- Details
- Hits: 110
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 14, No. 6 , 2021
P. 71-79, Bibliography 34, Engl.
UDC: 579.262
https://doi.org/10.15407/biotech14.06.071
A. I. Olkhovska, K. О. Drobot, A. M. Shakhovsky, N. A. Matvieieva
Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine, Kyiv
Artemisia absinthium L. plants are known as producers of substances with antioxidant properties. Among others, phenols and flavonoids are found in these plants. The synthesis of these bioactive compounds can be activated by genetic transformation. This process can be carried out even without the transfer of specific genes involved in the synthesis of flavonoids. Thus, “hairy” roots, obtained after Agrobacterium rhizogenes – mediated transformation, can produce a variety of valuable substances.
The aim of the study was to obtaine A. absinthium “hairy” roots with high phenolic content.
Methods. “Hairy” roots of plants were obtained by co-cultivation leaves with suspension of A. rhizogenes with pCB124 vector. The presence of transferred genes was confirmed by PCR. The reactions with AlCl3 and Folin-Ciocalteu reagent were used to determine the total flavonoids and phenols content. The antioxidant activity of extracts was evaluated by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity.
Results. PCR analysis detected the presence of bacterial rol genes and the absence of рСВ124 plasmid genes. Root lines differed in growth rate. “Hairy” roots were characterized by a higher phenolic content, particularly flavonoids (up to 4.784 ± 0.10 mg/g FW) compared to control (3.861±0.13 mg/g FW). Also, extracts from transgenic roots demonstrated higher antioxidant activity in the reaction with DPPH reagent (EC50 = 3.657 mg) when compared with extracts from control plants (EC50 = 6,716 mg).
Conclusions. Transformation of A. absinthium mediated by A. rhizogenes can be applied for obtaining transgenic root lines with increased phenolic content and higher antioxidant activity.
Key words. Artemisia absinthium L., Agrobacterium rhizogenes-mediated transformation, “hairy” roots of plants, flavonoids, phenolic compounds, antioxidant activity.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2021
References
1. Batiha G. E.-S., Olatunde A., El-Mleeh A., Hetta H. F., Al-Rejaie S., Alghamdi S., Zahoor M., Beshbishy A. M., Murata T., Zaragoza-Bastida A., Rivero-Perez N. Bioactive Compounds, Pharmacological Actions, and Pharmacokinetics of Wormwood (Artemisia absinthium). Antibiotics. 2020, 9 (6), 353. https://doi.org/10.3390/antibiotics9060353
2. Bora K. S., Sharma A. Evaluation of antioxidant and free-radical scavenging potential of Artemisia absinthium. Pharm. Biol. 2011, 49 (12), 1216–1223. https://doi.org/10.3109/13880209.2011.578142
3. Shahnazi M., Azadmehr A., Hajiaghaee R., Mosalla S., Latifi R. Effects of Artemisia Absinthium L. Extract on the Maturation and Function of Dendritic Cells. Jundishapur J. Nat. Pharm. Prod. 2015, 10 (2), 1–6. https://doi.org/10.17795/jjnpp-20163
4. Boudjelal A., Smeriglio A., Ginestra G., Denaro M., Trombetta D. Phytochemical Profile, Safety Assessment and Wound Healing Activity of Artemisia absinthium L. Plants. 2020, 9 (12), 1744. https://doi.org/10.3390/plants9121744
5. Hadi A., Hossein N., Shirin P., Najmeh N., Abolfazl M. Anti-inflammatory and Analgesic Activities of Artemisia absinthium and Chemical Composition of its Essential Oil. Int. J. Pharm. Sci. Rev. Res. 2014, 24 (2), 237–244.
6. Koyuncu I. Evaluation of anticancer, antioxidant activity and phenolic compounds of Artemisia absinthium L. Extract. Cellular and Molecular Biology. 2018, 64 (3), 25–34. https://doi.org/10.14715/cmb/2018.64.3.5
7. Shafi N., Khan G. A., Ghauri E. G. Antiulcer effect of Artemisia absinthium L. in rats. Pakistan Journal of Scientific and Industrial Research. 2004, 47 (2), 130–134.
8. Kordali S., Kotan R., Mavi A., Cakir A., Ala A., Yildirim A. Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, Artemisia santonicum, and Artemisia spicigera essential oils. J. Agric. Food Сhem. 2005, 53 (24), 9452–9458. https://doi.org/10.1021/jf0516538
9. Julio L. F. Nematicidal activity of the hydrolate byproduct from the semi industrial vapor pressure extraction of domesticated Artemisia absinthium against Meloidogyne javanica. Crop Protection. 2017, V. 94, P. 33–37. https://doi.org/10.1016/j.cropro.2016.12.002
10. Bora K. S., Sharma A. Neuroprotective effect of Artemisia absinthium L. on focal ischemia and reperfusion-induced cerebral injury. J. Ethnopharmacol. 2010, 129 (3), 403–409. https://doi.org/10.1016/j.jep.2010.04.030
11. Amat N., Upur H., Bla?ekovi? B. In vivo hepatoprotective activity of the aqueous extract of Artemisia absinthium L. against chemically and immunologically induced liver injuries in mice. J. Ethnopharmacol. 2010, 131 (2), 478–484. https://doi.org/10.1016/j.jep.2010.07.023
12. Daradka H. M., Abas M. M., Mohammad M. Antidiabetic effect of Artemisia absinthium extracts on alloxan-induced diabetic rats. Comp. Clin. Path. 2014, 23 (6), 1733–1742. https://doi.org/10.1007/s00580-014-1963-1
13. Turak A., Shi S.-P., Jiang Y., Tu P. F. Dimeric guaianolides from Artemisia absinthium. Phytochemistry. 2014, V. 105, P. 109–114. https://doi.org/10.1016/j.phytochem.2014.06.016
14. Pietta P. G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63 (7), 1035–1042. https://doi.org/10.1021/np9904509
15. Pisoschi A. M., Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, V. 97, P. 55–74. https://doi.org/10.1016/j.ejmech.2015.04.040
