- Details
- Hits: 62
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 14, No 4, 2021
Р. 53-63, Bibliography 48, English
Universal Decimal Classification: 602.6:577.2.18:577.112:582.661.21
https://doi.org/10.15407.biotech14.04.053
TRANSIENT EXPRESSION OF REPORTER GENES IN CULTIVARS OF Amaranthus caudatus L.
Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine, Kyiv
Local cultivars of A. caudatus: Helios and Karmin were used as plant material. Amaranth is a new pseudocereal introduced in Ukraine. The plant biomass of amaranth is used in medicine, food industry and cosmetology industry.
Aim. The purpose of the work was to identify the optimal conditions for the transient expression of reporter genes in Amaranthus caudatus cultivars.
Methods. Biochemical and microscopy methods were used in the following work. Seedlings and adult plants of different age were infiltrated with agrobacterial suspensions separately (genetic vector pCBV19 with a uidA gene and genetic vector pNMD2501 with a gfp gene in Agrobacterium tumefaciens GV3101 strain).
Results. Transient expression of the uidA and gfp genes was obtained in amaranth plants after conduction series of experiments. The most intensive transient expression of gfp and uidA genes was observed in seedlings infiltrated at the age of 1 day. The maximum fluorescence of the GFP protein was observed on 5th–6th days.
Conclusions. It was shown that the cultivar Helios was more susceptible to agrobacterial infection than the cultivar Karmin. The effectiveness of Agrobacterium mediated transformation was from 16% to 95% for the Helios cultivar and from 12% to 93% for the Karmin cultivar. The obtained results indicate that the studied amaranth cultivars can potentially be used for obtaining transient expression of target genes and synthesizing target proteins in their tissues in the future.
Key words: Amaranthus, uidA, gfp, Agrobacterium, transient expression.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Guidarelli M., Baraldi E. Transient transformation meets gene function discovery: The strawberry fruit case. Front. Plant Sci. 2015, V. 6, P. 444.https://doi.org/10.3389/fpls.2015.00444
2. Viacheslavova A. O., Berdychevets Y. N., Tiuryn A. A., Shymshylashvyly Kh. R., Mustafaev O., Holdenkova-Pavlova Y. V. Expression of heterologous genes in plant systems: New possibilities. Russ. J. Genet. 2013, V. 48, P. 1067–1079. https://doi.org/10.1134/S1022795412110130
3. Cao J., Yao D., Lin F., Jiang M. PEG-mediated transient gene expression and silencing system in maize mesophyll protoplasts: A valuable tool for signal transduction study in maize. Acta Physiol. Plant. 2014, V. 36, P. 1271–1281. https://doi.org/10.1007/s11738-014-1508-x
4. Zhang Y., Su J., Duan S., Ao Y., Dai J., Liu J., Wang P., Li Y., Liu B., Feng D., Wang J., Wang H. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods. 2011, V. 7, P. 30. https://doi.org/10.1186/1746-4811-7-30
5. Chen Q., Lai H. Gene delivery into plant cells for recombinant protein production. Biomed. Res. Int. 2015, P. 932161. https://doi.org/10.1155/2015/932161
6. Shoji T. Analysis of the intracellular localization of transiently expressed and fluorescently labeled copper-containing amine oxidases, diamine oxidase and N-methylputrescine oxidase in tobacco, using an Agrobacterium infiltration protocol. Methods Mol. Biol. 2018, V. 1694, P. 215–223. https://doi.org/10.1007/978-1-4939-7398-9_20
7. Sun X., Yu G., Li J., Liu J., Wang X., Zhu G., Zhang X., Pan H. AcERF2, an ethylene-responsive factor of Atriplex canescens, positively modulates osmotic and disease resistance in Arabidopsis thaliana. Plant Sci. 2018, V. 274, P. 32–43. https://doi.org/10.1016/j.plantsci.2018.05.004
8. Guo Y.-F., Shan W., Liang S.-M., Wu C.-J., Wei W., Chen J.-Y., Lu W.-J., Kuang J.-F. MaBZR1/2 act as transcriptional repressors of ethylene biosynthetic genes in banana fruit. Physiol. Plant. 2019, V. 165, P. 555–568. https://doi.org/10.1111/ppl.12750
9. Tyurin A. A., Kabardaeva K. V., Berestovoy M. A., Sidorchuk Yu. V., Fomenkov A. A., Nosov A. V., Goldenkova-Pavlova I. V. Simple and reliable system for transient gene expression for the characteristic signal sequences and the estimation of the localization of target protein in plant cell. Russ. J. Plant Physiol. 2017, V. 64, P. 672–679. https://doi.org/10.1134/S1021443717040173
10. Hua-Ying M., Wen-Ju W., Wei-Hua S., Ya-Chun S., Feng L., Cong-Na L., Ling W., Xu Z., Li-Ping X., You-Xiong Q. Genome-wide identification, phylogeny, and expression analysis of Sec14-like PITP gene family in sugarcane. Plant Cell Rep. 2019, V. 38, P. 637–655. https://doi.org/10.1007/s00299-019-02394-1
11. Olmedo P., Moreno A. A., Sanhueza D., Balic I., Silva-Sanzana C., Zepeda B., Verdonk J. C., Arriagada C., Meneses C., Campos-Vargas R. A catechol oxidase AcPPO from cherimoya (Annona cherimola Mill.) is localized to the Golgi apparatus. Plant Sci. 2018, V. 266, P. 46–54. https://doi.org/10.1016/j.plantsci.2017.10.012
12. Cheng J., Wen S., Xiao Sh., Lu B., Ma M., Bie Z. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation. J. Exp. Bot. 2018, V. 69, P. 511–523. https://doi.org/10.1093/jxb/erx440
13. Wang B., Wang G., Shen F., Zhu S. A glycine-rich RNA-binding protein, CsGR-RBP3, is involved in defense responses against cold stress in harvested cucumber (Cucumis sativus L.) fruit. Front. Plant Sci. 2018, V. 9, P. 540. https://doi.org/10.3389/fpls.2018.00540
14. Wu B., Cao X., Liu H., Zhu C., Klee H., Zhang B., Chen K. UDP-glucosyltransferase PpUGT85A2 controls volatile glycosylation in peach. J. Exp. Bot. 2019, V. 70, P. 925–936. https://doi.org/10.1093/jxb/ery419
15. Martins P. K., Nakayama T. J., Ribeiro A. P., Dias B. A., Cunha B. D., Nepomuceno A. L., Harmon F. G., Kobayashi A. K., Molinari H. B. C. Setaria viridis floral-dip: a simple and rapid Agrobacterium-mediated transformation method. Biotechnol. Rep.. 2015, V. 6, P. 61–63. https://doi.org/10.1016/j.btre.2015.02.006
16. Yaroshko O., Kuchuk M. Agrobacterium-caused transformation of cultivars Amaranthus caudatus L. and hybrids of A. caudatus L. x A. paniculatus L. Int. J. Secondary Metabolite. 2018, 5 (4), 312–318. https://doi.org/10.21448/ijsm.478267
17. Jefferson R. A. Assaying chimeric genes in plants: The gus gene fusion system. Plant Mol. Biol. Rep. 1987, 5 (4), 387–405. https://doi.org/10.1007/BF02667740
18. Wang F.-P., Wang X.-F., Zhang J. Modulates Fe homeostasis by directly binding to the MdMATE43 promoter in plants. Plant Cell Physiol. 2018, V. 59, P. 2476–2489. https://doi.org/10.1093/pcp/pcy168
19. Wang Y.-C., Yu M., Shih P.-Y., Wu H.-Y., Lai E.-M. Stable pH suppresses defense signaling and is the key to enhance Agrobacterium-mediated transient expression in Arabidopsis seedlings. Sci. Rep. 2018, V. 8, P. 17071. https://doi.org/10.1038/s41598-018-34949-9
20. Noman A., Liu Z., Yang S., Shen L., Hussain A., Ashraf M. F., Khan M. I., He S. Expression and functional evaluation of CaZNF830 during pepper response to Ralstonia solanacearum or high temperature and humidity. Microb. Pathog. 2018, V. 118, P. 336–346. https://doi.org/10.1016/j.micpath.2018.03.044
21. Kim N. H., Hwang B. K. Pepper pathogenesis-related protein 4c is a plasma membrane-localized cysteine protease inhibitor that is required for plant cell death and defense signaling. The Plant J. 2015, V. 81, P. 81–94. https://doi.org/10.1111/tpj.12709
22. Han J., Liu H.-T., Wang Sh.-Ch., Wang C.-R., Miao G.-P. A class I TGA transcription factor from Tripterygium wilfordii Hook.f. modulates the biosynthesis of secondary metabolites in both native and heterologous hosts. Plant Sci. 2020, V. 290, P. 110293.https://doi.org/10.1016/j.plantsci.2019.110293
