- Details
- Hits: 117
"Biotechnologia Acta" V. 10, No 1, 2017
https://doi.org/10.15407/biotech10.01.061
Р. 61-67, Bibliography 17, English
Universal Decimal Classification: 577.112:616.128
PT (II) AND PD (II) COMPLEXES INFLUENCE ON SPHEROIDS GROWTH OF BREAST CANCER CELLS
A. A. Bilyuk 1, O. V. Storozhuk 1, O. V. Kolotiy 1, H. H. Repich 2, S. I. Orysyk 2, L. V. Garmanchuk 1
1 Educational and Scientific Centre “Institute of Biology and Medicine” of Taras Shevchenko National University of Kyiv, Ukraine
2 Vernadskyi Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Kyiv
The aim of the research was to examine the changes in multi-cellular tumor spheroid growth, adhesion properties and gamma-glutamintranspeptidasic activity in model systems of human breast cancer multicellular spheroid MCF-7 under the influence of Pt(ІІ) and Pd(ІІ) π-complexes with allyl-containing thioureas. Comparing with cisplatin, Pt(II) and Pd(II) complexes reduce gamma-glutamintranspeptidasic activity, increase adhesive properties in model system of solid tumor and inhibit the multicellular spheroids’ growth. All changes prove the importance of further investigation and analysis of these compounds as potential analogues of anticancer drugs that possibly do not cause resistance and reduce the level of metastasis in breast cancer.
Key words: Pt(ІІ) and Pd(ІІ) π-complexes, gamma-glutamintranspeptidase, adhesive properties, multi-cellular tumor spheroids.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017
References
1. Rosenberg B., Van Camp L., Trosko J. E., Mansour V. H., Platinum compounds: a new class of potent antitumor agents. Nature. 1969, V. 222, P. 385–686. https://doi.org/10.1038/222385a0
2. Aoki K., Murayama K. Nucleic acid-metal ion interactions in the solid state. Met. Ions Life Sci. 2012, V. 10, P. 43–102. doi: 10.1007/978-94-007-2172-2_2. https://doi.org/10.1007/978-94-007-2172-2_2
3. Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer. 2007, V. 7, P. 573–584. https://doi.org/10.1038/nrc2167
4. Frezza M., Hindo S., Chen D., Davenport A., Schmitt S., Tomco D.. Dou Q. P. Novel metals and metal complexes as platforms for cancer therapy. Curr. Pharm. Des. 2010, V. 16, P. 1813–1825. PMID: 20337575. https://doi.org/10.2174/138161210791209009
5. Repich H. H., Orysyk V. V., Palchykovska L. G., Orysyk S. I., Zborovskii Yu. L., Vasylchenko O. V., Storozhuk O. V., Biluk A. A., Nikulina V. V., Garmanchuk L. V., Pekhnyo V. I., Vovk M. V. Synthesis, spectral characterization of novel Pd(II), Pt(II) ?-coordination compounds based on N-allylthioureas. Cytotoxic properties and DNA binding ability. J. Inorg. Biochem. 2017, https://www.scopus.com/sourceid/17615?origin=recordpageV. 168, P. 98–106. https://doi.org/10.1016/j.jinorgbio.2016.12.004
6. Che C. M., Siu F. M. Metal complexes in medicine with a focus on enzyme inhibition. Curr. Opin. Chem. Biol. 2010, V. 14, P. 255–261.https://doi.org/10.1016/j.cbpa.2009.11.015
7. Gasser G., Ott I., Metzler-Nolte N. The potential of organometallic complexes in medicinal chemistry. J. Med. Chem. 2011, V. 54, P. 3. https://doi.org/10.1016/j.cbpa.2012.01.013
8. Sedletska Y., Giraud-Panis M. J., Malinge J. M. Cisplatin is a DNA-damaging antitumour compound triggering multifactorial biochemical responses in cancer cells: importance of apoptotic pathways. Curr. Med. Chem. Anticancer Agents. 2005, V. 5, P. 251–265. PMID: 15992353. https://doi.org/10.2174/1568011053765967
9. Kartalou M., Essigmann J. M. Mechanisms of resistance to cisplatin. Mutat. Res. 2001, V. 478, P. 23–43. PMID: 11406167. https://doi.org/10.1016/S0027-5107(01)00141-5
10. Brozovic A., Ambriovi?-Ristov A., Osmak M. The relationship between cisplatin-induced reactive oxygen species, glutathione, and BCL-2 and resistance to cisplatin. Crit. Rev. Toxicol. 2010, 40 (4), 347–359. https://doi.org/10.3109/10408441003601836
11. Pearson R. G. Antisymbiosis and the trans effect. Inorg. Chem. 1973, 12 (3), 712–713. https://doi.org/10.1021/ic50121a052
12. Kim J. B. Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol. 2005, V. 15, P. 365–377. PMID: 15975824. https://doi.org/10.1016/j.semcancer.2005.05.002
13. Girard Y. K., Wang C., Ravi S., Howell M. C., Mallela J. et al. A 3D fibrous scaffold inducing tumoroids: a platform for anticancer drug development. PLoS One. 2013, V. 8, P. e75345. doi: 10.1371/journal.pone. 0075345 PMID: 24146752.