16. Giri A., Narasu M. L. Transgenic hairy roots: recent trends and applications. Biotechnol. Adv. 2000, V. 18, P. 1–22. https://doi.org/10.1016/S0734-9750(99)00016-6
17. Bulgakov V. P. Functions of rol genes in plant secondary metabolism. Biotechnol. Adv. 2008, V. 26, P. 318–324. https://doi.org/10.1016/j.biotechadv.2008.03.001
18. Balasubramanian M., Anbumegala M., Surendran R., Run M., Shanmugam G. Elite hairy roots of Raphanus sativus (L.) as a source of antioxidants and flavonoids. 3 Biotech. 2018, V. 8, P. 128. https://doi.org/10.1007/s13205-018-1153-y
19. Ono N. N., Tian L. The multiplicity of hairy root cultures: prolific possibilities. Plant Sci. 2011, 180 (3), 439–446. https://doi.org/10.1016/j.plantsci.2010.11.012
20. Chandra S. Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism. Biotechnol. Lett. 2012, 34 (3), 407–415. https://doi.org/10.1007/s10529-011-0785-3
21. Kim Y., Wyslouzil B. E., Weathers P. J. Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell. Dev. Biol.-Plant. 2002, 38 (1), 1–10. www.jstor.org/stable/20171597. https://doi.org/10.1079/IVP2001243
22. Abraham J., Thomas T. D. Hairy Root Culture for the Production of Useful Secondary Metabolites. Biotechnology and Production of Anti-Cancer Compounds. 2017, P. 201–230. https://doi.org/10.1007/978-3-319-53880-8_9
23. Balasubramani S., Ranjitha Kumari B. D., Moola A. K., Sathish D., Prem Kumar G., Srimurali S., Babu Rajendran R. Enhanced Production of ?-Caryophyllene by Farnesyl Diphosphate Precursor-Treated Callus and Hairy Root Cultures of Artemisia vulgaris L. Front. Plant Sci. 2021, V. 12, P. 634178. https://doi.org/10.3389/fpls.2021.634178
24. Zheng L. P., Guo Y. T., Wang J. W., Tan R. X. Nitric oxide potentiates oligosaccharide-induced artemisinin production in Artemisia annua hairy roots. J. Integr. Plant Biol. 2008, 50 (1), 49–55. https://doi.org/10.1111/j.1744-7909.2007.00589.x
25. Pala Z., Shukla V., Alok A., Kudale S., Desai N. Enhanced production of an anti-malarial compound artesunate by hairy root cultures and phytochemical analysis of Artemisia pallens Wall. 3 Biotech. 2016, 6 (2), 182. https://doi.org/10.1007/s13205-016-0496-5
26. Nin S., Bennici A., Roselli G., Mariotti D., Schiff S., Magherini R. Agrobacterium-mediated transformation of Artemisia absinthium L. (wormwood) and production of secondary metabolites. Plant Cell Reports. 1997, 16 (10), 725–730. https://doi.org/10.1007/s002990050310. PMID: 30727627
27. Leth I. K., McDonald K. A. Media development for large scale Agrobacterium tumefaciens culture. Biotechnology Progress. 2017, 33 (5), 1218–1225. https://doi.org/10.1002/btpr.2504
28. Aboul-Maaty N. A. F., Oraby H. A. S. Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bull. Nat. Res. Centre. 2019, 43 (25). https://doi.org/10.1186/s42269-019-0066-1
29.. Singleton V. L, Orthofer R., Lamuela-Ravent?s R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, Academic Press. 1999, V. 299, P. 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1
30. P?kal A., Pyrzynska K. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal. Methods. 2014, V. 7, P. 1776–1782. https://doi.org/10.1007/s12161-014-9814-x
31. Brand-Williams W., Cuvelier M. E., Berset C. Use of a free radical method to evaluate antioxidant activity. LWT – Food Science and Technology. 1995, 28 (1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
32. Tavassoli P., Safipour Afshar A. Influence of different Agrobacterium rhizogenes strains on hairy root induction and analysis of phenolic and flavonoid compounds in marshmallow (Althaea officinalis L.). 3 Biotech. 2018, 8 (8), 351. https://doi.org/10.1007/s13205-018-1375-z
33. Sahayarayan J. J., Udayakumar R., Arun M., Ganapathi A., Alwahibi M. S., Aldosari N. S., Morgan A. Effect of different Agrobacterium rhizogenes strains for in vitro hairy root induction, total phenolic, flavonoids contents, antibacterial and antioxidant activity of (Cucumis anguria L.). Saudi J. Biol. Sci. 2020, 27 (11), 2972–2979. https://doi.org/10.1016/j.sjbs.2020.08.050
34. El-Esawi M. A., Elkelish A., Elansary H. O., Ali H. M., Elshikh M., Witczak J., Ahmad M. Genetic Transformation and Hairy Root Induction Enhance the Antioxidant Potential of Lactuca serriola L. Oxid. Med. Cell. Longev. 2017, V. 2017, P. 5604746. https://doi.org/10.1155/2017/5604746
- Details
- Hits: 68
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 14, No. 6 , 2021
P. 60-70, Bibliography 24, Engl.
UDC: 543.544+547.655.6+577.1
https://doi.org/10.15407/biotech14.06.060
N. Kobylinska1, T. Bohdanovych2, V. Duplij2, I. Pashchenko3, N. Matvieieva1
1 Dumansky Institute of Colloid and Water Chemistry of of the National Academy of Sciences of Ukraine, Kyiv
2 Institute of Cell Biology and Genetic Engineering of of the National Academy of Sciences of Ukraine, Kyiv
3 Kyiv National University of Technologies and Design, Ukraine
Aim. The profiles of polyphenolic phytochemicals in extracts of “hairy” roots of Artemisia tilesii Ledeb. and Artemisia annua L. were studied. Analytical separation and quantification of main components in extracts were evaluated.
Methods. “hairy” roots were grown in vitro on Murashige and Skoog medium. High-performance chromatography coupled with different types of detection (photo diode array detection (DAD) and electrospray ionization with ultra-high resolution Qq-Time-of-Flight mass spectrometry) was used to identify and quantify the main biologically active components in ethanol extracts of “hairy” roots.