23. Mertens J., Moerkercke A. V., Bossche R. V., Pollier J., Goossens A. Clade IVa basic helix–loop–helix transcription factors form part of a conserved jasmonate signaling circuit for the regulation of bioactive plant terpenoid biosynthesis. Plant Cell Physiol. 2016, V. 57, P. 2564–2575. https://doi.org/10.1093/pcp/pcw168
24. Lange M. J., Lange T. Ovary-derived precursor gibberellin A9 is essential for female flower development in cucumber. Development. 2016, V. 143, P. 4425–4429.https://doi.org/10.1242/dev.135947
25. Xie Y.-G., Ma Ya.-Ya, Bi P.-P., Wei W., Liu J., Hu Y., Gou Y.-J., Zhu D., Wen Y.-Q., Feng J.-Y. Transcription factor FvTCP9 promotes strawberry fruit ripening by regulating the biosynthesis of abscisic acid and anthocyanins. Plant Physiol. Biochem. 2020, V. 146, P. 374–383. https://doi.org/10.1016/j.plaphy.2019.11.004
26. Huang J., Gu L., Zhang Y., Yan T., Kong G., Kong L., Guo B., Qiu M., Wang Y., Jing M., Xing W., Ye W., Wu Z., Zhang Z., Zheng X., Gijzen M., Wang Y., Dong S. An oomycete plant pathogen reprograms host pre-mRNA splicing to subvert immunity. Nature Communications. 2017, V. 8, P. 2051. https://doi.org/10.1038/s41467-017-02233-5
27. Gascuel Q., Buendia L., Pecrix Ya., Blanchet N., Mu?os S., Vear F., Godiard L. RXLR and CRN effectors from the sunflower downy mildew pathogen Plasmopara halstedii Induce hypersensitive-like responses in resistant sunflower lines. Front Plant Sci. 2016, V. 7, P. 1887. https://doi.org/10.3389/fpls.2016.01887
28. Yang G., Gao X., Ma K., Li D., Jia C., Zhai M., Xu Z. The walnut transcription factor JrGRAS2 contributes to high temperature stress tolerance involving in Dof transcriptional regulation and HSP protein expression. BMC Plant Biol. 2018, V. 18, P. 367.https://doi.org/10.1186/s12870-018-1568-y
29. Yang G., Zhang W., Liu Z., Yi-Maer A.-Y., Zhai M., Xu Z. Both JrWRKY2 and JrWRKY7 of Juglans regia mediate responses to abiotic stresses and abscisic acid through formation of homodimers and interaction. Plant Biol. (Stuttg). 2017, V. 19, P. 268–278. https://doi.org/10.1111/plb.12524
30. Rosenthal S. H. An intronless form of the tobacco extensin gene terminator strongly enhances transient gene expression in plant leaves. Plant Mol. Biol. 2018, V. 96, P. 429–443. https://doi.org/10.1007/s11103-018-0708-y
31. Sakamoto S., Matsui K., Oshima Y., Mitsuda N. Efficient transient gene expression system using buckwheat hypocotyl protoplasts for large-scale experiments. Breed Sci. 2020, 70 (1), 128–134. https://doi.org/10.1270/jsbbs.19082
32. Mooney B. C., Graciet E. A simple and efficient Agrobacterium – mediated transient expression system to dissect molecular processes in Brassica rapa and Brassica napus. 2020. https://doi.org/10.1002/pld3.237
33. Situ J. An RXLR effector PlAvh142 from Peronophythora litchii triggers plant cell death and contributes to virulence. Mol. Plant Pathol. 2020, V. 21, P. 415–428. https://doi.org/10.1111/mpp.12905
34. Grijalva-Manay R., Dorca-Fornell C., Enr?quez-Villacreses W., Mi?o-Castro G., Oliva R., Ochoa V., Proa?o-Tuma K., Armijos-Jaramilloc V. DnaJ molecules as potential effectors in Meloidogyne arenaria. An unexplored group of proteins in plant parasitic nematodes. Commun. Integr. Biol. 2019, V. 12, P. 151–161. https://doi.org/10.1080/19420889.2019.1676138
35. Santos C. M., Romeiro D., Silva J. P., Basso M. F., Molinari H. B. C., Centeno D. C. An improved protocol for efficient transformation and regeneration of Setaria italica. Plant Cell Rep. 2020, V. 39, P. 501–510. https://doi.org/10.1007/s00299-019-02505-y
36. Poborilova Z., Plchova H., Cerovska N., Gunter C. J., Hitzeroth I. I., Rybicki E. P., Moravec T. Transient protein expression in tobacco BY-2 plant cell packs using single and multi-cassette replicating vectors. Plant Cell Rep. 2020, V. 39, P. 1115–1127. https://doi.org/10.1007/s00299-020-02544-w
37. Jurani? M. Nagahatenna D. S. K., Salinas-Gamboa R., Hand M. L., S?nchez-Le?n N., Leong W. H., How T., Bazanova N., Spriggs A., Vielle-Calzada J.-P., Koltunow A. M. G. A detached leaf assay for testing transient gene expression and gene editing in cowpea (Vigna unguiculata [L.] Walp.). Plant Methods. 2020, V. 16, P. 88. https://doi.org/10.1186/s13007-020-00630-4
38. Castellanos-Ar?valo A. P., Estrada-Luna A. A., Cabrera-Ponce J. L. Valencia-Lozano E., Herrera-Ubaldo H., de Folter S., Blanco-Labra A., D?lano-Frier J. P. Agrobacterium rhizogenes-mediated transformation of grain (Amaranthus hypochondriacus) and leafy (A. hybridus) amaranths. Plant Cell Rep. 2020, V. 39, P. 1143–1160.https://doi.org/10.1007/s00299-020-02553-9
39. Burman N., Chandran D., Khurana J. P. A rapid and highly efficient method for transient gene expression in rice plants. Frontiers in Plant Science. 2020, V. 11, P. 584011. https://doi.org/10.3389/fpls.2020.584011
40. Sood P., Singh R. K., Prasad M. An efficient Agrobacterium-mediated genetic transformation method for foxtail millet (Setaria italica L.). Plant Cell Rep. 2020, V. 39, P. 511–525. https://doi.org/10.1007/s00299-019-02507-w
41. Torti S., Schlesier R., Th?mmler A., Bartels D., R?mer P., Koch B., Werner S., Panwar V., Kanyuka K., von Wir?n N., Jones J. D. G., Hause G., Giritch A., Gleba Y. Transient reprogramming of crop plants for agronomic performance. Nat. Plants. 2021, 7 (2), 159–171. https://doi.org/10.1038/s41477-021-00851-y
42. Sorokin A., Yadav N., Gaudet D., Kovalchuk I. Transient expression of the ?-glucuronidase gene in Cannabis sativa varieties. Plant Signaling & Behavior. 2020, V. 15, P. 8. https://doi.org/10.1080/15592324.2020.1780037
43. Yaroshko O., Vasylenko M., Gajdo?ov? A., Morgun B. "Floral-dip" transformation of Amaranthus caudatus L. and hybrids A. caudatus ? A. paniculatus L. Biologija. 2019, 64 (4), 321–330. https://doi.org/10.6001/biologija.v64i4.3904
44. Jasik Ja., Schiebold S., Rolletschek H., Denolf P., Van Adenhove K., Altmann T., Borisjuk L. Subtissue-specific evaluation of promoter efficiency by quantitative fluorometric assay in laser microdissected tissues of rapeseed. Plant Physiol. 2011, 157 (2), 563–573. https://doi.org/10.1104/pp.111.180760
45. Knoll K. A., Short K., Curtis I., Power B., Davey M. R. Shoot regeneration from cultured root explants of spinach (Spinacia oleracea L.): a system for Agrobacterium transformation. Plant Cell Rep. 1997, 17 (2), 96–101 https://doi.org/10.1007/s002990050359
46. Muthu T. Establishment of an efficient Agrobacterium tumefaciens-mediated leaf disc transformation of spine gourd (Momordica dioica Roxb. Ex Willd). African J. Biotechnol. 2011, 10 (83) https://doi.org/10.5897/AJB11.2377
47. Zhang H.-X., Zeevaart J. A. D. An efficient Agrobacterium tumefaciens-mediated transformation and regeneration system for cotyledons of spinach (Spinacia oleracea L.). Plant Cell Rep. 1999, 18 (7–8), 640–645. https://doi.org/10.1007/s002990050635
48. Yaacob J. S., Hwei L. C., Taha R. M. Pigment analysis and tissue culture of Amaranthus cruentus L. Acta horticulturae. 2012, P. 54–64. https://doi.org/10.17660/ActaHortic.2012.958.20
- Details
- Hits: 102
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 14, No 4, 2021
Р. 80-87, Bibliography 10, English
Universal Decimal Classification: 628.331
https://doi.org/10.15407.biotech14.04.080
PROBLEMS OF SOAPSTOCK TREATMENT OF VEGETABLE OIL PRODUCTIONS AND THEIR SOLUTIONS
L. Sabliy1, V. Zhukova1, S. Konontse2, O. Obodovych3, V. Sydorenko3
1National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
2National University of Water and Environmental Engineering, Rivne, Ukraine
3Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, Kyiv
Wastewater generated during vegetable oil production contains various pollutants that enter it during soapstock processing: fats and fatty acids and their salts (aqueous soap solutions), glycerin, phosphoglycerates, neutral fat, phosphatides, proteins, carbohydrates, dyes, unsaponifiable and waxy substances, salts, mechanical impurities, etc.