14. McMahon K. M., Volpato M., Chi H. Y., Musiwaro P., Poterlowicz K. et al. Characterization of changes in the proteome in different regions of 3D multicell tumor spheroids. J. Proteome Res. 2012, V. 11, P. 2863–2875. https://doi.org/10.1021/pr2012472
15. Huang S. G., Zhang L. L., Niu Q., Xiang G. M., Liu L. L. et al. Hypoxia Promotes Epithelial—Mesenchymal Transition of Hepatocellular Carcinoma Cells via Inducing GLIPR-2. Expression. PLoS One. 2013, V. 8, P. e77497. https://doi.org/10.1371/journal.pone.0077497
16. Gallardo-P?rez J. C., Rivero-Segura N. A., Mar?n-Hern?ndez A., Moreno-S?nchez R., Rodr?guez-Enr?quez S. GPI/AMF inhibition blocks the development of the metastatic phenotype of mature multi-cellular tumor spheroids. Biochim. Biophys. Acta. 2014, V. 1843, P. 1043–1053. https://doi.org/10.1016/j.bbamcr.2014.01.013
17. Burstein H. J., Schwartz R. S. Molecular origins of cancer. New Engl. J. Med. 2008, 358 (5), 527, 2039–2049. https://doi.org/10.1056/NEJMe0800065
- Details
- Hits: 171
"Biotechnologia Acta" V. 10, No 1, 2017
https://doi.org/10.15407/biotech10.01.052
Р. 52-60, Bibliography 41, English
Universal Decimal Classification: 57.065.38
Yildiz Technical University, Chemical and Metallurgy Faculty, Istanbul, Turkey
The aim of the research was to synthesize and characterize the poly (lactic-co-glycolic-acid) microparticles loaded with foot-and-mouth disease virus 40-60 synthetic peptide. Single emulsion solvent evaporation method was used for the production of microparticles with theree diferent (5; 10 and 15 mg) peptide amounts and obtained microparticles were characterized by using yield reaction, encapsulation efficiency, drug loading, particle size, polydispersity index, and zeta potential.
Key words: virus of the foot-and-mouth disease, poly (lactic-co-glycolic-acid) microparticles.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017
References
1. King D. J., Freimanis G. L., Orton R. J., Waters R. A., Haydon D. T., King D. P. Investigating intra-host and intra-herd sequence diversity of foot-and-mouth disease virus. Infect. Genet. Evolu. 2016, V. 44, P. 286–292. https://doi.org/10.1016/j.meegid.2016.07.010
2. Mansuroglu B., Mustafaeva Z. Characterization of water-soluble conjugates of polyacrylic acid and antigenic peptide of FMDV by size exclusion chromatography with quadruple detection. Mat. Sci. Engin. C-Materials for Biological Applications. 2012, 32 (2), 112–118. https://doi.org/10.1016/j.msec.2011.10.004
3. ?zdemir Z. ?., Karahan M., Karabulut E., Mustafaeva Z. Characterization of Foot-and-Mouth Disease Virus's Viral Peptides with LC-ESI-MS. J. Chem. Soc. Pakistan. 2010, 32 (4), 531–536.
4. Beck E., Feil G., Strohmaier K. The molecular basis of the antigenic variation of foot-and-mouth disease virus. EMBO J. 1983, 2 (4), 555.
5. Diaz-San Segundo F., Medina G. N., Stenfeldt C., Arzt J., de los Santos T. Foot-and-mouth disease vaccines. Vet. Microbiol. 2016. doi: 10.1016/j.vetmic.2016.12.018. https://doi.org/10.1016/j.vetmic.2016.12.018
6. Alkan M., ?ok?al??kan C., Bulut A. N., Arslan A., Uzunlu E., G?rcan ?. S. Determination of the best vaccination age of calves in the presence of maternal antibodies to foot and mouth disease under natural conditions. Vaccine Rep. 2016,V. 6, P. 44–49. https://doi.org/10.1016/j.vacrep.2016.09.001
7. Mansuroglu B. Improving of biohybrid and biomimicking polymer-peptide conjugates: (Doctoral dissertation); Available from https://tez.yok.gov.tr/UlusalTezMerkezi/ 2007 (Thesis No:213516).
8. Zhang L., Zhang J., Chen H., Zhou J., Ding Y., Liu Y. Research in advance for FMD novel vaccines. Virol. J. 2011, 8 (1), 1. https://doi.org/10.1186/1743-422X-8-268
9. Grubman M. J. New approaches to rapidly control foot-and-mouth disease outbreaks. Exp. R. Anti-infect. Ther. 2003, 1 (4), 579–586.
10. Rodriguez L. L., Gay C. G. Development of vaccines toward the global control and eradication of foot-and-mouth disease. Exp. Rev. Vaccines. 2011, 10 (3), 377–387. https://doi.org/10.1586/erv.11.4
11. Derman S., Kizilbey K., Mansuroglu B., Mustafaeva Z. Synthesis and characterization of canine parvovirus (CPV) VP2 W-7L-20 synthetic peptide for synthetic vaccine. Fresen Environ. Bull. 2014, 23 (2A), 558–566.
12. Arnon R. Synthetic peptides as the basis for vaccine design. Mol. Immunol. 1991, 28 (3), 209–215. https://doi.org/10.1016/0161-5890(91)90063-P
13. O’Hagan D. T., Singh M. Microparticles as vaccine adjuvants and delivery systems. Exp. Rev. Vaccines. 2003, 2 (2), 269–283. https://doi.org/10.1586/14760584.2.2.269
14. Azmi F., Ahmad Fuaad A. A. H., Skwarczynski M., Toth I. Recent progress in adjuvant discovery for peptide-based subunit vaccines. Human Vaccines Immunotherapeut. 2014, 10 (3), 778–796. https://doi.org/10.4161/hv.27332
15. Oyewumi M. O., Kumar A., Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Exp. Rev. Vaccines. 2010, 9 (9), 1095–1107. https://doi.org/10.1586/erv.10.89
16. Derman S., Mustafaeva Z. Particle size and zeta potential investigation of synthetic peptide-protein conjugates/Sentetik peptid-protein konjugatlar?n?n par?ac?k boyutu ve zeta potensiyel analizi. Turkish J. Biochem. 2015, 40 (4), 282–289. https://doi.org/10.1515/tjb-2015-0014
17. Mansuro?lu B., Derman S., K?z?lbey K., Mustafaeva Z. Investigation of Protein and Polymer as a Carrier on Immune System. Intern. J. Nat. Engin. Sci. 2009, 3 (2), 32–35.
18. Derman S., Kizilbey K., Mansuroglu B., Mustafaeva Z. Poly (N-Vinyl-2-Pyrrolidone-co-Acrylic Acid)-Bovine Serum Albumin Complex Formation Studied by HPLC and UV/Vis Spectroscopy. Roman. Biotechnol. Lett. 2012, 17 (4), 7408.