Results. The amount of flavonoids was 94.71–144.33 mg RE/g DW and 33.52–78.00 mg RE/g DW in “hairy” roots of A. annua and A. tilesii, respectively. In most samples of “hairy” roots, the amount of flavonoids was higher than the content in the control plant roots. The presence of Apigenin (0.168 ± 0.003 mg/L and 0.178 ± 0.006 mg/L), Quercetin (0.282 ± 0.005 mg/L and 0.174 ± 0.005 mg/L) in the extracts of A. annua and A. tilesii was shown by reverse-phase HPLC-DAD method. Chlorogenic acid, Kaempferol, and other flavonoids were detected.
Conclusions. The developed HPLC-DAD method demonstrated the high percentage of recovery, low limit of detection and quantification (9,11 ng/ml ≤ LOQ ≤16,51 ng/ml), accuracy and correctness. Thus, the method is suitable for the simultaneous quantification of phenolic acids and flavonoids in various plant extracts with short time and high efficiency.
Key words: Artemisia tilesii, Artemisia annua, polyphenols, flavonoids, “hairy” roots, reversed-phase HPLC with diode matrix detector.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2021
References
1. Zhang B., Deng Z., Dan Ramdath D., Tang Y., Chen P. X., Liu R., Liu Q., Tsao R. Phenolic pro?les of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on a-glucosidase and pancreatic lipase. Food Chem. 2015, V. 172, P. 862?872. https://doi.org/10.1016/j.foodchem.2014.09.144
2. Pietta P.-G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63 (7), 1035–1042. https://doi.org/10.1021/np9904509
3. Shay J., Elbaz H. A., Lee I., Zielske S. P., Malek M. H., H?ttemann M. Molecular Mechanisms and Therapeutic Effects of (?)-Epicatechin and Other Polyphenols in Cancer, Inflammation, Diabetes, and Neurodegeneration. Oxid. Med. Cell. Longev. 2015, 181260. https://doi.org/10.1155/2015/181260
4. Enogieru A. B., Haylett W., Hiss D. C., Bardien S., Ekpo O. E. Rutin as a Potent Antioxidant: Implications for Neurodegenerative Disorders. Oxid. Med. Cell. Longev. 2018, 6241017. https://doi.org/10.1155/2018/6241017
5. Salehi B., Machin L., Monzote L., Sharifi-Rad J., Ezzat S. M., Salem M. A., Merghany R. M., El Mahdy N. M., K?l?? C. S., Sytar O., Sharifi-Rad M., Sharopov F., Martins N., Martorell M., Cho W. C. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS Omega. 2020, 5 (20), 11849–11872. https://doi.org/10.1021/acsomega.0c01818
6. Salehi B., Venditti A., Sharifi-Rad M., Kr?giel D., Sharifi-Rad J., Durazzo A., Lucarini M., Santini A., Souto E. B., Novellino E., Antolak H., Azzini E., Setzer W. N., Martins N. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20 (6), 1305. https://doi.org/10.3390/ijms20061305
7. Ahmadi S. M., Farhoosh R., Sharif A., Rezaie M. Structure-Antioxidant Activity Relationships of Luteolin and Catechin. J. Food Sci. 2020, 85 (2), 298?305. https://doi.org/10.1111/1750-3841.14994
8. Ginwala R., Bhavsar R., Chigbu D. G. I., Jain P., Khan Z. K. Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the
Anti-Inflammatory Activity of Apigenin. Antioxidants (Basel). 2019, 8 (2), 35. https://doi.org/10.3390/antiox8020035
9. Wani H., Shah S., Banday J. Chemical composition and antioxidant activity of the leaf essential oil of Artemisia absinthium growing wild in Kashmir, Ind. J. Phytopharm. 2014, V. 3, P. 90–94, https://doi.org/10.31254/phyto.2014.3203
10. Tu Y. From Artemisia annua L. to Artemisinins. The Discovery and Development of Artemisinins and Antimalarial Agents. Academic Press Agents, Elsevier. 2017. https://doi.org/10.1016/B978-0-12-811655-5/00027-1
11. Bulgakov V. P. Functions of rol genes in plant secondary metabolism. Biotechnol. Adv. 2008, 26 (4). 318?324. https://doi.org/10.1016/j.biotechadv.2008.03.001
12. Shkryl Y. N., Veremeichik G. N., Bulgakov V. P., Tchernoded G. K., Mischenko N. P., Fedoreyev S. A., Zhuravlev Y. N. Individual and combined effects of the rol A, B, and C genes on anthraquinone production in Rubia cordifolia transformed calli. Biotechnol. Bioeng. 2008, 100 (1), 118?125. https://doi.org/10.1002/bit.21727
13. Ping L., Xu-Qing W., Huai-Zhou W., Yong-Ning W. High performance liquid chromatographic determination of phenolic acids in fruits and vegetables. Biomed. Environ. Sci. 1993, V. 6, P. 389?398.
14. Ke?ke? S., Ga?i? U., ?irkovi? Veli?kovi? T., Milojkovi?-Opsenica D., Nati? M., Te?i? ?. The determination of phenolic profiles of Serbian unifloral honeys using ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry. Food Chem. 2013, 138 (1), 32–40. https://doi.org/10.1016/j.foodchem.2012.10.025
15. Jiang H., Engelhardt U. H., Thr ?ane C., Maiwald B., Stark J. Determination of flavonol glycosides in green tea, oolong tea and black teaby UHPLC compared to HPLC. Food Chem. 2015, V. 183, P. 30–35. https://doi.org/10.1016/j.foodchem.2015.03.024
16. Figueiredo-Gonz?lez M., Regueiro J., Cancho-Grande B., Simal-G?ndara J. Garnacha Tintorera-based sweet wines: Detailed phenolic composition by HPLC/DAD–ESI/MS analysis. Food Chem. 2014, V. 143, P. 282–92. https://doi.org/10.1016/j.foodchem.2013.07.120
17. Samanidou V., Tsagiannidis A., Sarakatsianos I. Simultaneous determination of polyphenols and major purine alkaloids in Greek Sideritis species, herbal extracts, green tea, black tea, and coffee by high-performance liquid chromatography-diode array detection. J. Sep. Sci. 2012, 35 (4), 608?615. https://doi.org/10.1002/jssc.201100894
18. Pekal A., Pyrzynska K. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal. Methods. 2014, 7 (9), 1776–1782. https://doi.org/10.1007/s12161-014-9814-x
19. ICH/2005/Q2/R1: ICH Validation of analytical procedures: Text and methodology. Q2 (R1). International Conference on Harmonization, Geneva, Switzerland. 2005.
