y-5067 and R. gracilis IMB Y-5075 was researched. It was found that the maximum lipids accumulation by strains P. аnomala IMB Y-5067 (9.7 g/dm3) and R. gracilis IMB Y-5075 (8.9 g/dm3) was over the course of cavitation processing of peat pulp and additional application of salts and yeast extract into cultivation environment.
Key words: peat, Pichia anomala, Rhodotorula gracilis, yeast, cultivation, lipids.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017
References
1. Chuchuy V. P., Uminskiy S. M., Inyutin S. V. Alternative Energy Sources. Odesa: TES. 2015, 494 p. (Іn Ukrainian).
2. Kuhar V. P. Bioresources — potential raw material for industrial organic synthesis. Kataliz i neftekhimiya. 2007, 15, 1–15. (Іn Russian).
3. Chuprina L. A. Organic waste recycling: Ukrainian technologies. Shlyahi rozvitku ukrayinskoyi nauki. 2016, V. 1, P. 115–117. (Іn Ukrainian).
4. Tigunova O. O., Beiko N. E., Kamenskyu D. S., Tkachenko T. V., Yevdokymenko V. O., Kashkovskiy V. I., Shulga S. M. Lignocellulosic biomass after explosive autohydrolysis as substrate for butanol obtaining. Biotechnol. acta. 2016, 9 (4), 28?34. https://doi.org/10.15407/biotech9.04.028
5. Saranchuk V. I., Ilyashov M. O., Oshovskii V. V., Biiletskii V. S. Fundamentals of Chemistry and Physics of Combustible Minerals. Donetsk: Shidnyi vydavnychyi dim. 2008, 640p. (Іn Ukrainian).
6. Ba?mler E. R. Solvent extraction: kinetic study of major and minor compounds. JAOCS. 2010, V. 87, P. 1489–1495.
7. Lakin G. F. Biometrics. Moskva: Vyisshaya shkola. 1990, 300 p. (Іn Russian). Experimental articles 69.
8. Veshnyakov V. A., Habarov Yu. G., Kamaki na N. D. Comparison of methods for the deter mi na tion of reducing substances: the Bertrand method, ebulliostatic and photometric methods. Khimiya rastitelnogo syrya. 2008, 4, 47–50. (Іn Russian).
9. Gerasimov Yu. Yu., Hlyustov V. K. Mathematical methods and models in computer calculations. Moskva: MGUL. 2001, 260 p.
10. Verhoeven Jos T. A., Setter Tim L. Agricultural use of wetlands: opportunities and limitations. Ann Bot. 2010, 105 (1), 155–163. dhttps://doi.org/10.1093/aob/mcp172
11. Tkachenko A. F., Tigunova E. A., Shulga S. M. Microbial lipids — an alternative source of raw materials for biofuels. Mikrobiologiya i biotekhnologiya. 2012, V. 3, P. 17–33. (Іn Russian).
12. Tkachenko A. F., Tigunova E. A., Shulga S. M. Lipids of microorganisms as a source of biofuel. Tsitologiya i genetika. 2013, 6 (47), 22–29. (Іn Russian).
13. Shulga S. M., Tkachenko A. F., Beyko N. E., Homenko A. I., Andriyash A. S. Biosynthesis of lipids by yeast Rhodotorula gracilis. “Biotekhnolohiia”. 2010, 3 (3), 58–65. (Іn Russian).
- Details
- Hits: 150
IISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 1, 2018
Р. 58-63, Bibliography 17, English
Universal Decimal Classification: 576.858
https://doi.org/10.15407/biotech11.01.058
POLYMERASE CHAIN REACTION FOR IDENTIFICATION OF CYPRINID HERPESVIRUSES IN UKRAINE
Yu. P. Rud 1, M. I. Maistrenko 2, L. P. Buchatskiy 1, 2
1 Institute of Fisheries of the National Academy of Agriculture Sciences of Ukraine, Kyiv
2 ESC Institute of Biology and Medicine, Taras Shevchenko Kyiv National University, Ukraine
The aim of the research was to investigate diseased fish species Labeo (Labeo bicolor) and Sack-gill Catfish (Heteropneustes fossilis) by testing several diagnostic systems targeting fish herpesviruses in purpose to determine the etiology of the outbreak infection in aquarium fishes at the Kуiv Zoo during summer 2017. During a fish health inspection of aquariums in Kyiv Zoo, an Cyprinid herpesvirus 3 ? CyHV-3 was detected in Labeo and Sack-gill Catfish. Preliminary examination of infected fish revealed a range of lesions particularly in internal organs and tissues. The gills of diseased fish were characterized by hyperaemia and necrosis. The infringement of liver color and structure, kidney swelling and gallbladder necrosis were observed in both fish species. The virus did not grow in fish cell lines of RTG-2, FHM and EPC, that was evident by absence of any morphological changes in appropriate cell lines. Also initially fish were tested for parasitic and bacterial infections and they were determined to be non-infected. Our results demonstrated that specific oligonucleotide primers for thymidine kinase gene of CyHV-3 were successfully amplified the specific DNA fragments. The length of polymerase chain reaction product, as expected, was 264 nucleotide pairs. The amplified specific fragments were identical to the area of thymidine kinase gene CyHV-3, as was shown by sequence analysis. The identity of nucleotide sequences composed 97?99%. The same positive results were obtained using primers that recommended by the International Epizootic Bureau, fragments in size of 409 and 292 were also obtained. In our opinion, CyHV-3 was brought to Ukraine by import of aquarium fish avoiding sanitary control of transboundary transportation. Therefore, the uncontrolled import of aquarium and cultured fish species is a serious problem because imported fish could be as a source of highly pathogenic infections for industrial aquaculture.