19. Kabanov V. A. From synthetic polyelectrolytes to polymer-subunit vaccines. Pure Appl. Chem. 2004, 76 (9), 1659–1677. https://doi.org/10.1351/pac200476091659
20. Zaman M., Simerska P., Toth I. Synthetic polyacrylate polymers as particulate intranasal vaccine delivery systems for the induction of mucosal immune response. Current Drug Deliv. 2010, 7 (2), 118–124. https://doi.org/10.2174/156720110791011846
21. Kabanov V. A. Synthetic membrane active polyelectrolytes in design of artificial immunogens and vaccines. Macromolecular Symposia, 1986. https://doi.org/10.1002/masy.19860010110
22. Topuzogullari M., Koc R. C., Isoglu S. D., Bagirova M., Mustafaeva A. Z., Elcicek S., Oztel O. N., Baydar S. Y., Ates S. C., Allahverdiyev A. M. Conjugation, characterization and toxicity of lipophosphoglycan-polyacrylic acid conjugate for vaccination against leishmaniasis. J. Biomed. Sci. 2013, 20 (1), 35. https://doi.org/10.1186/1423-0127-20-35
23. Singh M., Chakrapani A., O’Hagan D. Nanoparticles and microparticles as vaccine-delivery systems. Exp. Rev. Vaccines. 2007, 6 (5), 797–808. https://doi.org/10.1586/14760584.6.5.797
24. Derman S., K?z?lbey K., Mustafaeva Z. Polymeric nanoparticles. Sigma J. Engin. Nat. Sci. 2013, V. 31, P. 109–122.
25. Derman S. Caffeic acid phenethyl ester loaded PLGA nanoparticles: effect of various process parameters on reaction yield, encapsulation efficiency, and particle size. J. Nanomater. 2015, 16 (1), 318. https://doi.org/10.1155/2015/341848
26. Arasoglu T., Derman S., Mansuroglu B. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods. Nanotechnology. 2015, 27 (2), 025103. https://doi.org/10.1088/0957-4484/27/2/025103
27. Arasoglu T., Mansuroglu B., Derman S., Gumus B., Kocyigit B., Acar T., Kocacaliskan I. Enhancement of Antifungal Activity of Juglone (5-Hydroxy-1, 4-naphthoquinone) Using a Poly (d, l-lactic-co-glycolic acid)(PLGA) Nanoparticle System. J. Agricult. Food Chem. 2016, 64 (38), 7087–7094. https://doi.org/10.1021/acs.jafc.6b03309
28. Derman S., Mustafaeva Z., Abamor E. S., Bagirova M., Allahverdiyev A. Preparation, characterization and immunological evaluation: canine parvovirus synthetic peptide loaded PLGA nanoparticles. J. Biomed. Sci. 2015, 22 (1), 89. https://doi.org/10.1186/s12929-015-0195-2
29. Sen G. P. Poly (DL-lactic-co-glycolic acid) microparticles and synthetic peptide drug conjugate for anti-cancer drug delivery (Master Thesis) Available from https://tez.yok.gov.tr/UlusalTezMerkezi/ 2009 (Thesis No: 255341).
30. Bala I., Hariharan S., Kumar M. R. PLGA nanoparticles in drug delivery: the state of the art. Crit. Rev.™ Therapeut. Drug Carrier Syst. 2004, 21 (5), 387–422. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i5.20
31. Chong C. S., Cao M., Wong W. W., Fischer K. P., Addison W. R., Kwon G. S., Tyrrell D. L., Samuel J. Enhancement of T helper type 1 immune responses against hepatitis B virus core antigen by PLGA nanoparticle vaccine delivery. J. Controll. Release. 2005, 102 (1), 85–99. https://doi.org/10.1016/j.jconrel.2004.09.014
32. Dixit S., Singh S. R., Yilma A. N., Agee II R. D., Taha M., Dennis V. A. Poly (lactic acid)–poly (ethylene glycol) nanoparticles provide sustained delivery of a Chlamydia trachomatis recombinant MOMP peptide and potentiate systemic adaptive immune responses in mice. Nanomed.: Nanotechnol. Biol. Med. 2014, 10 (6), 1311–1321. https://doi.org/10.1016/j.nano.2014.02.009
33. Fairley S. J., Singh S. R., Yilma A. N., Waffo A. B., Subbarayan P., Dixit S., Taha M. A., Cambridge C. D., Dennis V. A. Chlamydia trachomatis recombinant MOMP encapsulated in PLGA nanoparticles triggers primarily T helper 1 cellular and antibody immune responses in mice: a desirable candidate nanovaccine. Intern. J. Nanomed. 2013, V. 8, P. 2085.
34. Ma W., Chen M., Kaushal S., McElroy M., Zhang Y., Ozkan C., Bouvet M., Kruse C., Grotjahn D., Ichim T. PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses. Intern. J. Nanomed. 2012, V. 7, P. 1475. https://doi.org/10.2147/IJN.S29506
35. Primard C., Poecheim J., Heuking S., Sublet E., Esmaeili F., Borchard G. Multifunctional PLGA-based nanoparticles encapsulating simultaneously hydrophilic antigen and hydrophobic immunomodulator for mucosal immunization. Mol. Pharmaceut. 2013, 10 (8), 2996–3004. https://doi.org/10.1021/mp400092y
36. Silva A., Rosalia R., Sazak A., Carstens M., Ossendorp F., Oostendorp J., Jiskoot W. Optimization of encapsulation of a synthetic long peptide in PLGA nanoparticles: Low-burst release is crucial for efficient CD8(+) T cell activation. Europ J. Pharmaceut. Biopharmaceut. 2013, 83 (3), 338–345. https://doi.org/10.1016/j.ejpb.2012.11.006
37. Taha M. A., Singh S. R., Dennis V. A. Biodegradable PLGA85/15 nanoparticles as a delivery vehicle for Chlamydia trachomatis recombinant MOMP-187 peptide. Nanotechnology. 2012, 23 (32), 325101. https://doi.org/10.1088/0957-4484/23/32/325101
38. Xiao X., Zeng X., Zhang X., Ma L., Liu X., Yu H., Mei L., Liu Z. Effects of Caryota mitis profilin-loaded PLGA nanoparticles in a murine model of allergic asthma. Intern. J. Nanomed. 2013, V. 8, P. 4553.