20. Pandey A. K., Singh P. The Genus Artemisia: a 2012?2017 Literature Review on Chemical Composition, Antimicrobial, Insecticidal and Antioxidant Activities of Essential Oils. Medicines. 2017, V. 4, P. 68. https://doi.org/10.3390/medicines4030068
21. Laghari A. H., Memon S., Nelofar A., Khan K. M., Yasmin A. Determination of free phenolic acids and antioxidant activity of methanolic extracts obtained from fruits and leaves of Chenopodium album. Food Chem. 2011, 126 (2011), 1850–1855. https://doi.org/10.1016/j.foodchem.2010.11.165
22. Zeb M. A. Isolation and Biological Activity of ?-Sitosterol and Stigmasterol from the Roots of Indigofera heterantha. Pharm. Pharmacol. Int. J. 2017, V. 5, P. 204–207. https://doi.org/10.15406/ppij.2017.05.00139
23. Kasiri N., Rahmati M., Ahmadi L., Eskandari N. The significant impact of apigenin on different aspects of autoimmune disease. Inflammopharmacology. 2018, V. 26, P. 1359–1373. https://doi.org/10.1007/s10787-018-0531-8
24. Galasso S., Pacifico S., Kretschmer N., Pan S. P., Marciano S., Piccolella S., Monaco P., Bauer R. Influence of seasonal variation on Thymus longicaulis C. Presl. chemical composition and its antioxidant and anti-inflammatory properties. Phytochem. 2014, V. 107, P. 80–90. https://doi.org/10.1016/j.phytochem.2014.08.015
- Details
- Hits: 86
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 14, No. 6 , 2021
P. 53-59, Bibliography 9, Engl.
UDC: 577.112.7: 612.115
https://doi.org/10.15407/biotech14.06.053
OBTAINING OF PLANT TISSUE CULTURE Scutellaria baicalensis GEORGI. AND ITS BIOCHEMICAL ANALYSIS
О. О. Poronnik 1, G. Yu. Myriuta 1, V. M. Anishchenko 2, R. V. Ivannikov 2, V. A. Kunakh 1
1 Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv
2 Gryshko National Botanical Garden of the National Academy of Sciences of Ukraine, Kyiv
Aim. To obtain a plant tissue culture of S. baicalensis as a possible source of biologically active compounds (BAC) with a wide range of pharmacological action.
Methods. Plant tissue culture, photocolorimetric method, reversed-phase high performance liquid chromatography (HPLC) method.
Results. Two stably productive plant tissue culture strains (16SB3 and 20SB4) of S. baicalensis were obtained from fragments of roots seedling on a specially developed agar nutrient medium 5С01. The yield of dry biomass from 1 liter of this medium per passage (21st day of growth) for strain 16SB3 is 25–30 g, for strain 20SB4 – 30–40 g. The total content of flavonoids in dry biomass was in terms of routine for strains 16SB3 and 20SB4 – 0.6–0.9 and 0.7–0.9 mg/g, respectively, and the yield of flavonoids – 18–27 and 21–36 mg/l of nutrient medium, respectively. BAC typical for plants in nature, in particular, flavonoids vogonin, baikalein, neobaikalein, skulkapfavon and their derivatives, were found in the studied biomass of both strains.
Conclusions. It was found that the biomass of the two strains of S. baicalensis plant tissue culture accumulated the same BAC, in particular, flavonoids, as do plants in natural conditions. The resulting plant tissue culture is promising as a possible source of Baikal skullcap BAC.
Key words: Scutellaria baicalensis Georgi., plant tissue culture, flavonoids, strains – producers of biologically active compounds.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Khan T., Ali M., Khan A., Nisar P., Ahmad Jan S., Afridi S., Khan Z. Shinwari Anticancer Plants: A Review of the Active Phytochemicals, Applications in Animal Models, and Regulatory Aspects. Biomolecules. 2020, 10 (47), 2–30. https://doi.org/10.3390/biom10010047
2. Drygai A. M., Suslov N. I., Zyuzkov G. N., Kuzovkina I. N., Zhdanov V. V., Udut E. V., Guseva A. V., Vdovitchenko M. Yu., Shilova I. V., Smirnov V. Yu., Churin A. A., Voronova O. L., Simanina E. V., Neupokoeva O. V., Fedorova E. P. A drug with a hemo-stimulating, antimutagenic, antitumor, antimutagenic, antitumor, cerebroprotective, antihypotoxic, nootropic, anxiolytic and anti-neurotic action. Patent of the Russian Federation No 2438691 C1 MPK A61K 36/539. 2012, Byul. No 1. (In Russian).
3. Kunakh V. A. Biotechnology of medicinal plants. Genetic, physiological and biochemical basis. Kyiv: Logos. 2005, 724 p. (In Ukrainian).
4. Kunakh V. A. Plant biotechnology for human life improvement. Biotekhnolohiya. 2008, 1 (1), 28–39. (In Ukrainian).
5. Ohtsuki T., Himeji M. Fukazawa H. Tanaka M. Yamamoto H. Mimura A. High-yield production of scutellaria radix flavonoids (baicalein, baicalin and wogonin) by liquid-culture of Scutellaria baicalensis root-derived cells. Braz. arch. biol. technol. 2009, 52 (2), 291–298. https://doi.org/10.1590/S1516-89132009000200005
6. Wang Z.-L., Wang S., Kuang Y., Hu Z-M., Qiao X., Ye M. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharmaceutical biology. 2018, 56 (1), 465–484. https://doi.org/10.1080/13880209.2018.1492620
7. Kunakh V. A., Alpatova L. K., Mozhilevskaya L. P. Nutrient medium for obtaining and growing callus tissues of plants. Patent of Ukraine № 10338A, IPC 6 C12N5/00, C12N5/02. Publ. 12/25/96, Bull. № 4. (In Ukrainian).