Key words: polymerase chain reaction, CyHV-3 fish herpesvirus of Labeo bicolor and Sack-gill Catfish.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Waltzek T. B., Kelley G. O., Alfaro M. E., Kurobe T., Davison A. J., Hedrick R. P. Phylogenetic relationships in the family alloherpesviridae. Dis. Aquat. Org. 2009, V. 84, P. 179–194.
2. Jung S. J., Miyazaki T. . Herpesviral hematopoietic necrosis of goldfish, Carassius auratus (L.). J. Fish Dis. 1995, V. 18, P. 211–220.
3. Van Beurden S. J., Bossers A., Voorbergen-Laarman M. H. A., Haenen O. L. M., Peters S., Abma-Henkens M. H. C, Peeters B. P. H., Rottier P. J. M., Engelsma M. Y. Complete genome sequence and taxonomic position of anguillid herpesvirus 1. J. Gen. Virol. 2010, V. 91, P. 880–887.
4. Sano T., Fukuda H., Furukawa M., Hosoya H., Moriya Y. A herpesvirus isolated from carp papilloma in Japan. Fish Shell Pathol. 1995, V. 32, P. 307–311.
5. Waltzek T. B., Kelley G. O., Stone D. M., Way K., Hanson L., Fukuda H., Hirono I., Aoki T., Davison A. J., Hedrick R. P. Koi herpesvirus represents a third cyprinid herpesvirus (CyHV-3) in the family Herpesviridae. J. Gen. Virol. 2005, V. 86, P. 1659–1667.
6. Hedrick R. P., Gilad O., Yun S., Spangenberg J. V., Marty G. D., Nordhausen R. W., Kebus M. J., Bercovier H., Eldar A. A herpesvirus associated with mass mortality of juvenile and adult koi, a strain of common carp. J. Aquat. Anim. Health. 2000, V. 12, P. 44–57.
7. Bergmann S. M., Riechardt M., Fichtner D., Lee P., Kempter J. Investigation on the diagnostic sensitivity of molecular tools used for detection of koi herpesvirus. J. Virol. Meth. 2010, V. 163, P. 229–233.
8. Eide K. E., Miller-Morgan T., Heidel J. R., Kent M. L., Bildfell R. J., Lapatra S., Watson G., Jin L. Investigation of koi herpesvirus latency in koi. J. Virol. 2011, V. 85, P. 4954–4962.
9. Maistrenko M. I., Rud Y. P., Matvienko N. M., Holodna L. S., Buchatskiy L. P. Identification of СуНV-3 by the methods of electronic microscopy and polymerase chain reaction. Reports of Ukraine National Academy of Science. 2013, V. 4, P. 139–143. (In Ukrainian).
10. Aoki T., Hirono I., Kurokawa K., Fukuda H., Nahary R., Eldar A., Davidson A. J., Waltzek T. B., Bercuvier H., Hedrick R. P. Genome sequences of three koi herpesvirus isolates representing the expanding distribution of an emerging disease threatening koi and common carp worldwide. J. Virol. 2007, V. 81, P. 5058–5065.
11. Bercovier H., Fishman Y., Nahary R., Sinai S., Zlotkin A., Eyngor M., Gilad O., Eldar A., Hedrick R. Cloning of the koi herpesvirus (KHV) gene encoding thymidine kinase and its use for a highly sensitive PCR based diagnosis. BMC Microbiol. 2005, V. 5, P. 13.
12. Gray W. L., Mullis L., Lapatra S. E., Groff J. M., Goodwin A. Detection of koi herpesvirus DNA in tissues of infected fish. J. Fish Dis. 2002, V. 25, P. 171–178.
13. Ilouze M., Davidovich M., Diamant A., Kotler M. Dishon A. The outbreak of carp disease caused by CyHV-3 as a model for new emerging viral disease in aquaculture: a review. Ecol. Res. 2011, V. 26, P. 885–892.
14. Uchii K., Minamoto T., Honyo M., Kawabata Z. Seasonal reactivation enables Cyprinide Herpesvirus 3 to persist in wild host population. FEMS Microbiol. Ecol. 2014, V. 87, P. 536–542.
15. Davison A. J. Herpesvirus systematics. Vet. Microbiol. 2010, V. 143, P. 52–69.
16. Kempter J., Sadowski J., Schutze H., Fischer U., Dauber M., Fichtner D., Panicz R., Bergmann S. Koi herpes virus: do acipencerid restitution programs pose a threat to carp farms in the disease-free zones? Acta ichthyologica piscatorial. 2009, V. 2, P. 119–126.
17. Minamoto T., Honjo M., Yamanaka H., Tanaka N., Itajama T., Kawabata Z. Detection of cyprinid herpesvirus-3 DNA in lake plancton. Res.Veter. Sci. 2010, 90 (3), 530–532.