39. Pawar D., Mangal S., Goswami R., Jaganathan K. Development and characterization of surface modified PLGA nanoparticles for nasal vaccine delivery: effect of mucoadhesive coating on antigen uptake and immune adjuvant activity. Europ. J. Pharmaceut Biopharmaceut. 2013, 85 (3), 550–559. https://doi.org/10.1016/j.ejpb.2013.06.017
40. Manish M., Rahi A., Kaur M., Bhatnagar R., Singh S. A single-dose PLGA encapsulated protective antigen domain 4 nanoformulation protects mice against Bacillus anthracis spore challenge. PLOS ONE. 2013, 8 (4), e61885. https://doi.org/10.1371/journal.pone.0061885
41. Jaganathan K., Vyas S. P. Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant hepatitis B antigen administered intranasally. Vaccine. 2006, 24 (19), 4201–4211. https://doi.org/10.1016/j.vaccine.2006.01.011
- Details
- Hits: 171
"Biotechnologia Acta" V. 10, No 1, 2017
https://doi.org/10.15407/biotech10.01.043
Р. 41-51, Bibliography 16, English
Universal Decimal Classification: 612.397:661.725.4
Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv
The aim of the study was to evaluate changes in the portion of polar and neutral lipids in the cells of Clostridium during their cultivation in the presence of butanol. Four natural isolates of Clostridium genus were studied with flow cytometry approaches. Under the optimal culture conditions, the polar lipids prevailed over neutral ones in bacterial cells; the content of neutral lipids doubled in spores of these microorganisms, while the content of polar ones was reduced. Strains No 1 and No 2 were able to grow at 1% butanol in the medium, and the strain No 4 was at 1.5%. When cultivated in the presence of different concentrations of butanol, the bacterial strains did not differ in such cytomorphological features as granularity and cell size. The quantitative content of polar and neutral lipids in the presence of butanol varied depending on the content of butanol in the medium, however this effect had a strain-specific character and did not show a correlation with the resistance of these bacteria to butanol. So, the content of polar and neutral lipids varied depending on butanol content in the medium. However this effect was strain-specific independently of resistance of these bacteria to butanol. The use of bacterial biomass as a source of lipids for the production of biofuels requires further optimization of the process to increase the content of the neutral lipid fraction in bacterial cells.
Key words: Clostridium, polar and neutral lipids, butanol, flow cytometry.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017
References
1. Tkachenko A.F., Tigunova O.A., Shulga S.M. Microbial lipids as a source of biofuel. Cytol. Genet. 2013, 47(6), 343-348. https://doi.org/10.3103/S0095452713060054
2. Guan Z., Tian B., Perfumo A., Goldfine H. The polar lipids of Clostridium psychrophilum, an anaerobic psychrophile. Biochimica et biophysica acta. 2013, 1831(6), 1108-1112.https://doi.org/10.1016/j.bbalip.2013.02.004
3. ohnston N., Goldfine H. Lipid composition in the classification of the butyric acid-producing Clostridia. J. Gen. Microbiol. 1983, 129, 1075-1081. https://doi.org/10.1099/00221287-129-4-1075
4. MacDonald D., Goldfine H. Effects of solvents and alcohols on the polar lipid composition of Clostridium butyricun under conditions of controlled lipid chanecomposition. Appl. Environ. Microbiol. 1991, 57(12), 3517-3521. PMC1840405.
5. Matsumoto M., Tamiya K., Koizumi K. Studies on neutral lipids and a new type of aldehydogenic ethanolamine phospholipid in Clostridium butyricum. J. Biochem. 1971, 69(3), 617-620. https://doi.org/10.1093/oxfordjournals.jbchem.a129508
6. Ogata S., Yoshino S., Okuma Y., Hayashida S. Chemical composition of autoplast membrane of Clostridium saccharoperbutylacetonicum. J. Gen. Appl. Microbiol. 1982, 28, 293-301. Doi.org/10.2323/jgam.28.293 https://doi.org/10.2323/jgam.28.293
7. De la Jara, A., Mendoza, H., Martel, A., Molina, C., Nordstron, L., de la Rosa, V., D?az, R. Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii. J. Appl. Phycol. 2003, 15, 433-438. https://doi.org/10.1023/A:1026007902078
8. Wilkinson J.F., The problem of energy-storage compounds in bacteria. Experimental Cell Research. 1959, 7, 111-130. https://doi.org/10.1016/0014-4827(59)90237-X
9. Adler H.I., Crow W. A technique for predicting the solvent-producing ability of Clostridium acetobutylicum. Appl. Environ. Microbiol. 1987, 53(10), 2496–2499. PMC204135.