Aim. The purpose of the work was to study the processes of purification of industrial wastewater from oil production and to propose an effective technology for their treatment, taking into account the regulatory requirements for the discharge of treated wastewater into the city sewage system.
Methods. Chemical oxygen demand (COD) was determined by the dichromate method. The concentration of suspended solids was determined by gravimetric method.
Results. As a result of research, calcium carbonate was chosen as an alkaline reagent. After treatment of soapstock with calcium carbonate followed by flotation, the effect of removing the suspended particles was 70–75%, and COD decreased by 60%. On the basis of the research, a technology for processing soapstock was proposed, including sequential processes of physicochemical wastewater treatment —averaging, alkalization with calcium carbonate, stage I of flotation, coagulation, stage II of flotation, oxidation with hydrogen peroxide, filtration through quartz filters and adsorption on carbon filters.
Conclusion. An effective technology for preliminary cleaning of the soapstocks oil production has been developed. This will significantly reduce the concentration of organic matter and other pollutants in soapstocks, which will significantly reduce the impact of such effluents on the processes of biological wastewater treatment of urban wastewater treatment plants.
Key words: soapstock, vegetable oil, pollutants, technology, treatment, wastewater.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Abdel-Gawad S., Abdel-Shafy M. Pollution control of industrial wastewater from soap and oil industries: a case study. Water science and technology: a journal of the International Association on Water Pollution Research. 2002, V. 46, P. 77–82. https://doi.org/10.2166/wst.2002.0556
2. Liu J., Lien C. Pretreatment of bakery wastewater by coagulation-flocculation and dissolved air flotation. Water science and technology: a journal of the International Association on Water Pollution Research. 2011, V. 43, P. 131–137. https://doi.org/10.2166/wst.2001.0482
3. Chatoui M., Lahsaini S., Souabi S., Bahlaoui M., Amane J. Removal of Wastewater Soaps by Coagulation Flocculation Process. J. Colloid Sci. Biotechnol. 2016, V. 5, P. 212–217. https://doi.org/10.1166/jcsb.2016.1148
4. Drillia P., Kornaros M., Lyberatos G. Wastewater treatment from a motor-oil reforming company using a sequencing batch reactor (SBR). Water Sci. Technol. 2003, 47 (10), 25–32. https://doi.org/10.2166/wst.2003.0529
5. Antonic B., Dordevi? D., Jancikova S., Tremlov? B., Kushkevych I. Physicochemical Characterization of Home-Made Soap from Waste-Used Frying Oils. Processes. 2020, V. 8, P. 1219. https://doi.org/10.3390/pr8101219
6. Tekade P. V., Mohabansi N. P., Patil V. B. Study of physic-chemical properties of effluent from soap and detergent industry in Wardha. Rasayan J. 2011, 2 (4), 461–465.
7. Martins Rui C., Quinta-Ferreira Rosa M. Comparison of Advanced Oxidation Processes (AOPs) based on O3 and H2O2 for the remediation of real wastewaters. J. Advanced Oxidation Technol. 2011, V. 14, P. 282–291. https://doi.org/10.1515/jaots-2011-0214
8. Kiuri H. Development of Dissolved Air Flotation Technology from the First Generation to the Newest (Third) one (DAF in Turbulent Flow Conditions). Water science and technology: a journal of the International Association on Water Pollution Research. 2001, 43 (8), 1–7. https://doi.org/10.2166/wst.2001.0450
9. Saththasivam J., Loganathan K., Sarp S. An overview of oil–water separation using gas flotation systems. Chemosphere. 2016, V. 144, P. 671–680. https://doi.org/10.1016/j.chemosphere.2015.08.087
10. Kweinor Tetteh E., Rathilal S. Effects of a polymeric organic coagulant for industrial mineral oil wastewater treatment using response surface methodology (RSM). Water SA. 2018, 44 (2), 155–161. https://doi.org/10.4314/wsa.v44i2.02
- Details
- Hits: 75
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 14, No 4, 2021
Р. 70-79, Bibliography 42, English
Universal Decimal Classification: 579.695
https://doi.org/10.15407.biotech14.04.070
TWO-STAGE DEGRADATION OF SOLID ORGANIC WASTE AND LIQUID FILTRATE
Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv
The accumulation of solid and liquid organic waste requires their treatment to develop energy biotechnologies and prevent environment pollution.
Aim. The goal of the work was to study the efficiency of the purification of the filtrate from dissolved organic compounds by aerobic oxidation and methane fermentation.
Methods. The standard methods were used to determine рН and redox potential (Eh), the gas composition, the content of short-chain fatty acids, the concentration of dissolved organic compounds counting to the total сarbon. The efficiency of two types of microbial metabolism for the degradation of soluble organic compounds of filtrate was compared.
Results. The aerobic oxidation was established to provide 1.9 times more efficient removal of dissolved organic compounds, compared with the anaerobic methane fermentation. However, it provided CH4 yield 1 L/dm3 of filtrate (сarbon concentration — 1071 mg/L). The necessity to optimize the methods for purifying filtrate to increase the efficiency of the process was determined.
Conclusions. The obtained results will be the basis to develop complex biotechnology providing not only the production of environmentally friendly energy H2 via the fermentation of solid food waste, but also the purification of filtrate to solve the ecological and energy (CH4 production) problem of society.
Key words: solid organic waste, soluble organic compounds, environmental biotechnologies, hydrogen, methane, fermentation, aerobic oxidation.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Curry N., Pillay P. Biogas prediction and design of a food waste to energy system for the urban environment. Renewable Energy. 2012, V. 41, P. 200–209. https://doi.org/10.1016/j.renene.2011.10.019
2. Pagliano G., Ventorino V., Panico A., Pepe O. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes. Biotechnol. Biofuels. 2017, 10 (1), 113–137. https://doi.org/10.1186/s13068-017-0802-4
3. Algapani D., Wang J., Qiao W., Su M., Goglio A., Wandera S. M., Jiang M., Pan X., Adani F., Dong R. Improving methane production and anaerobic digestion stability of food waste by extracting lipids and mixing it with sewage sludge. Biores. Technol. 2017, V. 244. https://doi.org/10.1016/j.biortech.2017.08.087
4. Algapani D. E., Qiao W., Ricci M., Bianchi D., Wandera S. M., Adani F., Dong R. Bio-hydrogen and bio-methane production from food waste in a two-stage anaerobic digestion process with digestate recirculation. Renewable Energy. 2019, V. 130, P. 1108–1115, https://doi.org/10.1016/j.renene.2018.08.079
5. Pagliaccia P., Gallipoli A., Gianico A., Montecchio D., Braguglia C. M. Single stage anaerobic bioconversion of food waste in mono and co-digestion with olive husks: Impact of thermal pretreatment on hydrogen and methane production. Int. J. Hydrogen Energy. 2016, 41 (2), 905–915. https://doi.org/10.1016/j.ijhydene.2015.10.061
6. Paritosh K., Kushwaha S. K., Yadav M., Pareek N., Chawade A., Vivekanand V. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling. BioMed. Res. Int. 2017, V. 2017, P. 1–19. https://doi.org/10.1155/2017/2370927
7. Yasin N. H. M., Mumtaz T., Hassan M. A., Abd Rahman N. Food waste and food processing waste for biohydrogen production: A review. J. Environ. Management. 2013, V. 130, P. 375–385. https://doi.org/10.1016/j.jenvman.2013.09.009
8. U?kun Kiran E., Trzcinski A. P., Ng W. J., Liu Y. Bioconversion of food waste to energy: A review. Fuel. 2014, V. 134, P. 389–399, https://doi.org/10.1016/j.fuel.2014.05.074
9. Cheng J., Ding L., Lin R., Yue L., Liu J., Zhou J., Cen K. Fermentative biohydrogen and biomethane co-production from mixture of food waste and sewage sludge: Effects of physiochemical properties and mix ratios on fermentation performance. Applied Energy. 2016, V. 184, P. 1–8, https://doi.org/10.1016/j.apenergy.2016.10.003
10. Meena R. A. A., Banu J. R., Kannah R. Y., Yogalakshmi K. N., Kumar G. Biohythane production from food processing wastes – Challenges and perspectives. Biores. Technol. 2020, V. 298, P. 122449, https://doi.org/10.1016/j.biortech.2019.122449
