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The purpose of the study was to provide the pipeline for processing of publicly available unprocessed
data on gene expression via integration and differential gene expression analysis.

Data collection from the open gene expression databases, normalization and integration into a single
expression matrix in accordance with metadata and determination of differentially expressed genes were
fulfilled. To demonstrate all stages of data processing and integrative analysis, there were used the data
from gene expression in the human placenta from the first and second trimesters of normal pregnancy.

The source code for the integrative analysis was written in the R programming language and publicly
available as a repository on GitHub. Four clusters of functionally enriched differentially expressed genes
were identified for the human placenta in the interval between the first and second trimester of
pregnancy.

Immune processes, developmental processes, vasculogenesis and angiogenesis, signaling, and the
processes associated with zinc ions varied in the considered interval between the first and second
trimester of placental development. The proposed sequence of actions for integrative analysis could be
applied to any data obtained by microarray technology.

Key words: microarray, transcript, integrative analysis, Bayesian empirical method, meta-analy-

sis, differentially expressed genes, placenta.

The last two decades in biology are marked
by the emergence and rapid advancement of
high throughput gene expression studies,
allowing to explore the systemic patterns over
the entire gene expression profiles as opposed to
focusing on a small subset of particular genes.
The most frequently asked question is what is
the difference in gene expression between the
physiological and pathological cases, between
the two time points of the developing system or
between the medical therapy and placebo, etc.
One of the answers to for this question is the
list of differentially expressed genes which the
researcher analyses and interprets.

As high-throughput technology usage
is often quite expensive compared to qPCR,
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researchers usually tend to resort to a small
number of samples. In order to increase the
statistical power, it often makes sense to
merge or integrate unprocessed data from
several similar studies to get a larger sample
size. The method of merging unprocessed data
is called the integrative analysis, which has
advantages [1-3] over meta-analysis that is a
merging of differentially expressed genes lists
from different studies. The crucial point in
gene expression integrative analysis is a cross
experiment normalization of the expression
data. Gene expression tables from two datasets
cannot be simply concatenated to form an
integrated dataset. Gene expression values
in both datasets correspond to the relative
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fluorescence intensity values of microarray
chips. The expression values are systematically
differ in two different datasets due to technical
reasons. Similar like the photos of the same
object taken in different lighting environments
using different photo cameras. This systematic
technical difference, called batch effect, can be
removed by adjusting location and scale of gene
expression distribution (mean and variance if
the last is normal) in samples from different
batches.

A more advanced technique would be
to separate samples from each batch into
groups according to their metadata and adjust
location and scale in these groups separately.
For example, let’s assume we have two studies
that are batch A and batch B. Batch A and
B have norm (AN, BN) and disease (AD,
BD) respectively. The idea is to adjust gene
expression distributions in AN with BN and in
AD with BD instead of just in A with B. This
principle is used in the ComBat algorithm (or
Empirical Bayes method) [4, 5] which we use
for the batch effect removal.

Despite rapid emergence of next-generation
sequencing, microarray based studies remain
dominant by the amount of available datasets.
We made a search over the ArrayExpress
database which returned 3602 homo sapiens
RNA sequencing studies (210 146 samples)
versus 18 829 microarray studies (871 721
samples), 4 times more than sequencing.
In cases when the subject of research is not
popular, namely, non-cancer studies, this
difference can be even larger. For instance, the
same Array Express query for placenta studies
only returned 39 RNA sequencing studies
(10 409 samples) and 148 microarray studies
(48 214 samples), that is 5 times as much.

Affymetrix microarray chip consists of
about 500,000 cells (up to ~6,500,000) each
filled with multiple copies of a unique short
25 bp long oligonucleotide sequence, called

probes. A set of probes matching the same
gene is called a probeset. Microarray chips
are intended to be manufactured in a way that
each probe uniquely maps onto a single gene.
However, as our knowledge about the genome
extends, some probes turn out to be matching
several genes and it makes sense to reanalyze
existing unprocessed data using newer gene
annotation. Brainarray (available at http://
brainarray.mbni.med.umich.edu/Brainarray/
Database/CustomCDF/) project provides such
up-to-date gene annotation for Affymetrix
chips.

A technical variation between samples
is inherent to microarray experiments. It is
addressed by normalization, log-transforming
and background correcting.

The aim of this article is to exemplify the
sequence of specific procedures or the pipeline
from the unprocessed data of the fluorescence
intensity to the list of differentially expressed
genes. To this end, we use two groups of
samples, the gene expression in the human
placenta from the first and the second
trimester of gestation. We intend to show how
to recognize the difference in gene expression
between two time points of placental
development and represent it in the list of
differentially expressed genes.