10. Tracy B.P., Gaida S.M., Papoutsakis E.T. Development and application off-cytometric techniques for analyzing and sorting endospore-forming clostridia. Appl. Environ. Microbiol. 2008, 74(24), 7497–7506. https://doi.org/10.1128/AEM.01626-08
11. Neumeyer A., H?bschmann T., M?ller S., Frunzke J. Monitoring of population dynamics of Corynebacterium glutamicum by multiparameter flow cytometry. Microbial Biotechnology. 2013, 6(2), 157–167. https://doi.org/10.1111/1751-7915.12018
12. Jones S.W., Tracy B.P., Gaida S.M., Papoutsakis E.T. Inactivation of ?F in Clostridium acetobutylicum ATCC 824 blocks sporulation prior to asymmetric division and abolishes ?E and ?G protein expression but does not block solvent formation. J. Bacteriol. 2011, 193(10), 2429–2440. https://doi.org/10.1128/JB.00088-11
13. Tracy B.P., Jones S.W., Papoutsakis E.T. Inactivation of ?E and ?G in Clostridium acetobutylicum illuminates their roles in clostridial-cell-form biogenesis, granulose synthesis, solventogenesis, and spore morphogenesis. J. Bacteriol. 2011, 193(6), 1414–1426. https://doi.org/10.1128/JB.01380-10
14. Kolek J., Branska B., Drahokoupil M., Patakova P., Melzoch K., Sauer M. Evaluation of viability, metabolic activity and spore quantity in clostridial cultures during ABE fermentation. FEMS Microbiol. Lett. 2016, 363(6): fnw031. https://doi.org/10.1093/femsle/fnw031
15. Skrotska O.I., Penchuk Yu.M., Skrotskuy S.O., Gavrulenko M.M., Smirnova G.F. A selection of acetone-butanol bacteria is from different natural sources. Food Industry, 2010, 9:49-52. URI: dspace.nuft.edu.ua/jspui/handle/123456789/867
16. Kujawska A., Kujawski J., Bryjak M., Kujawski W. ABE fermentation products recovery methods - A review. Renewable and Sustainable Energy Reviews. 2015, 8(8), 648-661. https://doi.org/10.1016/j.rser.2015.04.028
- Details
- Hits: 139
"Biotechnologia Acta" V. 10, No 1, 2017
https://doi.org/10.15407/biotech10.01.034
Р. 34-42, Bibliography 54, English
Universal Decimal Classification: 579.222
DOMESTIC BUTANOL-PRODUCING STRAINS OF THE Clostridium GENUS
O. O. Tigunova, N. Ye. Beiko, H. S. Andriiash, S. H. Pryiomov, S. M. Shulga
«Institute of Food biotechnology and genomics of the National Academy of Sciences of Ukraine», Kyiv
The aim of the work was to summarize the results of own research concerning obtaining butanol producing strains of Clostridium genus, to identify them by physiological, morphological and genetic methods. Further study of characteristics and biological features of the strains, and various approaches in biotechnological process of butanol production are discussed. The work includes methods to increase butanol accumulation by producer strains. Perspectives of using chemical mutagenesis in Clostridia as a method of increasing butanol production are considered. The feasibility of using non-food raw material as a substrate for fermentation is discussed. Different methods of pretreatment and their impact on the accumulation of butanol in the liquid medium are compared. Butanol accumulation is shown to increase significantly if the synthesis precursors are added as components of enzymatic medium, and the “reverse bard” is used to reduce waste production without affecting the level of butanol synthesis. The problem of conservation of producing strains is given, and protective medium for microorganisms during the freeze-drying is defined.
Key words: butanol, butanol-producing strains of the Clostridium genus.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017
References
1. Abd-Alla M. H., Zohri A.-N. A., El-Enany A.-W. E., Ali S. M. Acetone-butanol-ethanol production from substandard and surplus dates by Egyptian native Clostridium strains. Anaerobe. 2015, V. 32, P. 77–86. https://doi.org/10.1016/j.anaerobe.2014.12.008
2. Menon N., Paszotor A., Menon B. R. K., Kallio P., Fisher K., Akhtar M. K., Leys D., Jones P. R., Scrutton N. S. A microbial platform for renewable propane synthesis based on a fermentative butanol pathway. Biotechnol. Biofuels. 2015, 8 (61), 1–12. https://doi.org/10.1186/s13068-015-0231-1
3. Linggang S., Phang L. Y., Wasoh H., Abd-Aziz S. Acetone-butanol-ethanol production by Clostridium acetobutylicum ATCC 824 using sago pith residues hydrolysate. BioEnergy Res. 2013, 6 (1), 321–328. https://doi.org/10.1007/s12155-012-9260-9
4. Sreekumar S., Baer Z. C., Pazhamalai A., Gunbas G., Grippo A., Blanch H. W., Clark D. S., Toste D. F. Production of an acetone-butanol-ethanol mixture from Clostridium acetobutylicum and its conversion to high-value biofuels. Nat. Prot. 2015, V. 10, P. 528–537. https://doi.org/10.1038/nprot.2015.029
5. DeJaco R. F., Bai P., Tsapatsis M., Siepmann J. I. Absorptive separation of 1-butanol from aqueous solutions using MFI- and FER- type zeolite frameworks: a Monte Carlo study. Langmuir. 2016, 32 (8), 2093–2101. https://doi.org/10.1021/acs.langmuir.5b04483
6. All Fin. Industrial scale bio-butanol production w/clever co-processing. 2011. Available at: http://alfin2300.blogspot.com/2011/04/industrial-scale-bio-butanol-production.html.
7. Solecki M., Scodel A., Epstein B. Advanced biofuel market report 2013. Capacity through 2016. California, SF, Environm. Entrepreneus. 2013. Available at: https://www.e2.org/ext/doc/E2AdvancedBiofuelMarketReport2013.pdf.
8. Shang-Tian Y. Final Report: A novel fermentation process for butyric acid and butanol production from plant biomass. 2005. Available at: http://cfpub1.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract/7558/report/F.
9. Bruant G., Levesque M.-J., Peter C., Guiot S. R., Masson L. Genomic analysis of carbone monoxide utilization and butanol production by Clostridium carboxidivorans Stain p7T. Plos. ONE. 2010, 5 (9), 1–12. https://doi.org/10.1371/journal.pone.0013033
10. Lee S. Y., Park J. H., Jang S. H., Nielsen L. K., Kim J., Jung K. S. Fermentative butanol production by Clostridia. [Review]. Biotechnol. Bioeng. 2008, 101 (2), 209–228. https://doi.org/10.1002/bit.22003
11. Rawey D. E. Butanol: The other alternative fuel. Agriculture Biofuels: Technol. Sustainabil. Profitabil. 2007, P. 137–147.
12. Mitchell W. J. Biology and physiology. In: Clostridia, Biotechnology and medical application. In Willey-VCH, Weinheim. 2001, P. 49–104.