8. Navrotska D. O., Andreev I. O., Betekhtin A. A., Rojek M., Parnikoza I. Yu., Myryuta G. Yu., Poronnik O. O., Miryuta N. Yu., Joanna Szymanowska-Pu?ka, Grakhov V. V., Ivannikov R., Hasterok R., Kunakh V. A. Assessment of the molecular cytogenetic, morphometric and biochemical parameters of Deschampsia antarctica from its southern range limit in maritime Antarctic. Polish Polar Res. 2018, 39 (4), 525–524. https://doi.org/10.24425/118759
9. Ivannikov R., Laguta I., Anishchenko V., Skorochod I., Kuzema P., Stavinskaya O., Parnikoza I., Poronnik O., Myryuta G., Kunakh V. Composition and radical scavenging activity of the extracts from Deschampsia antarctica ?. desv. plants grown in situ and in vitroin vitro. Chemistry Journal of Moldova. 2021, 16 (1), P. 105–114. https://doi.org/10.19261/cjm.2021.841
- Details
- Hits: 89
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 14, No. 6 , 2021
P. 44-52, Bibliography 28, Engl.
UDC: 577.112.7: 612.115
https://doi.org/10.15407/biotech14.06.044
O. K. Gulevskyy, Yu. S. Akhatova
Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv
One of the modern transfusiology tasks is to preserve the properties of erythrocytes after hypothermic storage. Worsening of their functional state due to the storage leads to deterioration of the transfusion medium quality and a number of clinical problems. Plausible protective effects of a human cord blood low-molecular fraction (CBF) and the Actovegin drug were evaluated in the present study in order to use them as components of recovery medium.
Aim. The purpose of our study was to investigate the CBF and the Actovegin drug effect on erythrocytes morphology, energy balance, and oxygen transport function of erythrocytes after their hypothermic storage.
Materials and methods. In the research erythrocyte mass from human donor blood was used, which was stored in hypothermia for 7–21 days. Every 7 days, the CBF or Actovegin (final concentration 0.6 mg/ml) were added to aliquots of erythrocyte mass and incubated for 1 h at 37 °C, followed by further studies. CBF was obtained from human cord blood by ultrafiltration and lyophilization. The erythrocytes morphology was assessed using light microscopy. The content of ATP and 2.3-DPG was determined by the amount of inorganic phosphorus and the photoelectrocalorimetric method. The indicators of erythrocytes oxygen transport function (saturation, oxygen and carbon dioxide tension) were assessed using an analyzer of blood gases and electrolytes IL GEM Premier - 3000. The ratio of hemoglobin forms was studied by photometry.
Results. It was shown that both CBF and the Actovegin drug promoted to restore the morpho-functional characteristics of erythrocytes after 21 days of their storage at 2–4 °C. This was indicative as an increase in the normocytes number increase and restoration of oxygen tension, saturation, ATP and 2,3-DFG content, and normalization of the hemoglobin forms ratio. It was suggested that the mechanisms of the compared tested substances action were associated with ATP synthesis activation and 2,3-DFG formation.
Conclusions. The use of media with containing CBF or the Actovegin drug enabled to restore effectively the properties of erythrocytes disturbed during their prolonged storage.
Key words: cord blood, Actovegin, erythrocytes, hypothermia, recovery medium.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Chechetkin A. V., Bessmeltsev S. S., Volkova S. D., Kiryanova G. Yu., Grishina G. V. Cryopreservation of erythrocytes at moderately low temperatures and prolonged storage after thawing in blood service institutions: Guidelines. SPb., FMBA of Russia, Agency «Vit-print». 2020, 24 p. (In Russian).
2. Vinograd-Finkel F. R., Derviz G. V., Andreeva A. G., Dmitrieva M. G., Ginzburg F. G., Kudryashova S. N., Obshivalova N. N., Tsibulskaya L. M., Ivanov Yu. G., Polyakova A. S. Metabolic activity and respiratory function of blood preserved on acid glucose-citrate solutions and ways of their improvement. Probl. Gematol. Pereliv. Krovi. 1974, No 7, P. 3?9. (In Russian).
3. Lagerberg J. W., Truijensde Lange R., de Korte D., Verhoeven A. J. Altered processing of thawed red cells to improve the in vitro quality during postthawstorage at 4 degrees C. Transfusion. 2007, 47 (12), 2242–2249. https://doi.org/10.1111/j.1537-2995.2007.01453.x
4. Lelkens C., Korte D., Lagerberg J. W. Prolonged post-thaw shelf life of red cells frozen without prefreeze removal of excess glycerol. Vox Sang. 2015, 108 (3), 219–225. https://doi.org/10.1111/vox.12219
5. Valeri C. Blood banking and the use of frozen blood products. CRS Press. 1976, 417 p.
6. Rumyantsev A. G., Agranenko V. A. Clinical transfusiology. Moscow: Geotar Medicina. 1997, 575 p. (In Russian).
7. Valery C. R., Ragno G., Pivacek L. E., Srey R., Hess J. R., Lippert L. E., Mettille F., Fahie R., O'Neill E. M., Szymanski I. O. A multicenter study of in vitro and in vivo values in human RBCs frozen with 40-percent (wt/vol) glycerol and stored after deglycerolization for 15 days at 4 °C in AS-3; assessment of RBC processing in the ACP 215. Transfusion. 2001, 41 (7), 933–939. https://doi.org/10.1046/j.1537-2995.2001.41070933.x
8. Bandarenko N., Cancelas J., Snyder E. L. Successful in vivo recovery and extended storage of additive solution AS-5 red blood cells after deglycerolization and resuspension in AS-3 for 15 days with an automated closed system. Transfusion. 2007, 47 (4), 680–686. https://doi.org/10.1111/j.1537-2995.2007.01171.x
9. Roback J. D., Josephson C. D., Waller E. K., Newman J. L., Karatela S., Uppal K., Jones D. P., Zimring J. C., Dumont L. J. Metabolomics of ADSOL (AS-1) red blood cell storage. Transfus. Med. Rev. 2014, 28 (2), 41–55. https://doi.org/10.1016/j.tmrv.2014.01.003
10. Gulevsky O. K., Akhatova Yu. S., Sysoev А. А., Sysoeva I. V. Stimulating effect of a low-molecular fraction from cord blood on the energy metabolism in leukocytes. Reports of the National Academy of Sciences of Ukraine. 2014, No 7, P. 152?157. (In Ukrainian).