The pipeline

Here we provide a step-by-step walkthrough
of our pipeline. We chose four datasets
containing samples of the healthy human
placenta at I and II trimesters of pregnancy.
The R packages used for the pipeline can be
downloaded from the Bioconductor website at
https://bioconductor.org/packages/release/
bioc/html/ArrayExpress.html. The entire
pipeline code used in this study along with the
supplementary files are available at GitHub:
https://github.com/Sashkow/r-affymetrix-
integration-pipeline

Table 1. General characteristics of the samples

GSE Accession number Platform First trimester | Second trimester| Number of genes
GSE122214 [20] Affymetrix HG-U133_ 4 - 20261
GSE22490 [21] Affymetrix HE-ULSS_ 5 1 20261
GSE37901 [22] Affymetrix HO-UL33_ 4 20342
GSE9984 [23] Affymetrix HG-UL33_ 4 4 20342
Total number 13 9 —
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Data extraction. We downloaded
the corresponding expression data from
ArrayExpress by accession numbers with
ArrayExpress R package (Tablel). Only the
samples from the first and second trimester
healthy placentas were filtered in from
these datasets according to metadata in our
specialized database [6].

Expression data reprocessing

We used affy [7] and R package to
access and preprocess expression data from
Affymetrix initial. CEL files that store the
results of the intensity calculations on the
pixel values. A single representative intensity
value is stored per cell (feature) of the image.
The Affy package uses robust multi-array
average (RMA) algorithm [8] based on quantile
normalization algorithm [9]. RMA maps probes
to genes, then the initial intensity values are
background corrected, log2 transformed and
quantile normalized.

Mapping probes to genes. When mapping
probes to genes, one must decide which probe
or a combination of probes to choose as an
indicator of each particular gene expression.
A comparative analysis of such methods
is provided in [10]. It concludes that for
Affymetrix chips one-to-one probeset to gene
correspondence is best established in a form of
custom chip definition Files (CDF) provided in
Brainarray database [11]. Reannotation leads
to improvement in microarrays accuracy.

Cross-experiment normalization. Non-
biological experimental variation has to be
excluded before integration of different
datasets. We used the empirical Bayes
method, a procedure for statistical inference
in which the prior distribution is estimated
from the data contrast to standard Bayesian
methods, for which the prior distribution
is fixed before any data are observed.
Particular implementation of this method
(ComBat function in limma R package)
incorporates systematic batch biases common
across genes by making adjustments,
assuming that phenomena resulting in batch
effects often affect many genes in similar
ways (i.e. increased expression). Specifically,
it estimates parameters that represent the
batch effects by pooling information across
genes in each batch (usually a dataset from
an independent project) to shrink the batch
effect parameter estimates toward the overall
mean of the batch effect estimates across
genes [12]. The data are then transformed
to remove the effects of the different batch
effect parameters across experiments.
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Shrinkage is a general technique of moving
the observed data toward the mean. For
example, two extreme mean values can be
combined to make one more centralized
mean value; repeating this for all means in
a population sample will result in a revised
mean that has “shrunk” towards the true
population mean.

Since fetal sex affects the genes expression
in sex and autosomal chromosomes [13], we
needed to include fetal sex as a confounding
biological variable into a model matrix
during batch effect removal. To this end, we
used massiR R package [14] and applied it to
the data on gene expression associated with
Y-chromosome.

Batch effect removal validation.We used
principal component analysis [15] (PCA,
prcomp function in R) and t-distributed
stochastic neighbor embedding [16] (TSNE,
Rtsne package in R) (to check the results of
batch effect removal (Fig. 1, A-E). Fig. 1, A
represents the distribution of all the data from
four datasets before batch removal, indicating
that the largest source of variation is the
dataset’s id, which is captured by the first and
second PCA components (dim1l, dim2). This
is no longer the case after the batch effect
removal as shown on Fig. 1, B. Oppositely,
biological variation of the same data caused
by trimester number, which was invisible
before batch effect removal (Fig. 1, C),

was preserved and became apparent after
batch effect removal (Fig. 1, D). Biological
variation by fetus sex also became visible and
captured by components 3 and 4 (dim3, dim4)
(Fig. 1, E).

Figures A and B represent the distribution of
data along with the first and second components
of PCA (dim1, dim2) before and after the data
integration and the batch effect removal from
four data sets, correspondingly. Figures C and
D represent the distribution of data from the
first and the second trimesters of gestation
before (Fig. 1, C) and after the batch effect
removal (Fig. 1, D). Fig. 1, E represents the
separation of the data according to the sex of
the fetus after the batch effect removal. The
influence of the batch-effect caused by different
datasets is present before integration and the
batch effect removal (Fig. 1, A) and is no longer
seen afterwards, while the biological variability
(Fig. 1, D, E) is preserved and becomes apparent
after the batch effect removal (D, E). Note that
fetus sex (E) is shown for principal components
3and 4.

Differential gene expression and
gene ontology enrichment analysis. For
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Fig. 1. The results of PCA analysis before and after data integration and the batch effect removal

41



BIOTECHNOLOGIA ACTA, V. 14, No 1, 2021

the integrated datasets, we found 3912
differentially expressed genes between the
second and the first trimesters of gestation
and 327 genes with a value [logfc>1|. We used
generalized linear models implemented in the
limma R package for differential expression
analysis. A linear model was fit to each gene
with moderated t-statistics computed. P-value
was adjusted to account for multiple gene
comparisons with Benjamini & Hochberg
method (FDR) [17].