13. Jones D. T., Rogers P., Gottschalk G. Acetone-butanol fermentation revisited. Microbiol. Rev. 1986, 50 (4), 484–524.
14. Durre P. Fermentative butanol production. Ann. New York Acad. Sci. 2008, N 1125, P. 353–362. https://doi.org/10.1196/annals.1419.009
15. Mitchell W. L. Physiology of carbohydrate to solvent conversion by clostridia. Appl. Microbiol. Physiol. 1998, V. 39, P. 31–130. https://doi.org/10.1016/S0065-2911(08)60015-6
16. Volesky B., Mulchandani A., Williams J. Biochemical production of industrial solvents (acetone-butanol-ethanol) from renewable resources. Ann. N. Y. Acad. Sci. 1981, N 369, P. 205–218. https://doi.org/10.1111/j.1749-6632.1981.tb14189.x
17. Sliusarenko T. P. Laboratorni praktykum po mykrobyolohyy pyshchevkh proyzvodstv. Yzdatelstvo trete pererabotannoe y dopolnenoe. Moskwa: «Lehkaya i pishchevaya promyshlennost». 1984, 208p. (In Russian).
18. Tigunova O. O., Shulga S. M. New producer strains of biobutanol. I. Isolation and identification. Biotechnol. acta. 2013, 6 (1), 97–104. (In Ukrainian). https://doi.org/10.15407/biotech6.01.097
19. Lopez-Contreras A. M. Utilization of lignocellulosic substrates by solvent-producing Clostridia. PhD thesis Wageningen University, Wageningen, The Netherlands. 2003, 144 p.
20. Kratkyi opredelytel bakteryi Berhy. Pod red. Dzh. Khoulta. Moskwa: Mir. 1980, 495 p. (In Russian).
21. Jonson L. J., Toth J., Santiwatanakul S., Chen J. S. Cultures of “Clostridium acetobutylicum” from Various Collections Comprise Clostridium acetobutylicum, Clostridium beijerinckii, and two other Distinct Types Based on DNA-DNA Reassociation. Int. J. Syst. Bact. 1997, 47 (2), 420–424. https://doi.org/10.1099/00207713-47-2-420
22. Keis S., Bennett C. F., Ward K. V., Jones D. T. Taxonomy and phylogeny of industrial solvent-producing clostridia. J. System. Bacteriol. 1995, 45 (4), 693–705.
23. Wilkinson S. R., Young M., Goodacre R., Morris J. G., Farrow J. A. E., Collins M. D. Phenotypic and genotypic differences between certain strains of Clostridium acetobutylicum. FEMS Microbiol. Lett. 1995, V. 125, P. 199–204. https://doi.org/10.1111/j.1574-6968.1995.tb07358.x
24. Wilson K. Preparation of genomic DNA from bacteria. Curr. Prot. Mol. Biol. 2001, 2.4.1–2.4.5.
25. Priomov S. G., Tigunova O. O. Phylogenetic analysis of butanol producing strains compared 16S RRNA gene sequence. Elektronyi zhurnal «Naukovi dopovidi NUBiP Ukrainy» № 57 (Hruden), 2015. Available at: http://nd.nubip.edu.ua/2015_8/index.html. (In Ukrainian).
26. Xiao H., Gu Y., Ning Y., Mitchell W. J., Jiang W., Yang S. Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose. Appl. Environ. Microbiol. 2011, 77 (22), 7886–7895. https://doi.org/10.1128/AEM.00644-11
27. Sivagnanam K., Raghavan V. G. S., Shah M. Characterization of Clostridium acetobutylicum protein interaction network from butanol fermentation. Appl. Environ. Microbiol. 2004, 70 (9), 5238–5243.
28. L?pez-Contreras A. M., Gabor K., Martens A. A., Renckens B. A., Claassen P. A., Van Der Oost J., De Vos W. M. Substrate-induced production and secretion of cellulases by Clostridium acetobutylicum. Appl Environ. Microbiol. 2004, 70 (9), 5238–5243. https://doi.org/10.1128/AEM.70.9.5238-5243.2004
29. Andrade J. C., Vasconcelos I. Continuous cultures of Clostridium acetobutylicum: culture stability and low-grade glycerol utilisation. Biotech. Lett. 2003, 25 (2), 121–125. https://doi.org/10.1023/A:1021911217270
30. Al-Shorgani N. K. N., Kalil M. S., Yusoff W. M. W. The effect of different carbon sources on biobutanol production using Clostridium saccharoperbutylacetonicum Nl-4. Biotechnology. 2011, 10 (3), 280–285. https://doi.org/10.3923/biotech.2011.280.285
31. Biebl H. Fermentation of glycerol by Clostridium pasteurianum – bath and continuous culture studies. J. Ind. Microbiol. Biotechnol. 2001, 27 (1), 18–26.
32. Xiao H., Li Z., Jiang Y., Yang Y., Jiang W., Gu Y., Yang S. Metabolic engineering of D-xylose pathway in Clostridium beijerinckii to optimize solvent production from xylose mother liquid. Metab. Eng. 2012, 14 (5), 569–578.
33. L?pez-Contreras A. M., Gabor K., Martens A. A., Renckens B. A., Claassen P. A., Van Der Oost J., De Vos W. M. Clostridium beijerinckii cells expressing Neocallimastix patriciarum glycoside hydrolases show enhanced lichenan utilization and solvent production. Appl. Environ. Microbiol. 2001, 67 (11), 5127–5133.
34. Watsom J. E. Pentose sugar utilisation in Clostridium beijerinckii NCIMB 8052 for biobutanol production: genetic and physiological studies. A thesis submitted in partial fulfilment of the requirements of Edinburgh Napier University, for award of Doctor of Philosophy. 2012, 229 p.
35. Tigunova O. O., Shulga S. M. New producer strains of biobutanol. ІІ. Renewable lignocellulose fermentation. Biotechnol. acta. 2014, 7 (4), 54–60. (In Ukrainian).
36. Tіgunova O. O., Shulga S. M. Using by mutant strains C. acetobutylicum ligno-cellulosic material as a substrate. Microbiol. Biotechnol. 2015, V. 3, P. 35–44. (In Ukrainian).