11. Gulevsky A. K., Moisieieva N. N., Gorina O. L., Akhatova J. S., Lavrik A. A., Trifonova A. V. The influence of low-molecular fraction from cord blood (below 5 kDa) on functional and biochemical parameters of cells in vitro. Ukr. Biochem. J. 2014, No 6, P. 167?174. (In Ukrainian).
12. Gulevsky А. K., Akhatov aYu. S., Sysoev А. А., Sysoeva I. V. Energy metabolism of packed white cells after cryopreservation and rehabilitation in a medium containing a cord blood low-molecular fraction. Biotechnol. Acta. 2015, 8 (6), 63?70. (In Ukrainian). https://doi.org/10.15407/biotech8.06.063
13. Gulevsky А. K., Akhatova Yu. S. Stimulating effect of a low-molecular fraction (below 5 kDa) from cord blood on glycogenolysis in neutrophils of human donor blood leukoconcentrate. Reports of the National Academy of Sciences of Ukraine. 2015, No 7, P. 123?129. (In Ukrainian).
14. Gulevsky O. K., Moisieieva N. N., Abakumova O. S., Shchenyavsky I. Y., Nikolchenko A. Yu., Gorina O. L. Method of obtaining low-molecular fraction from cord blood of cattle. Pat. 69652 UA, ICP А 61 К 35/14. Publ. 10. 05. 2012, Bul. No 9. (In Ukrainian).
15. Menshikov V. V. Clinical laboratory analytics. Moscow: Labirint-RAMLD. 1999, 352 p. (In Russian).
16. Vinogradova I. L., Bagryantseva S. Y., Derviz G. V. Method for the simultaneous determination of 2,3-DPG and ATP in erythrocytes. Lab. Business. 1980, No 7, P. 424?426. (In Russian).
17. Krylov V. N., Deryugina A. V., Simutis I. S., Boyarinov G. A., Senyurina А. I. Contents of ATP and 2,3-DPG in erythrocytes for preservation and ozone exposure. Biomedicine. 2014, No 2, P. 37–42.
18. Ramazanov V. V., BondarenkoV. A. Evaluation of atp and 2,3-biphospho-glycerate content in erythrocytes of donor blood during freezing. Actual Problems of the Modern Medicine. 2016, 16 (1), 233–237.
19. Stus L. N., Rozanova E. D. The oscillation of hemoglobin forms during blood storage. Biophysics. 1992, 37 (2), 387–388. (In Russian).
20. Zhuikova A. E., Rudenko S. V., Bondarenko V. A. The Action of Pharmacological Agents on the Dynamics of Human Erythrocyte Morphological Response. Bulletin of problems in biology and medicine. 2013, 2 (100), 328–334. (In Ukrainian).
21. Yoshida T., Prudent M., D'alessandro A. Red blood cell storage lesion: causes and potential clinical consequences. Blood Transfus. 2019, 17 (1), 27–52. https://doi.org/10.2450/2019.0217-18
22. Moroz V. V., Golubev A. M., Afanasyev A. V., Kuzovlev A. N., Sergunova V. A., Gudkova O. E., Chernysh A. M. The Structure and Function of a Red Blood Cell in Health and Critical Conditions. General Resuscitation. 2012, 8 (1), 52–60. (In Russian).
23. McMahon T. J. Red Blood Cell Deformability, Vasoactive Mediators, and Adhesion. Front Physiol. 2019, V. 10, P. 1417. https://doi.org/10.3389/fphys.2019.01417
24. Wood T. E., Daliti S., Simpson C. D., Hurren R., Mao X., Saiz F. S., Gronda M., Eberhard Y., Minden M. D., Bilan P. J., Klip A., Batey R. A., Schimmer A. D. A novel inhibitor of glucose uptake sensitizes cells to FAS-induced cell death. Mol. Cancer Ther. 2008, 7 (11), 3546–3555. https://doi.org/10.1158/1535-7163.MCT-08-0569
25. Blodgett D. M., Graybill C., Carruthers A. Analysis of glucose transporter topology and structural dynamics. J. Biol. Chem. 2008, 283 (52), 36416–36424. https://doi.org/10.1074/jbc.M804802200
26. Gulevsky A. K., Zharkova E. E. Restoration of the morphological and functional properties of erythrocytes in donated blood after hypothermic storage. Reports of the National Academy of Sciences of Ukraine. 2016, No 3, P. 93–97. (In Ukrainian).
27. Sergunova V. A., Manchenko E. A., Gudkova O. E. Hemoglobin: modification, crystallization, polymerization. General Resuscitation. 2016, 12 (6), 49–63. (In Russian).
28. Lutsenko M. T., Nadtochy E. V. Morphofunctional changes in erythrocytes of peripheral blood at hypo xia in patients with bronchial asthma. Bulletin Respiratory Physiology and Pathology. 2009, No 3, P. 12–15. (In Russian).
- Details
- Hits: 102
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 14, No. 6 , 2021
P. 37-43, Bibliography 32, Engl.
UDC: 577.112.7: 612.115
https://doi.org/10.15407/biotech14.06.037
LIMITED PROTEOLYSIS OF FIBRINOGEN BY PROTEASE OF Gloydius halys halys SNAKE VENOM
Palladin Institute of Biochemistry of of the National Academy of Sciences of Ukraine, Kyiv
Aim. One of the approaches for studying structure and functions of proteins is their limited proteolysis. Proteolytic fragments of macromolecules can preserve the biological activity and can be used for the study of their structural and functional peculiarities. Thus, the characterization of new proteolytic enzymes and determination of the specificity of their action can be of interest for exploration. In the present work, we focused on the action of protease from the venom of Gloydius halys halys on fibrinogen, the crucial protein of blood coagulation system.