11. Hobbs S. R., Landis A. E., Rittmann B. E., Young M. N., Parameswaran P. Enhancing anaerobic digestion of food waste through biochemical methane potential assays at different substrate: inoculum ratios. Waste Manag. 2018, V. 71, P. 612–617. https://doi.org/10.1016/j.wasman.2017.06.029
12. Han W., Hu Y., Li S., Li F., Tang J. Biohydrogen production in the suspended and attached microbial growth systems from waste pastry hydrolysate. Biores. Technol. 2016, V. 218, P. 589–594. hhttps://doi.org/10.1016/j.biortech.2016.07.009
13. Han M. J., Behera S. K., Park H.-S. Anaerobic co-digestion of food waste leachate and piggery wastewater for methane production: statistical optimization of key process parameters. J. Chem. Technol. Biotechnol. 2012, 87 (11), 1541–1550. hhttps://doi.org/10.1002/jctb.3786
14. Polprasert C. Organic Waste Recycling: Technology and Management – Third Edition. IWA Publishing. 2007. https://library.oapen.org/handle/20.500.12657/30981
15. Levin D. Biohydrogen production: prospects and limitations to practical application. Int. J. Hydrogen Energy. 2004, 29 (2), 173–185, https://doi.org/10.1016/S0360-3199(03)00094-6
16. Show K. Y., Lee D. J., Tay J. H., Lin C. Y., Chang J. S. Biohydrogen production: Current perspectives and the way forward. Int. J. Hydrogen Energy. 2012, 37 (20), 15616–15631, https://doi.org/10.1016/j.ijhydene.2012.04.109
17. Nanda S., Berruti F. A technical review of bioenergy and resource recovery from municipal solid waste. J. Hazardous Materials. 2021, V. 403, P. 123970. https://doi.org/10.1016/j.jhazmat.2020.123970
18. Gottschalk G. Bacterial metabolism, 2nd Edition. New York: Springer-Verlag. 1986, 359 p. https://doi.org/10.1007/978-1-4612-1072-6
19. Kleidon A., Lorenz R.D. Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond. Springer Science & Business Media. 2005, 264 p. https://doi.org/10.1007/b12042
20. Kekacs D., Drollette B. D., Brooker M., Plata D. L., Mouser P. J. Aerobic biodegradation of organic compounds in hydraulic fracturing fluids. Biodegradation. 2015, 26 (4), 271–287, https://doi.org/10.1007/s10532-015-9733-6
21. Thauer R. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiol. 1998, 144 (9), 2377–2406, https://doi.org/10.1099/00221287-144-9-2377
22. Berezkin V. G., Drugov Y. S. Gas Chromatography in Air Pollution Analysis. 1st Edition. Elsevier. 1991, 210 p. Available: https://www.elsevier.com/books/gas-chromatography-in-air-pollution-analysis/berezkin/978-0-444-98732-7
23. Suslova О., Govorukha V., Brovarskaya О., Matveeva N., Tashyreva H., Tashyrev O. Method for Determining Organic Compound Concentration in Biological Systems by Permanganate Redox Titration. Int. J. Bioautomation. 2014, 18 (1), 45–52. http://www.biomed.bas.bg/bioautomation/
24. Ghimire A., Frunzo L., Pirozzi F., Trably E., Escudie R., Lens P., Esposito G. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy. 2015, V. 144, P. 73–95, https://doi.org/10.1016/j.apenergy.2015.01.045
25. Hovorukha V., Tashyrev O., Matvieieva N., Tashyreva H., Havryliuk O., Bielikova O., Sioma I. Integrated Approach for Development of Environmental Biotechnologies for Treatment of Solid Organic Waste and Obtaining of Biohydrogen and Lignocellulosic Substrate. Environ. Res., Engineering and Management. 2018, 74 (4), 31–42. https://doi.org/10.5755/j01.erem.74.4.20723
26. Hovorukha V., Tashyrev O., Havryliuk O., Iastremska L. High Efficiency of Food Waste Fermentation and Biohydrogen Production in Experimental-industrial Anaerobic Batch Reactor. The Open Agriculture J. 2020, 14 (1), 174–186. https://doi.org/10.2174/1874331502014010174
27. Tashyrev O., Govorukha V., Havryliuk O. The effect of mixing modes on biohydrogen yield and spatial pH gradient at dark fermentation of solid food waste. EEEP. 2017, P. 53–62, https://doi.org/10.32006/eeep.2017.2.5362
28. Hovorukha V., Havryliuk O., Gladka G., Tashyrev O., Kalinichenko A., Sporek M., Dolhanczuk-Srodka A. Hydrogen Dark Fermentation for Degradation of Solid and Liquid Food Waste. Energies. 2021, 14 (7), https://doi.org/10.3390/en14071831
29. Hovorukha V., Tashyrev O., Tashyreva H., Havryliuk O., Bielikova O., Iastremska L. Increase in efficiency of hydrogen production by optimization of food waste fermentation parameters. Energetika. 2019, 65 (1), 85–94. https://doi.org/10.6001/energetika.v65i1.3977
30. Ababouch L., Chaibi A., Busta F. F. Inhibition of Bacterial Spore Growth by Fatty Acids and Their Sodium Salts. J. Food Prot. 1992, 55 (12), 980–984. https://doi.org/10.4315/0362-028X-55.12.980
31. Herrero A. A. End-product inhibition in anaerobic fermentations. Trends in Biotechnol. 1983, 1 (2), 49–53, https://doi.org/10.1016/0167-7799(83)90069-0
32. Sivagurunathan P., Sen B., Lin C.-Y. Overcoming propionic acid inhibition of hydrogen fermentation by temperature shift strategy. Int. J. Hydrogen Energy. 2014, 39 (33), 19232–19241, https://doi.org/10.1016/j.ijhydene.2014.03.260
33. Ziemi?ski K., Fr?c M. Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms. African J. Biotechnol. 2012, 11 (18). https://doi.org/10.5897/AJBX11.054
34. Poeschl M., Ward S., Owende P. Environmental impacts of biogas deployment – Part II: life cycle assessment of multiple production and utilization pathways. J. Cleaner Production. 2012, V. 24, P. 184–201. https://doi.org/10.1016/j.jclepro.2011.10.030
35. Wu X., Zhu J., Dong Ch., Miller C., Li Y., Wang L., Yao W. Continuous biohydrogen production from liquid swine manure supplemented with glucose using an anaerobic sequencing batch reactor. Int. J. Hydrogen Energy. 2009, 34 (16), 6636–6645, https://doi.org/10.1016/j.ijhydene.2009.06.058
36. Ren N., Li J., Li B., Wang Y., Liu S. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int. J. Hydrogen Energy. 2006, 31 (15), 2147–2157, https://doi.org/10.1016/j.ijhydene.2006.02.011
37. Zhang M.-L., Fan Y.-T., Xing Y., Pan C.-M., Zhang G.-S., Lay J.-J. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass and Bioenergy. 2007, 31 (4), 250–254, https://doi.org/10.1016/j.biombioe.2006.08.004
38. Hawkes F. R., Hussy I., Kyazze G., Dinsdale R., Hawkes D. L. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int. J. Hydrogen Energy. 2007, 32 (2), 172–184. hhttps://doi.org/10.1016/j.ijhydene.2006.08.014
39. Ike M., Inoue D., Miyano T., Liu T. T., Sei K., Soda S., Kadoshin Sh. Microbial population dynamics during startup of a full-scale anaerobic digester treating industrial food waste in Kyoto eco-energy project. Biores. Technol. 2010, 101 (11), 3952–3957, https://doi.org/10.1016/j.biortech.2010.01.028
40. Kondusamy D., Kalamdhad A. S. Pre-treatment and anaerobic digestion of food waste for high rate methane production – A review. J. Environ. Chem. Engineering. 2014, 2 (3), 1821–1830, hhttps://doi.org/10.1016/j.jece.2014.07.024
41. Ferry J. G. Enzymology of one-carbon metabolism in methanogenic pathways. FEMS Microbiol. Rev. 1999, 23 (1), 13–38. https://doi.org/10.1111/j.1574-6976.1999.tb00390.x
42. Karhadkar P. P., Audic J.-M., Faup G. M., Khanna P. Sulfide and sulfate inhibition of methanogenesis. Water Res. 1987, 21 (9), 1061–1066, https://doi.org/10.1016/0043-1354(87)90027-3
- Details
- Hits: 97
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 14, No 4, 2021
Р. 64-69, Bibliography 14, English
Universal Decimal Classification: 616.13. 002+541.183
https://doi.org/10.15407.biotech14.04.064
ON THE POSSIBILITY OF USING CARBON ENTEROSORBENTS TO NORMALIZE CHOLESTEROL METABOLISM
N. V. Sych, L. I. Kotyns’ka, V. M. Vikarchuk, I. A. Farbun
Institute for Sorption and Endoecology Problems of the National Academy of Sciences of Ukraine, Kyiv
The creation of effective drugs for the prevention and treatment of atherosclerosis is one of the urgent interdisciplinary tasks for modern chemistry and pharmacology. Given the role of hypercholesterolemia in the development of this disease, it is necessary to remove excess amounts of cholesterol from the body. As an alternative to means of lowering total cholesterol and low-density lipoprotein (LDL) cholesterol, the possibility of using carbon enterosorbents for efferent therapy is considered.
Aim. The purpose of the study was to evaluate the sorption capacity of the adsorbents developed by authors in terms of the possibility of cholesterol adsorption.
Methods. Using the spectrophotometric method, the sorption of cholesterol on samples of adsorbents obtained by chemical activation of waste from the processing of lignocellulosic raw materials — dogwood and coffee residue has been studied.