37. Morgan C. A., Herman N., White P. A., Vesey G. Preservation of micro-organisms by drying; a review. J. Microbiol. Meth. 2006, 66 (2), 183–193.
38. Prakash O., Nimonkar Y., Shouche Y. S. Practice and prospects of microbial preservation. FEMS Microbiol. Lett. 2013, 339 (1), 1–9.
39. Tigunova O. O., Beiko N. E., Andriiash A. S., Priymov S. G., Shulga S. M. Lyophilization effect on productivity of butanol-producing strain. Biotechnol. acta. 2016, 9 (4), 24–29.
40. Kwon J. H., Kang H., Sang B.-I., Kim Y., Min J., Mitchell R. J., Lee J. H. Feasibility of a facile butanol bioproduction using planetary mill pretreatment. Biores. Technol. 2016, N 199, P. 283–287.
41. Ezeji T., Qureshi N., Blaschek H. P. Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechn. Bioeng. 2007, 27 (6), 1460–1469. https://doi.org/10.1002/bit.21373
42. Marchal R., Ropars M. Vandecasteele J. P. Conversion into acetone and butanol of lignocellulosic substrates pretreated by steam explosion. Biotechnol. Lett. 1986, V. 8, P. 365–370. https://doi.org/10.1007/BF01040868
43. Maddox I. S., Qureshi N., Gutierrez N. A. Production of n-butanol by fermentation of wood hydrolysate. Biotechnol. Lett. 1983, V. 5, P. 175–178. https://doi.org/10.1007/BF00131898
44. Lopez-Contreras A. M., Claassen P. A. M., Mooibroek A., de Vos W. M. Utilisation of saccharides in extruded domestic organic waste by Clostridium acetobutylicum ATCC 824 to produce acetone, butanol and ethanol. Appl. Microbiol. Biotechnol. 2000, N 54, P. 162–167. https://doi.org/10.1007/s002530000374
45. Galardo R., Alves M., Rodrigues L. R. Modulation of crude glycerol fermentation by Clostridium pasteurianum DSM 525 towards the production of butanol. Biomass Bioen. 2014, N 71, P. 134–143.
46. Ohmiya K., Sakka K., Kimura T., Morimoto K. Application of microbial genes to recalcitrant biomass utilization and environmental conservation. J. Biosci. Bioeng. 2003, 95 (6), 549–561. https://doi.org/10.1016/S1389-1723(03)80161-5
47. Qureshi N., Li X. L., Hughes S., Saha B. C., Cotta M. A. Butanol production from corn fiber xylan using Clostridium acetobutylicum. Biotechnol. Prog. 2006, 22 (3), 673–680. https://doi.org/10.1021/bp050360w
48. Campos E. J., Qureshi N., Blaschek H. P. Production of acetone butanol ethanol from degermed corn using Clostridium beijerinckii BA101. Appl. Biochem. Biotechnol. 2002, 98 (100), 553–561. https://doi.org/10.1385/ABAB:98-100:1-9:553
49. Medoff M. Conversion system for biomass. Xyleco Inc. International patent EP2049674 A2. April 22, 2009.
50. Li C., Knierim B., Manisseri C., Arora R., Scheller H. V., Auer M., Vogel K. P., Simmons B. A., Singh S. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Biores. Technol. 2010, N 101, P. 4900–4906. https://doi.org/10.1016/j.biortech.2009.10.066
51. Arora R., Manisseri C., Li C., Ong M. D., Sheller H. V., Vogel K., Simmons B. A., Sing S. Monitoring and analyzing process streams towards understanding ionic liquid pretreatment of switchgrass (Panicum virgatum L.). Bioenerg. Res. 2010, V. 3, P. 134–145.
52. Zhao H., Baker G. A., Cowins J. V. Fast enzymatic saccharification of switchgrass after pretreatment with ionic liquids. Biotechnol. Progr. 2010, 26 (1), 127–133.
53. Tigunova O. O., Beiko N. E., Kamenskyh D. S., Tkachenko T. V., Yevdokymenko V. O., Kashkovskiy V. I., Shulga S. M. Lignocellulosic biomass after explosive autohydrolysis as substrate for butanol obtaining. Biotechnol. acta. 2016, 9 (4), 28–34. https://doi.org/10.15407/biotech9.04.028
54. Tigunova O. O., Shulga S. M. New producer strains of biobutanol. ІІI. Methods increased accumulation of butanol from switchgrass Panicum virgatum L. biomass. Biotechnol. acta. 2015, 8 (4), 65–68. (In Ukrainian).
- Details
- Hits: 98
"Biotechnologia Acta" V. 10, No 1, 2017
https://doi.org/10.15407/biotech10.01.026
Р. 26-33, Bibliography 22, English
Universal Decimal Classification: 577. 152.32
N. V. Borzova, L. D. Varbanets, V. S. Pidgorskyi, O. D. Ianieva
Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kiyv
The aim of the research was to determine the mannan-degrading activity of yeasts cultures isolated from various sources and select strains with high β-mannanase activity. As a result of screening of 245 yeast strains, which are the representatives of 7 genera and 14 species, the active producers of extracellular β-mannanase were identified. To increase β-mannanase activity, the cultures were grown under submerged conditions using guar gum galactomannan as a carbon source and an inducer. β-Mannanase activity was determined by dinitrosalicylic method. The most active biosynthetic species were Cryptococcus albidus, C. gastricus, C. magnus, C. terreus, C. laurentii, Saccharomyces cerevisiae, Williopsis californica, Metschnikowia pulcherrima, Pichia anomala and P. guilliermondii. The activity in culture supernatant was ranged from 0.2 to 75 U/ml. α-Galactosidase activity was found in two strains (Debaryomyces polymorphus UCM Y-152 and Debaryomyces hansenii var. fabryi UCM Y-2400). None of the tested cultures demonstrated both β-mannanase and α-galactosidase activity, that is, they are unable to attack both the main and side chains of galactomannan.