Methods. Products of fibrinogen hydrolysis by protease from the venom of G. halys halys were studied by SDS-PAGE electrophoresis and western-blot analysis using monoclonal antibodies ІІ-5 Сand 1-5A targeted to 20–78 and 549–610 fragments of fibrinogen Aα-chain. Molecular weights of hydrolytic products were determined using MALDI-TOF analysis on Voyager DE PRO (USA). Sequence of hydrolytic products were predicted by «Peptide Mass Calculator» soft ware.
Results. SDS-PAGE showed that protease from the venom of Gloydius halys halys initially cleaved Аα-chain of fibrinogen molecule. Western-blot analysis confirmed that this protease specifically cleaves off fragment of C-terminal parts of Аα-chain with apparent molecular weight of 22 kDa. Cleaved fragment was identified by MALDI-TOF analysis as the 21.1 kDa polypeptide. "Peptide Mass Calculator" predicted that such a fragment corresponded to Аα414-610 residue of fibrinogen molecule. Thus, we showed that studied protease cleaved peptide bond AαK413-L414 with the formation of stable partly hydrolyzed fibrinogen desAα414-610.
Conclusions. The use of protease from the venom of Gloydius halys halys would allow obtaining the unique partly hydrolyzed fibrinogen des Aα414–610 that is suitable for the study of structure and functions of fibrinogen αС-regions.
Key words: fibrinogen, limited proteolysis, protease, fibrin polymerization, hemostasis.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Stohnii Y. M., Ryzhykova M. V., Rebriev A. V., Kuchma M. D., Marunych R. Y., Chernyshenko V. O., Shablii V. A., Lypova N. M., Slominskyi O. Yu., Garmanchuk L. V., Platonova T. M., Komisarenko S. V. Aggregation of platelets, proliferation of endothelial cell sandmotility of cancer cell sare mediated by the B?1(15)-42 residue of fibrin (ogen). Ukr. Biochem. J. 2020, 92 (2), 72?84. https://doi.org/10.15407/ubj92.02.072
2. Ko?odziejczyk J., Ponczek M. B. Therole of fibrinogen, fibrin and fibrin (ogen) degradation products (FDPs) intumor progression. Contemp. Oncol. (Pozn). 2013, 17 (2), 113–119. https://doi.org/10.5114/wo.2013.34611
3. Frangieh J., Rima M., Fajloun Z., Henrion D., Sabatier J.-M., Legros C., Mattei C. Snake Venom Components: Tools and Cures to Target Cardiovascular Diseases. Molecules. 2021, 26 (8), 2223. https://doi.org/10.3390/molecules26082223
4. Kai Huang, Wei Zhao, Yongxiang Gao, Wenqing Wei, Maikun Teng, Liwen Niu. Structure of saxthrombin, a thrombin-likeenzyme from Gloydius saxatilis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2011, 67 (8), 862–865. https://doi.org/10.1107/S1744309111022548
a href="/5.%20Cortelazzo%20A.,%20Guerranti%20R.,%20L.,%20Hope-Onyekwere%20N.,%20Muzzi%20C.,%20Leoncini%20R.,%20Pagani%20R.%20Effects%20of%20snake%20venom%20proteases%20on%20human%20fibrinogen%20chains.%20Blood%20Transfus.%202010,%208%20(3),%20120–125.%20https://doi.org/10.2450/2010.019S" " ">". Cortelazzo A., Guerranti R., L., Hope-Onyekwere N., Muzzi C., Leoncini R., Pagani R. Effects of snake venom proteases on human fibrinogen chains. Blood Transfus. 2010, 8 (3), 120–125. https://doi.org/10.2450/2010.019S
6. Kini R. M. Anticoagulant proteins from snake venoms: structure, function and mechanism. Biochem. J. 2006, 397 (Pt. 3), 377–387. https://doi.org/10.1042/BJ20060302
7. Lu Q., Clemetson J. M., Clemetson K. J. Snake venoms and hemostasis. J. Thromb. Haemost. 2005, V. 3, P. 1791–1799. https://doi.org/10.1016/s0041-0101(98)00126-3
8. Hornytskaia O. V., Platonova T. N., Volkov H. L. Enzymi zmeynikh yadov. Ukr. byokhym. zh. 2003, 75 (3), 22?32. https://doi.org/10.1111/j.1537-2995.2007.01171.x
9. Xiu-Xia Liang, Ying-Na Zhou, Jia-Shu Chen, Peng-Xin Qiu, Hui-Zhen Chen, Huan-Huan Sun, Yu-Ping Wu, Guang-Mei Yan. Enzymological Characterization of FII (a), a Fibrinolytic Enzyme From Agkistrodon Acutus Venom. Acta Pharmacol. Sin. 2005, 26 (12), 1474?1478.. https://doi.org/10.1111/j.1745-7254.2005.00204.x
10. Mel?ndez-Mart?nez D., Plenge-Tellechea L. F., Gatica-Colima A., Cruz-P?rez M. S., Aguilar-Y??ez J. M., Licona-Cassani C. Functional Mining of the Crotalus Spp. Venom Protease Repertoire Reveals Potential for Chronic Wound Therapeutics. Molecules. 2020, 25 (15), 3401. https://doi.org/10.3390/molecules25153401
11. Choo Hock Tan, Kae Yi Tan, Tzu Shan Ng, Evan S. H. Quah, Ahmad Khaldun Ismail, Sumana Khomvilai, Visith Sitprija, Nget Hong Tan. Venomics of Trimeresurus (Popeia) nebularis, the Cameron Highlands Pit Viper from Malaysia: Insights into Venom Proteome, Toxicity and Neutralization of Antivenom. Toxins (Basel). 2019, 11 (2), 95. https://doi.org/10.3390/toxins11020095
12. Huang J., Fan H., Yin X., Huang F. Isolation of a Novel Metalloproteinase from Agkistrodon Venom and Its Antithrombotic Activity Analysis. Int. J. Mol. Sci. 2019, 20 (17), 4088. https://doi.org/10.3390/ijms20174088
13. Senji Laxme R. R., Attarde S., Khochare S., Suranse V., Martin G., Casewell N. R., Whitaker R., Sunagar K. Biogeographical venom variation in the Indian spectacled cobra (Najanaja) underscores the pressing need for pan-India efficacious snakebite therapy. PLoS Negl. Trop. Dis. 2021, 15 (2), e0009150. https://doi.org/10.1371/journal.pntd.0009150
14. Yong-Hong Jia, Yang Jin, Qiu-Min L?, Dong-Sheng Li, Wan-Yu Wang, Yu-Liang Xiong. Jerdonase a novel serine protease with kinin-releasing and fibrinogenolytic activity from Trimeresurusjerdonii venom. Sheng wuhuaxueyu sheng wuwu li xuebao Acta Biochimica et Biophysica Sinica.2003, V. 35, P 689?694.