Results. A comparison of sorption isotherms with the isotherm obtained on the industrial adsorbent SORBEX has been performed. It was shown that the adsorption capacity of carbon adsorbents is primarily determined by their porous structure. The highest sorption values (7,3 mg/g) have been revealed by the sorption material obtained by chemical activation of cornel seed, an intermediate position (6,3 mg/g) is occupied by the adsorbent obtained from the coffee residue. Industrial carbon SORBEX has the lowest sorption values (5,3 mg/g).
Conclusions. Calculations by Langmuir’s and Freundlich’s models testify about the accordance of the experimental data to Langmuir’s model. The use of the obtained activated carbons may be one of the effective alternative ways to lower blood cholesterol.
Key words: cholesterol; atherosclerosis; low-density lipoprotein (LDL); enterosorbents; metabolism.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Brugts J. J., Yetgin T., Hoeks S. E., Gotto A. M., Shepherd J., Westendorp R. G., de Craen A. J., Knopp R. H., Nakamura H., Ridker, P., van Domburg R., Deckers J. W. The benefits of statins in people without established cardiovascular disease but with cardiovascular risk factors: metaanalysis of randomised controlled trials. BMJ. 2009, V. 338, P. b2376. https://doi.org/10.1136/bmj.b2376
2. Pandor A., Ara R. M., Tumur I., Wilkinson A. J., Paisley S., Duenas A., Durrington P. N., Chilcott J. Ezetimibe monotherapy for cholesterol lowering in 2,722 people: systematic review and meta-analysis of randomized controlled trials. J. Intern. Med. 2009, V. 265, P. 568–580. https://doi.org/10.1111/j.1365-2796.2008.02062.x
3. Mikhailidis D. P., Sibbring G. C., Ballantyne C. M., Davies G. M., Catapano A. L. Meta-analysis of the cholesterol-lowering effect of ezetimibe added to ongoing statin therapy. Curr. Med. Res. Opin. 2007, V. 23, P. 2009–2026. https://doi.org/10.1185/030079907X210507
4. Jeffrey S. Cohn, Alvin Kamili, Elaine Wat, Rosanna W. S. Chung and Sally Tandy Phospholipids and Intestinal Cholesterol Absorption. Nutrients. 2010, V. 2, P. 116–127. https://doi.org/10.3390/nu2020116
5. Yu H., Fu G., Zhao J., Liu L., He B. Synthesis and in vitro sorption properties of PAA-grafted cellulose beads for selective binding of LDL. Artif Cells Blood Substit Immobil. Biotechnol. 2006, 34 (5), 501–513. https://doi.org/10.1080/10731190600862795
6. Wang S., Guo X., Wang L., Wang W., Yu Y. Effect of PEG spacer on cellulose adsorbent for the removal of low density lipoprotein-cholesterol. Artif Cells Blood Substit Immobil. Biotechnol. 2006, 34 (1), 99–110. PMID: 16519407 https://doi.org/10.1080/10731190500430222
7. Asano T., Tsuru K., Hayakawa S., Osaka A. Low density lipoprotein adsorption on sol-gel derived alumina for blood purification therapy. Biomed. Mater. Eng. 2008, 18 (3), 161–170. PMID: 18725696 https://doi.org/10.3233/BME-2008-0519
8. Claus-Chr. Heuck Polyacrylate adsorbents for the selective adsorption of cholesterol-rich lipoproteins from plasma or blood. Ger. Med. Sci. 2011, V. 9, Doc02. https://doi.org/10.3205/000125
9. Lysenkova A. V., Filippova V. A., Prischepova L. V., Odintsova M. V. Theoretical bases of adsorption therapy of atherosclerosis. Problemy zdorovya i ecologii. 2010, N 1, 101–104. (In Russian).
10. Devi S., Singh R. Antioxidant and antihypercholesterolemic potential of Vitis vinifera leaves. Pharmacol. J. 2017, 9 (4), 565–572. https://doi.org/10.5530/pj.2017.4.90
11. Gunawan Pasaribu, Totok K. Waluyo, Gustan Pari, Novitri Hastuti. The effectiveness of glucomannan and nano activated-carbon as hypercholesterollowering agents. Indonesian J. Forestry Res. 2020, 7 (2), 155–164. https://doi.org/10.20886/ijfr.2020.7.2.155-164
12. Liu Z., Tabakman S., Welsher K. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2010, 2 (2), 85–120. https://doi.org/10.1007/s12274-009-9009-8
13. Shao W., Arghya P., Yiyong M., Rodes L., Prakash S. Carbon nanotubes for use in medicine: Potentials and limitations. Syntheses and Applications of Carbon Nanotubes and Their Composites. 2013. https://doi.org/10.5772/51785
14. Mashkour M. S., Alhassan-Almatori N. A., Brbber A. M. Spectrophotometric determination of Cholesterol by using procaine as coupling reagent. Int. J. ChemTech. Res. 2017, 10 (2), 630–640.
- Details
- Hits: 92
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 14, No 4, 2021
Р. 38-52, Bibliography 84, English
Universal Decimal Classification: 519.8.812.007
https://doi.org/10.15407.biotech14.04.038
MATHEMATICAL MODEL FOR THE INVESTIGATION OF HYPOXIC STATES IN THE HEART MUSCLE AT VIRAL DAMAGE
1V. M. Glushkov Institute of Cybernetics of National Academy of Sciences of Ukraine, Kyiv
2National Aviation University, Educational and Research Institute of Air Navigation, Kyiv, Ukraine
3Borys Grinchenko Kyiv University, Ukraine
4Czestochowa University of Technology, Poland
The main complications of organism damaged by SARS-CoV-2 virus are various cardiovascular system lesions. As a result, the secondary tissue hypoxia is developed and it is relevant to search the means for hypoxic state alleviation. Mathematical modeling of this process, followed by the imitation of hypoxic states development, and subsequent correction of hypoxia at this model may be one of the directions for investigations.
Aim. The purpose of this study was to construct mathematical models of functional respiratory and blood circulatory systems to simulate the partial occlusion of blood vessels during viral infection lesions and pharmacological correction of resulting hypoxic state.
Methods. Methods of mathematical modeling and dynamic programming were used. Transport and mass exchange of respiratory gases in organism, partial occlusion of blood vessels and influence of antihypoxant were described by the systems of ordinary nonlinear differential equations.
Results. Mathematical model of functional respiratory system was developed to simulate pharmacological correction of hypoxic states caused by the complications in courses of viral infection lesions. The model was based on the theory of functional systems by P. K. Anokhin and the assumption about the main function of respiratory system. The interactions and interrelations of individual functional systems in organism were assumed. Constituent parts of our model were the models of transport and mass exchange of respiratory gases in organism, selforganization of respiratory and blood circulatory systems, partial occlusion of blood vessels and the transport of pharmacological substance.
Conclusions. The series of computational experiments for averaged person organism demonstrated the possibility of tissue hypoxia compensation using pharmacological substance with vasodilating effect, and in the case of individual data array, it may be useful for the development of strategy and tactics for individual patient medical treatment.
Key words: functional respiratory system, transport and mass exchange of respiratory gases, hypoxic state, partial occlusion of blood vessels.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Komisarenko S. V. World Coronavirus Crisis. K. Publishing House LAT&K. 2020, 120 p.