Key words: yeast, β-mannanase, α-galactosidase, galactomannan.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017
References
1. Dhawan S., Kaur J. Microbial mannanases: an overview of production and applications. Crit. Rev. Biotechnol. 2007, 27 (4), 197?216. https://doi.org/10.1080/07388550701775919
2. Chauhan P. S., Puri N. Sharma P., Gupta N. Mannanases: microbial sources, production, properties and potential biotechnological applications. Appl. Microbiol. Biotechnol. 2012, 93 (5), 1817?1830. https://doi.org/10.1007/s00253-012-3887-5
3. Titapoka S., Keawsompong S., Haltrich D., Nitisinprasert S. Selection and characterization of mannanase-producing bacteria useful for the formation of prebiotic manno-oligosaccharides from copra meal. World J. Microbiol. Biotech. 2008, 24 (8), 1425–1433. https://doi.org/10.1007/s11274-007-9627-9
4. Mabrouk M., Ahwany A. Production of ?-mannanase by Bacillus amylolequifaciens 10A1 cultured on potato peels. Afr. J. Biotech. 2008, 7 (8), 1123?1128. doi: 10.5897/AJB08.047.
5. Lin S. S., Dou W. F., Xu H. Y., Li H. Z., Xu Z. H., Ma Y. H. Optimization of medium composition for the production of alkaline beta-mannanase by alkaliphilic Bacillus sp. N16-5 using response surface methodology. Appl Microbiol. Biotechnol. 2007, 75 (5), 1015–1022. Epub 2007 Mar 15. https://doi.org/10.1007/s00253-007-0907-y
6. Adebayo-Tayo B., Elelu T., Akinola G., Oyiloye A. Screening and production of mannose by Bacillus strains isolated from fermented food condiments. Innovative Romanian Food Biotech. 2013, V. 13, P. 53–62.
7. Kim D. Y., Ham S. J., Lee H. J., Kim Y. J., Shin D. H., Rhee Y. H., Son K. H., Park H. Y. A highly active endo-?-1,4-mannanase produced by Cellulosimicrobium sp. strain HY-13, a hemicellulolytic bacterium in the gut of Eisenia fetida. Enzyme Microb Technol. 2011, 48 (4–5), 365–370. https://doi.org/10.1016/j.enzmictec.2010.12.013
8. Olaniyi O. O., Arotupin D. J. Isolation and screening of mannanase producing bacteria from agricultural wastes. British Microb. Res. J. 2013, 3 (4), 654–663. https://doi.org/10.9734/BMRJ/2013/4221
9. Kataoka N., Tokiwa Y. Isolation and characterization of an active mannanase producing anaerobic bacterium, Clostridium tertium KT-5A, from lotus soil. J. Appl. Microbiol. 1998, V. 84, P. 357–367. https://doi.org/10.1046/j.1365-2672.1998.00349.x
10. Mudau M. M., Setati M. E. Partial purification and characterization of endo-?-1,4-mannanases from Scopulariopsis candida strains isolated from solar salterns. Afr. J. Biotech. 2008, 7 (13), 2279–2285. doi: 10.4314/ajb.v7i13.58977.
11. Bhoria P., Singh G. Optimization of mannanase production from Streptomyces sp. PG-08-03 in submerged fermentation. BioResources. 2009, 14 (3), 1130–1138.
12. Sae-Leen N. The production of fungal mannanase, cellulase and xylanase using palm kernel meal as a substrate. Walailak J. Sci. Tech. 2007, 4 (1), 67–82.
13. Olaniyi O. O., Igbe F. O., Ekundayo T. C. Optimization studies on mannanase production by Trichosporonoides oedocephalis in submerged state fermentation J. Biotech. Pharm. Res. 2013, 4 (7), 110–116.
14. Norita S. M., Rosfarizan M., Ariff A. B. Evaluation of the activities of concentrated crude mannan-degrading enzymes produced by Aspergillus niger. Malaysian J. Microbiol. 2010, V. 6, P. 171–180.
15. Blibech M., Ghorbel R. E., Chaari F., Dammak I., Bhiri F., Neifar M., Chaabouni S. E. Improved mannanase production from Penicillium occitanis by fed-batch fermentation using acacia seeds. ISRN Microbiol. 2011, 938347. https://doi.org/10.5402/2011/938347
16. Eneyskaya E. V., Sundqvist G., Golubev A. M., Batullin F. M., Ivanen D. R., Shabalin K. A., Brumer H., Kulminskaya A. A. Transglycosylating and hydrolytic activities of the ?-mannosidase from Trichoderma reesei. Biochimie. 2009, 91 (5), 632–638. https://doi.org/10.1016/j.biochi.2009.03.009
17. Miller G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 1959, V. 31, P. 426–428. https://doi.org/10.1021/ac60147a030
18. Chaplin M. E., Kennedy J. E. Carbohydrate analysis. Oxford: Washington: IRL Press. 1986, 228 p.
19. Kremnicky L., Slavikova E., Mislovicova D., Biely P. Production of extracellular beta-mannanases by yeasts and yeast-like microorganisms. Folia Microbiol. (Praha). 1996, 41 (1), 43–47. https://doi.org/10.1007/BF02816339
20. Bhadra B., Rao R. S., Singh P. K., Sarkar P. K., Shivaji S. Yeasts and yeast-like fungi associated with tree bark: diversity and identification of yeasts producing extracellular endoxylanases. Curr. Microbiol. 2008, 56 (5), 489–494. https://doi.org/10.1007/s00284-008-9108-x
21. Borzova N. V., Varbanets L. D., Kurchenko I. M., Nakonechna L. T. Screening of mannane-degrading enzymes. Microbiol. Zh. 2016, 78 (5), 21–29. (In Russian).
22. Malgas S., van Dyk J. S., Pletschke B. I. A review of the enzymatic hydrolysis of mannans and synergistic interactions between ?-mannanase, ?-mannosidase and ?-galactosidase. World J. Microbiol. Biotechnol. 2015, 31 (8), 1167–1175. https://doi.org/10.1007/s11274-015-1878-2