15. De-Simone S. G., Correa-Netto C., Antunes O. A. C., Alencastro R. B. De, Silva Jr. F. P. Biochemical and molecular modeling analysis of the ability of two p-aminobenzamidine-based sorbents to selectively purify serine proteases (fibrinogenases) from snake venoms. J. Chromatogr. В Analyt. Technol. Biomed. Life Sci. 2005, 822 (1?2), 1?9. https://doi.org/10.1016/j.jchromb.2005.04.018
16. Suk-Ho Choi, Seung-Bae Lee. Isolation from Gloydius blomhoffii siniticus Venom of a Fibrin(ogen)olytic Enzyme Consisting of Two Heterogenous Polypeptides. J. Pharmacopuncture. 2013, 16 (2), 46–54. https://doi.org/10.3831/KPI.2013.16.010
17. He J., Chen S., Gu J. Identification and characterization of Harobin, anovel fibrino(geno)lytic serine protease from a sea snake (Lapemis hardwickii). FEBS Lett. 2007, 581 (16), 2965?2973. https://doi.org/10.1016/j.febslet.2007.05.047
18. Tarek Mohamed Abd El-Aziz, Antonio Garcia Soares, James D. Stockand. Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. Toxins (Basel). 2019, 11 (10), 564. https://doi.org/10.3390/toxins11100564
19. Lu Q., Clemetson J. M., Clemetson K. J. Snake venoms and hemostasis. J. Thromb. Haemost. 2005, V. 3, P. 1791–1799. https://doi.org/10.1111/j.1538-7836.2005.01358.x
20. Ghorbanpur M., Zare A., Mirakabadi F., Zokaee H., Zolfagarrian H. Rabiei. Purification and partial characterization of a coagulant serine protease from the venom of the Iranian snake Agkistrodon halys. J. Venom. Anim. Toxinsincl. Trop. 2009, 15 (3). https://doi.org/10.1590/S1678-91992009000300005
21. Gornitskaia O. V., Rovinskaya I. N., Platonova T. N. Purification and characterization of the fibrinolytic enzyme from Agkistrodon halys halys venom. Ukr. Biokhim. Zh. (1999). 2002, 74 (3), 42?49. (Russian). PMID: 12916236
22. Varetskaia V. Preparation of a fibrin monomer and studies on some of its properties. Ukr. Biokhim. Zh. 1965, 37 (2), 194?206. https://doi.org/10.15360/1813-9779-2012-1-52
23. Urvant L. P., Makogonenko Е. М., Pozniak Т. А., Pydiura N. А., Kolesnikova I. N., Tsap P. Y., Bereznitzkiy G. К., Lugovskoy E. V., Komisarenko S. V. Binding of mAb II-5c to A?20–78 fragment of fibrinogen inhibits a neoantigenic determinant exposure within B?126–135 site of a molecule. Reports of NAS. 2014, V. 5, P. 149?156. https://doi.org/10.15407/dopovidi2014.05.149
24. Lugovska N. E., Kolesnikova I. M., Stohnii Ye. M., Chernyshenko V. O., Rebriev A. V., Kostiuchenko O. P., Gogolinska G. K., Dziubliuk N. A., Varbanets L. D., Platonova T. M., Komisarenko S. V. Novel monoclonal antibody to fibrin(ogen) ?C-region for detection of the earliest forms of soluble fibrin. Ukr. Biochem. J. 2020, 92 (3), 58?70. https://doi.org/10.15407/ubj92.03.058
25. Laemli R. V. Cleavage of structural poteins during of bacteriophage T4. Nature. 1970, V. 227, P. 680?685. https://doi.org/10.1038/227680a0
26. Chapman J. R. Mass Spectrometry of Proteins and Peptides. Methods in Molecular Biology. 2000, V. 146, P. 554. https://doi.org/10.1385/1592590454
27. Lugovskoi E. V., Makogonenko E. M., Komisarenko S. V. Molecular mechanisms of formation and degradation of fibrin. Kyiv: Naukova dumka. 2013, 230p.
28. Tsurupa G., Mahid A., Veklich Y., Weisel J. W., Medved L. Structure, Stability, and Interaction of Fibrin ?C-Domain Polymers. Biochemistry. 2011, V. 50, P. 8028?8037. https://doi.org/10.1021/bi2008189
29. John W. Weisel, Rustem I. Litvinov. Fibrin Formation, Structure and Properties. Subcell Biochem. 2017, V. 82, P. 405–456. https://doi.org/10.1007/978-3-319-49674-0_13
30. Wencel-Drake J. D., Boudignon-Proudhon C., Dieter M. G., Criss A. B, Leslie V. Parise. Internalization of bound fibrinogen modulates platelet aggregation. Blood. 1996, 87 (2), 602?612. https://doi.org/10.1182/blood.V87.2.602.bloodjournal872602
31. Yakovlev S., Mikhailenko I., Tsurupa G., Belkin A. M., Medved L. Polymerization of fibrin ?C-domains promotes endothelial cell migration and proliferation. Thromb. Haemost. 2014, 112 (6), 1244?1251. https://doi.org/10.1160/TH14-01-0079
32. Tsurupa G., Hantgan R. R., Burton R. A., Pechik I., Tjandra N., Medved L. Structure, Stability, and Interaction of the Fibrin(ogen) ?C-Domains. Biochemistry. 2009, 48 (51), 12191–12201. https://doi.org/10.1021/bi901640e