2. Avula A., Nalleballe K., Narula N., Sapozhnikov S., Dandu V., Toom S., Glaser A., Elsayegh D. COVID-19 presenting as stroke. Brain, Behavior, and Immunity. 2020, V. 87, P. 115–119. https://doi.org/10.1016/j.bbi.2020.04.077
3. Leisman D. E., Deutschman C. S., Legrand M. Facing COVID-19 in the ICU: vascular dysfunction, thrombosis, and dysregulated inflammation. Intensive Care Med. 2020, 46 (6), 1105–1108. https://doi.org/10.1007/s00134-020-06059-6
4. Bazdyrev E. D. Coronavirus disease: global problem of the 21 st century. Comlex issues of Cardiovascular Diseases. 2020, 9 (2), 6–16. https://doi.org/10.17802/2306-1278-2020-9-2-6-16 (In Russian). https://doi.org/10.17802/2306-1278-2020-9-2-6-16
5. Longquan Li, Tian Huang, Yongqing Wang, Zhengping Wang, Yuan Liang, Taobi Huang, Huiyun Zhang, Weiming Sun, Yuping Wang. COVID-19 patients' clinical characteristics, discharge rate, and fatality rate of metaanalysis, Volume 92, Issue 6. Special Issue on New co ronavirus (2019-nCoV or SARS-CoV-2) and the outbreak of the respiratory illness (COVID-19): Part-III, June 2020 Pages 577–583. https://doi.org/10.1002/jmv.25757
6. Chaolin Huang, Yeming Wang, Xingwang Li, Lili Ren, Jianping Zhao, Yi Hu, Li Chang, Guohui Fan, Jiuyang Xu, Xiaoying Gu, Zhenshun Cheng, Ting Yu, Jiaan Xia, Yuan Wei, Wenjuan Wu, Xuelei Xie, Wen Yin, Hui Li, Min Liu, Yan Xiao, Hong Gao, Li Guo, Jungang Xie, Guangfa Wang, Rongmeng Jiang, Zhancheng Gao, Qi Jin, Jianwei Wang, Bin Cao. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China Lancet. 2020, 395 (10223), 497–506. https://doi.org/10.1016/SO140-6736(20)30183-5. Lancet. 2020, 395 (10223), 496. https://doi.org/10.1016/S0140-6736(20)30252-X https://doi.org/10.1016/S0140-6736(20)30252-X https://doi.org/10.1016/S0140-6736(20)30252-X https://doi.org/10.1016/S0140-6736(20)30252-X
7. Dawei Wang, Bo Hu, Chang Hu, Fangfang Zhu, Xing Liu, Jing Zhang, Binbin Wang, Hui Xiang, Zhenshun Cheng, Yong Xiong, Yan Zhao, Yirong Li, Xinghuan Wang, Zhiyong Peng. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan. China. JAMA. 2020, 323 (11), 1061–1069. https://doi.org/10.1001/jama.2020.1585
8. Fei Zhou , Ting Yu, Ronghui D, Guohui Fan, Ying Liu, Zhibo Liu, Jie Xiang, Yeming Wang, Bin Song, Xiaoying Gu, Lulu Guan, Yuan Wei, Hui Li Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study The Lancet, 395(10229), 1054?1062 ? March 2020. https://doi.org/10.1016/S0140-6736(20)30566-3
9. Driggin E., Mahesh M. V., Bikdeli B., Chuich T., Laracy J., Biondi-Zoccai G., Brown T. S., Der Nigoghossian C., Zidar D. A., Haythe J., Brodie D., Beckman J. A., Kirtane A. J., Stone G. W., Krumholz H. M., Parikh S. A. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J. Am. Coll. Cardiol. 2020, 75 (18), 2352–2371. https://doi.org/10.1016/j.jacc.2020.03.031
10. Larina V. N., Golovko M. G., Larin V. G. Possible effects of coronavurus infection (COVID-19) on the cardiovascular system ". Bulletin of RSMU. 2020, V. 2, P. 5–12. (In Russian).https://doi.org/10.24075/brsmu.2020.020
11. Oudit Y., Kassiri Z., Jiang C., Liu P. P., Poutanen S. M., Penninger J. M., Butany J. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients. Eur. J. Clin. Invest. 2009, 39 (7), 618–625. https://doi.org/10.1111/j.1365-2362.2009.02153.x
12. Zhe Xu, Lei Shi, Yijin Wang, Jiyuan Zhang, Lei Huang, Chao Zhang, Shuhong Liu, Peng Zhao, Hongxia Liu, Li Zhu, Yanhong Tai, Changqing Bai, Tingting Gao, Jinwen Song, Peng Xia, Jinghui Dong, Jingmin Zhao, Fu-Sheng Wang. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8 (4), 420–422. https://doi.org/10.1016/S2213-2600(20)30076-X
13. Menachery V. D., Yount B. L., Debbink Jr.K., Agnihothram S., Gralinski L. E., Plante J. A., Graham R. L., Scobe T., Ge Xing-Yi, Donaldson E. F., Randell S. H., Lanzavecchia A., Marasco W. A., Shi Z-Li, Baric R. S. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nature Med. 2015, V. 21, P. 1508–1513. https://doi.org/10.1038/nm.3985
14. Yushun Wan, Jian Shang, Graham R., Baric R. S., Fang Li. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J. Virol. 2020, 94 (7), 1–9. https://doi.org/10.1128/JVI.00127-20
15. Hong Peng Jia, Dwight C. Look, Lei Shi, Hickey M., Pewe L., Netland J., Farzan M., Wohlford-Lenane C., Perlman S., McCray P. B. Jr. ACE2 Receptor Expression and Severe Acute Respiratory Syndrome Coronavirus Infection Depend on Differentiation of Human Airway Epithelia. J. Virol. 2005, 79 (23), 14614–14621. https://doi.org/10.1128/JVI.79.23.14614-14621.2005
16. Sodhi C. P., Wohlford-Lenane C., Yamaguchi Y., Prindle T., Fulton W. B., Wang S., McCray P. B. Jr., Chappell M., Hackam D. J., Jia H. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am. J. Physiol. Lung Cell Mol. Physiol. 2018, 314 (1), 17–31. https://doi.org/10.1152/ajplung.00498.2016
17. Nanshan Chen, Min Zhou, Xuan Dong, Jieming Qu, Fengyun Gong, Yang Han, Yang Qiu, Jingli Wang, Ying Liu, Yuan Wei, Jia An Xia, Ting Yu, Xinxin Zhang, Li Zhang. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020, 395 (10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7https://doi.org/10.1016/S0140-6736(20)30211-7https://doi.org/10.1016/S0140-6736(20)30211-7
18. Short K. R., Kroeze E. J. B. V., Fouchier R. A. M, Kuiken T. Pathogenesis of influenza-induced acute respiratory distress syndrome Lancet Infect. Dis. 2014, 14 (1), 57–69. https://doi.org/10.1016/S1473-3099(13)70286-X
19. Wei-jie Guan, Zheng-yi Ni, Yu Hu, Wen-hua Liang, Chun-quan Ou, Jian-xing He, Lei Liu, Hong Shan, Chun-liang Lei, David S. C. Hui, Bin Du, Lan-juan Li, Guang Zeng, Kwok-Yung Yuen, Ru-chong Chen, Chun-li Tang, Tao Wang, Ping-yan Chen, Jie Xiang, Shi-yue Li, Jin-lin Wang, Zi-jing Liang, Yi-xiang Peng, Li Wei, Yong Liu, Ya-hua Hu, Peng Peng, Jian-ming Wang, Ji-yang Liu, Zhong Chen, Gang Li, Zhi-jian Zheng, Shao-qin Qiu, Jie Luo, Chang-jiang Ye, Shao-yong Zhu, Nan-shan Zhong. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl. J. Med. 2020, V. 382, P. 1708–1720. https://doi.org/10.1056/NEJMoa2002032
20. Xiaobo Yang, Yuan Yu, Jiqian Xu, Huaqing Shu, Jia'an Xia, Hong Liu, Yongran Wu, Lu Zhang, Zhui Yu, Minghao Fang, Ting Yu, Yaxin Wang, Shangwen Pan, Xiaojing Zou, Shiying Yuan, You Shang. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med. 2020. 2600 (20), 1–7. https://doi.org/10.1016/S2213-2600(20)30079-5
21. Kopytsy M., Rodionova I., Tytarenko N., Hilova Y., Kutya I., Kobets A. Features of the cardiovascular system lesion in patients with COVID-19. ScienceRise: Med. Sci. 2020, 3 (36), 4–12. (In Russian). https://doi.org/10.15587/2519-4798.2020.204011
22. Yu C.-M., Wong R. S.-M., Wu E. B., Kong S.-L., Wong J., Yip G. W.-K., Soo Y. O. Y., Chiu M. L. S., Chan Y.-S., Hui D., Lee N., Wu A., Leung C.-B., Sung J. J.-Y. Cardiovascular complications of severe acute respiratory syndrome. Postgrad. Med. J. 2006, V. 82, P. 140–144.https://doi.org/10.1136/pgmj.2005.037515
23. Li S. S., Cheng C., Fu C., Chan Y., Lee M., Chan J. W., Yiu S. Left Ventricular Performance in Patients With Severe Acute Respiratory Syndrome. Circulation. 2003, V. 108, P. 1798–1803. https://doi.org/10.1161/01.CIR.0000094737.21775.32
24. Alhogbani T. Acute myocarditis associated with novel Middle East respiratory syndrome coronavirus. Ann. Saudi Med. 2016, 36 (1), 78–80. https://doi.org/10.5144/0256-4947.2016.78
25. Mikhaylovskaya T. V., Yakovleva N. D., Safronov M. A., Kharlamova Ya. L. Porenyial. Effects of COVID-19 on the Cardiovascular System. Physical and Reabilitation Medicine, Medical Reabilitation. 2020, No 2, P. 133–139. (In Russian).. https://doi.org/10.36425/rehab34080
26. Madjid M., Safavi-Naein Payam., Solomon S. D., Vardeny O. Potential Effects of Coronaviruses on the Cardiovascular System. A Review. JAMA Cardiol. 2020, 5 (7), 831–840. https://doi.org/10.1001/jamacardio.2020.1286
27. Peiris J. S. M., Chu C. M., Cheng V. C. C., Chan K. S., Hung I. F. N., Poon L. L. M., Law K. I., Tang B. S. F., Hon T. Y. W., Chan C. S., Chan K. H., Ng J. S. C., Zheng B. J., Ng W. L., Lai R. W. M., Guan Y., Yuen K. Y. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003, 361 (9371), 1767?1772. https://doi.org/10.1016/S0140-6736(03)13412-5
28. Pek Yoon Chong, Paul Chui, Ai E. Ling, Teri J. Franks, Dessmon Y. H. Tai, Yee Sin Leo, Gregory J. L. Kaw, Gervais Wansaicheong, Kwai Peng Chan, Lynette Lin Ean Oon, Eng Swee Teo, Kong Bing Tan, Noriko Nakajima, Tetsutaro Sata, William D. Travis. Analysis of deaths during the severe acute respiratory syndrome (SARS) epidemic in Singapore: challenges in determining a SARS diagnosis. Arch. Pathol. Lab. Med. 2004, 128 (2), 195–204. https://doi.org/10.5858/2004-128-195-AODDTS
29. Zhe Xu, Lei Shi, Yijin Wang, Jiyuan Zhang, Lei Huang, Chao Zhang, Shuhong Liu, Peng Zhao, Hongxia Liu, Li Zhu, Yanhong Tai, Changqing Bai, Tingting Gao, Jinwen Song, Peng Xia, Jinghui Dong, Jingmin Zhao, Fu-Sheng Wang. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8 (4), 420–422. https://doi.org/10.1016/S2213-2600(20)30076-X
30. Shaobo Shi, Mu Qin, Bo Shen, Yuli Cai, Tao Liu, Fan Yang, Wei Gong, Xu Liu, Jinjun Liang, Qinyan Zhao, He Huang, Bo Yang, Congxin Huang. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020, 5 (7), 802–810. https://doi.org/10.1001/jamacardio.2020.0950
31. Kanorskii S. G. COVID-19 and the heart: direct and indirect impact. Kubanskiy Nauchniy Meditsinskiy Vestnik. 2021, 28 (1), 16–31. (In Russian). https://doi.org/10.25207/1608-6228-2021-28-1-16-31
32. Hoffmann M., Kleine-Weber H., Schroeder S., Kr?ger N., Herrler T., Erichsen S., Schiergens T. S., Herrler G., Wu N-H., Nitsche A., M?ller M. A., Drosten C., P?hlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020, 181 (2), 271–280. https://doi.org/10.1016/j.cell.2020.02.052
33. Li M. Y., Li L., Zhang Y., Wang X. S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty. 2020, V. 9, P. 45.https://doi.org/10.1186/s40249-020-00662-x
34. Forrester S. J., Booz G. W., Sigmund C. D., Coffman T. M., Kawai T., Rizzo V., Scalia R., Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol. Rev. 2018, 98 (3), 1627–1738. https://doi.org/10.1152/physrev.00038.2017
35. Verdecchia P., Cavallini C., Spanevello A., Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur. J. Intern. Med. 2020, V. 76, P. 14–20. https://doi.org/10.1016/j.ejim.2020.04.037
36. South A. M., Diz D. I., Chappell M. C. COVID-19, ACE2, and the cardiovascular consequences. Heart and Circulatory Physiology.
https://doi.org/10.1152/ajpheart.00217.2020
37. Jiu Chang Zhong, Ratnadeep Basu, Danny Guo, Fung L. Chow, Simon Byrns, Manfred Schuster, Hans Loibner, Xiu-hua Wang, Josef M. Penninger, Zamaneh Kassiri, Gavin Y. Oudit. Angiotensin-Converting Enzyme 2 Suppresses Pathological Hypertrophy, Myocardial Fibrosis, and Cardiac Dysfunction 2010. Circulation. 2010, 122 (7), 717–728 https://doi.org/10.1161/CIRCULATIONAHA.110.955369
38. Tanwar V., Adelstein J. M., Wold L. E. Double trouble: combined cardiovascular effects of particulate matter exposure and coronavirus disease 2019. Cardiovasc. Res. 2021, 117 (1), 85–95. https://doi.org/10.1093/cvr/cvaa293
39. Ye Q., Wang B., Mao J. The pathogenesis and treatment of the "Cytokine Storm" in COVID-19. J. Infect. 2020, 80 (6), 607–613. https://doi.org/10.1016/j.jinf.2020.03.037
40. Guang Chen, Di Wu, Wei Guo, Yong Cao, Da Huang, Hongwu Wang, Tao Wang, Xiaoyun Zhang, Huilong Chen, Haijing Yu, Xiaoping Zhang, Minxia Zhang, Shiji Wu, Jianxin Song, Tao Chen, Meifang Han, Shusheng Li, Xiaoping Luo, Jianping Zhao, Qin Ning. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 2020, 130 (5), 2620–2629. https://doi.org/10.1172/JCI137244
41. Mehta P., McAuley D. F., Brown M., Sanchez E., Tattersall R. S., Manson J. J. HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020, 395 (10229), 1033–1034. https://doi.org/10.1016/S0140-6736(20)30628-0
42. Siddiqi H. K., Mehra M. R. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J. Heart Lung Transplant. 2020, 39 (5), 405–407. https://doi.org/10.1016/j.healun.2020.03.012
43. Inciardi R. M., Lupi L., Zaccone G., Italia L., Raffo M., Tomasoni D., Cani D. S., Cerini M., Farina D., Gavazzi E., Maroldi R., Adamo M., Ammirati E., Sinagra G., Lombardi C. M., Metra M. Cardiac Involvement in a Patient With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5 (7), 819–824. https://doi.org/10.1001/jamacardio.2020.1096
44. Zeng J. H., Liu Y. X., Yuan J., Wang F. X., Wu W. B., Li J. X., Wang L. F., Gao H., Wang Y., Dong C. F., Li Y. J., Xie X. J., Feng C., Liu L. First case of COVID-19 complicated with fulminant myocarditis: a case report and insights. Infection. 2020, 48 (5), 773–777. https://doi.org/10.1007/s15010-020-01424-5
45. Liu K., Fang Y. Y., Deng Y., Liu W., Wang M. F., Ma J. P., Xiao W., Wang Y. N., Zhong M. H., Li C. H., Li G. C., Liu H. G. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin. Med. J. (Engl.). 2020, 133 (9), 1025–1031. https://doi.org/10.1097/CM9.0000000000000744
46. Tavazzi G., Pellegrini C., Maurelli M., Belliato M., Sciutti F., Bottazz A., Sepe P. A., Resasco T., Camporotondo R., Bruno R., Baldanti F., Paolucci S., Pelenghi S., Iotti G. A., Mojoli F., Arbustini E. Myocardial localization of coronavirus in COVID?19 cardiogenic shock. Eur. J. Heart Failure. 2020, 5 (22), 911–915. https://doi.org/10.1002/ejhf.1828
47. Fox S. E., Li G., Akmatbekov A., Harbert J. L., Lameira F. S., Brown J. Q., Heide R. S. V. Unexpected Features of Cardiac Pathology in COVID-19 Infection. Circulation. 2020, V. 142, P. 1123–1125 https://doi.org/10.1161/CIRCULATIONAHA.120.049465
48. Kogan E. A., Berezovskiy Yu. S., Blagova O. V., Kukleva A. D., Bogacheva G. A., Kurilina E. V., Kalinin D. V., Bagdasaryan T. R., Semeyonova L. A., Gretsov E. M., Ergeshov A. E., Fomin V. V. Miocarditis in Patients with COVID-19 Confirmed by Immunohistochemical. Kardiologiya. 2020, 60 (7), 4–10. (In Russian). https://doi.org/10.18087/cardio.2020.7.n1209
49. Mehra M. R., Ruschitzka F. COVID-19 Illness and Heart Failure: A Missing Link? JACC Heart Fail. 2020, 8 (6), 512–514. https://doi.org/10.1016/j.jchf.2020.03.004
50. Aykut Cilli, Ozlem Cakin, Emine Aksoy, Feyza Kargin, Nalan Adiguzel, Zuhal Karakurt, Begum Ergan, Seda Mersin, Selen Bozkurt, Fatma Ciftci, Melike Cengiz. Acute cardiac events in severe community?acquired pneumonia: A multicenter study. A Clin. Respir. J. 2018, 28 (7), 2212–2219. https://doi.org/10.1111/crj.12791
51. Cowan L. T., Lutsey P. L., Pankow J. S., Matsushita K., Ishigami J., Lakshminarayan K. Inpatient and Outpatient Infection as a Trigger of Cardiovascular Disease: The ARIC Study. J. Amer. Heart Assoc. 2018, V. 7, P. e 009683. https://doi.org/10.1161/JAHA.118.009683
52. Babapoor-Farrokhran S., Gill D., Walker J., Rasekhi R. T., Bozorgnia B., Amanullah A. Myocardial injury and COVID-19: Possible mechanisms. Life Sci. 2020, V. 253, P. 117723. https://doi.org/10.1161/JAHA.118.009683
53. Florea V. G., Cohn J. N The Autonomic Nervous System and Heart Failure. Circulation Res. 2014, V. 114, P. 1815–182 https://doi.org/10.1161/CIRCRESAHA.114.302589
54. Xiong T. Y., Redwood S., Prendergast B., Chen M. Coronaviruses and the cardiovascular system: acute and long-term implications. Eur. Heart J. 2020, 41 (19), 1798–1800. https://doi.org/10.1093/eurheartj/ehaa231
55. Bansal M. Cardiovascular disease and COVID-19. Diabetes & Metabolic Syndrome: Clin. Res. Rev. 2021, 15 (1), 477. https://doi.org/10.1016/j.dsx.2020.03.013
56. Thygesen K., Alpert J. S., Jaffe A. S., Chaitman B. R., Bax J. J., Morrow D. A., White H. D. Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). J. Am. Coll. Cardiol. 2018, 72 (18), 2231–2264. https://doi.org/10.1016/j.jacc.2018.08.1038
57. Chapman A. R., Shah A. S. V., Lee K. K., Anand A., Francis O., Adamson P., McAllister D. A., Strachan F. E., Newby D. E., Mills N. L. Long-Term Outcomes in Patients With Type 2 Myocardial Infarction and Myocardial Injury. Circulation. 2018, 137 (12), 1236–1245.https://doi.org/10.1161/CIRCULATIONAHA.117.031806
58. Polonskaya Y. V., Kashtanova E. V., Stakhneva E. M., Sadowski E. V., Ragino Yu. I. COVID-19 and cardiovascular diseases. Ateroscleroz. 2020, 16 (2), 73–79. (In Russian).https://doi.org/10.15372/ATER20200207
59. Arentz M., Yim E., Klaff Li., Lokhandwala S., Riedo F. X., Chong M., Lee M. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA. 2020, 323 (16), 1612–1614. https://doi.org/10.1001/jama.2020.4326
60. Yang X., Yu Y., Xu J., Shu H., Xia J., Liu H., Wu Y., Zhang L., Yu Z., Fang M., Yu T., Wang Y., Pan S., Zou X., Yuan S., Shang Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8 (5), 475–481. https://doi.org/10.1016/S2213-2600(20)30079-5
61. Liu K., Fang Y. Y., Deng Y., Liu W., Wang M. F., Ma J. P., Xiao W., Wang Y. N., Zhong M. H., Li C. H., Li G. C., Liu H. G. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin. Med. J. (Engl.). 2020, 133 (9), 1025–1031. https://doi.org/10.1097/CM9.0000000000000744
62. Zhang J. J., Dong X., Cao Y. Y., Yuan Y. D., Yang Y. B., Yan Y. Q., Akdis C. A., Gao Y. D. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020, 75 (7), 1730–1741. https://doi.org/10.1111/all.14238
63. Pingzheng Mo, Yuanyuan Xing, Yu Xiao, Liping Deng, Qiu Zhao, Hongling Wang, Yong Xiong, Zhenshun Cheng, Shicheng Gao, Ke Liang, Mingqi Luo, Tielong Chen, Shihui Song, Zhiyong Ma, Xiaoping Chen, Ruiying Zheng, Qian Cao, Fan Wang, Yongxi Zhang. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Clin. Infect. Dis. ciaa270. 2020. https://doi.org/10.1093/cid/ciaa270
64. Guo T., Fan Y., Chen M., Wu X., Zhang L., He T., Wang H., Wan J., Wang X., Lu Z. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5 (7), 811–818. https://doi.org/10.1001/jamacardio.2020.1017
65. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020, 395 (10223), 497–506.https://doi.org/10.1016/S0140-6736(20)30183-5
66. Tao Chen, Di Wu, Huilong Chen, Weiming Yan, Danlei Yang, Guang Chen, Ke Ma, Dong Xu, Haijing Yu, Hongwu Wang, Tao Wang, Wei Guo, Jia Chen, Chen Ding, Xiaoping Zhang, Jiaquan Huang, Meifang Han, Shusheng Li, Xiaoping Luo, Jianping Zhao, Qin Ning. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020, V. 368, P. m1295. https://doi.org/10.1136/bmj.m1295
67. Wang L., He W., Yu X., Hu D., Bao M., Liu H., Zhou J., Jiang H. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J. Infect. 2020, 80 (6), 639–645. https://doi.org/10.1016/j.jinf.2020.03.019
68. Lian J., Jin X., Hao S., Cai H., Zhang S., Zheng L., Jia H., Hu J., Gao J., Zhang Y., Zhang X., Yu G., Wang X., Gu J., Ye C., Jin C., Lu Y., Yu X., Yu X., Ren Y., Qiu ., Li L., Sheng J., Yang Y. Analysis of Epidemiological and Clinical Features in Older Patients With Coronavirus Disease 2019 (COVID-19) Outside Wuhan. Clin. Infect. Dis. 2020, 71 (15), 740–747. https://doi.org/10.1093/cid/ciaa242
69. Guan W. J., Liang W. H., Zhao Y., Liang H. R., Chen Z. S., Li Y. M., Liu X. Q., Chen R. C., Tang C. L., Wang T., Ou C. Q., Li L., Chen P. Y., Sang L., Wang W., Li J. F., Li C. C., Ou L. M., Cheng B., Xiong S., Ni Z. Y., Xiang J., Hu Y., Liu L., Shan H., Lei C. L., Peng Y. X., Wei L., Liu Y., Hu Y. H., Peng P., Wang J. M., Liu J. Y., Chen Z., Li G., Zheng Z. J., Qiu S. Q., Luo J., Ye C. J., Zhu S., Cheng L. L., Ye F., Li S. Y., Zheng J. P., Zhang N. F., Zhong N. S., He J. X. China Medical Treatment Expert Group for COVID-19. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur. Respir. J. 2020, 55 (5), 2000547. https://doi.org/10.1183/13993003.00547-2020
70. Mancia G., Rea F., Ludergnani M., Apolone G., Corrao G. Renin–Angiotensin–Aldosterone System Blockers and the Risk of Covid-19. N Engl. J. Med. 2020, V. 382, P. 2431–2440. https://doi.org/10.1056/NEJMoa2006923
71. Mehra M. R., Desai S. S., Kuy S., Henry T. D., Patel A. N. Cardiovascular Disease, Drug Therapy, and Mortality in Covid-19. N Engl. J. Med. 2020, 382 (25), e102. https://doi.org/10.1056/NEJMoa2007621
72. Reynolds H. R., Adhikari S., Pulgarin C., Troxel A. B., Iturrate E., Johnson S B., Hausvater A., Newman J. D., Berger J. S., Bangalore S., Katz S. D., Fishman G. I., Kunichoff D., Yu Chen, Ogedegbe G., Hochman J. S. Renin–Angiotensin–Aldosterone System Inhibitors and Risk of Covid-19. N Engl. J. Med. 2020, V. 382, P. 2441–2448. https://doi.org/10.1056/NEJMoa2008975
73. Klok F. A., Kruip M. J. H. A., van der Meer N. J. M., Arbous M. S., Gommers D. A. M. P. J., Kant K. M., Kaptein F. H. J., van Paassen J., Stals M. A. M., Huisman M. V., Endeman H. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020, V. 191, P. 145–147. https://doi.org/10.1016/j.thromres.2020.04.013
74. Varga Z., Flammer A. J., Steiger P., Haberecker M., Andermatt R., Zinkernagel A. S., Mehra M. R., Schuepbach R. A., Ruschitzka F., Moch H. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020, 395 (10234), 1417–1418. https://doi.org/10.1016/S0140-6736(20)30937-5
75. Yafei Wang, Ying Zhou, Zhen Yang, Dongping Xia, Yi Hu, Shuang Geng. Clinical Characteristics of Patients with Severe Pneumonia Caused by the SARS-CoV-2 in Wuhan, China. Clinical Investigations. 2020, V. 99, P. 649–657. https://doi.org/10.1159/000507940
76. Onopchuk Yu. N. Homeostasis of functional respiratory system as a result of intersystem and system-medium informational interaction. Bioecomedicine. Uniform information space. Ed. by V. I. Gritsenko. Kyiv. 2001, P. 59–84. (In Russian).
77. Onopchuk Yu. N. Homeostasis of the functional circulatory system as a result of intersystem and system-medium informational interaction. Bioecomedicine. Uniform information space. Ed. by V. I. Gritsenko. Kyiv. 2001, P. 85–104. (In Russian).
78. Aralova N. I. Mathematical models of functional respiratory system for solving the applied problems in occupational medicine and sports. Saarbr?cken: LAP LAMBERT Academic Publishing GmbH&Co, KG. 2019, 368 p. (In Russian). ISBN 978-613-4-97998-6
79. Aralova N. I. Information technologies of decision making support for rehabilitation of sportsmen engaged in combat sport. J. Automation Information Sci. 2016, V. 3, P. 160–170. https://doi.org/10.1615/JAutomatInfScien.v48.i6.70
80. Aralova N. I. Integrated mathematical model of self-organization of functional systems of the organism for imitation viral diseases. J. Automation Information Sci. 2020, V. 3, P. 127–137. https://doi.org/10.1615/JAutomatInfScien.v52.i3
81. Beloshitsky P. V., Onopchuk Yu. N., Aralova N. I., Semchik T. A. Mathematic modeling of hypoxic states at heart ischemia. Physiol. J. 2004, 50 (3), 139–143. (In Russian).
82. Liashko N. I., Onopchuck G. Yu. Pharmacological correction of organism state. Mathematical model and its analysis. Computer Mathematic. 2005, V. 1, P. 127–134. (In Russian).
83. Aralova A. A., Aralova N. I., Kovalchuk-Khimyuk L. A., Onopchuk Yu. N. Automated information system for athletes functional diagnostics. Control systems and machines. 2008, V. 3, P. 73–78. (In Russian).