Gene Ontology enrichment analysis. In
order to provide biological interpretation
for the newly found differentially expressed
genes we clustered closely related genes
relying on the interaction data from the
String database [18]. After that, we run
Gene Ontology enrichment analysis on each
cluster. We downloaded an interaction
graph for the 327 differentially expressed.
The graph’s vertices are proteins coded
by differentially expressed genes, and
the edges are interactions (either direct
protein-protein interactions or indirect
relations such as belonging to the same
cellular pathway). String interaction data
is manually curated in a way that each
interaction is scored with a confidence (a
float value ranging from 0 to 1) according
to the strength of the evidence provided for
a particular interaction. Choosing a lower
confidence for a graph building gives more
interactions to work with, which leads to
less isolated genes, while a larger confidence
gives better clustering modularity, a
clustering quality metric, which measures a
fraction of graph edges that connect vertices
from the same cluster. Choosing too low
confidence will lead to the formation of few

general enriched categories. Oppositely,
choosing too high confidence will lead to
lots of disconnected genes and too specific
enrichment with low p-value. Therefore
we optimized the confidence to get a
graph that gives the highest total cluster
coverage, which we define as a fraction of
genes in clusters that belong to at least one
enriched biological process. In our case the
confidence value turned out to be 0.1.

After mapping the differentially
expressed genes to the String identifiers
and excluding isolated vertices, 268 genes
were left in the graph. We then applied a
fastgreedy clustering to the graph data and
got 8 clusters, 4 of which having coverage >
0. Table 2 contains cluster statistics for these
clusters. Cluster enrichment coverage column
indicates a fraction of genes which are a part
of at least one enriched process. The graph
itself is on Fig. 2.

Cluster names are given by the
category name in the cluster with the
lowest p-value. Two clusters, the immune
response process and the vessel and
organ development, contain the majority
of differentially expressed genes.
During pregnancy, the mother’s immune
system has to tolerate the persistence of
paternal alloantigens without affecting
the anti-infectious immune response.
Consequently, several mechanisms aimed at
preventing allograft rejection, occur during
a pregnancy. In fact, the early stages of
pregnancy are characterized by the correct
balance between inflammation and immune
tolerance, in which proinflammatory
cytokines contribute to both the remodeling
of tissues and to neo-angiogenesis,

or even one big cluster with few and very thus, favoring the correct embryo
Table 2. Enriched clusters of differentially expressed genes between first
and second trimesters of physiological gestation
Amount of genes Cluster
Cluster names Log Fc | Log Fe | LogFe enrichment
Min Max Mean
Total | Up* | Down*¥* coverage

1. Immune system process 114 81 33 -3.2 2.97 0.48 0.87

2. Vessel and organ development 122 62 60 -3.2 2.15 -0.06 0.88
3. Zinc ion response 10 3 7 4.4 1.55 -1.21 1
4. Cell surface signalling pathways 7 6 1 -2.7 2.25 1.1 1
Total 253 152 101 - - - -

Note: Up* — up-regulated genes, Down** — down-regulated genes.
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Fig. 2. Gene interaction graph for differentially expressed genes in human placenta
(I vs II trimester) based on String data

implantation. In addition to the creation
of a microenvironment able to support the
immunological privilege, the trophoblast
supports the spiral artery remodeling and
angiogenesis. An increase in the number of
regulatory T (Treg) cells prevents excessive
inflammation and avoids fetal immune-
mediated rejection [19].

Cell surface signalling pathways are
indispensable for the morphogenetic
processes. We now know that each type of
a cell has a different set of proteins in its
surfaces, and that some of these differences
are responsible for forming the structure of
the tissues and organs during development.
Different cell types have different types
and different amounts of cell adhesion
molecules, which define the intercellular
binding and the mutual cellular localization
in the tissue [20].

Zn ion response

Zinc is as common as iron in biology.
Involvement of zinc is common in biology but
itis at very different analytical concentrations.
It is usually thought to be a trace element
required only for catalysis but it’s much
more fundamental. Zinc ions are involved in

regulating intracellular signaling pathways
in innate and adaptive immune cells and
play the role of gatekeepers of the immune
function [21]. A property peculiar to zinc is
the absence of redox chemistry. So, many zinc
enzymes are used specifically in situations
where the presence of redox reactions, which
are typical for the developing placenta, would
lead to damaging radicals and/or preferential
reactions with oxygen or hydrogen peroxide
[22].

Biological interpretation of the
differentially expressed genes, obtained
through integration of four openly
available microarray datasets, reveals the
biological processes that occur in human
placenta at the early periods of gestation,
namely, immune inflammation and immune
tolerance, angiogenesis, organ development
and morphogenesis, regulation of growth.
The described pipeline is applicable to a
wide range of biological cases investigated
by the microarray-technology.

The study was conducted in the frame of
the budget project #2.2.4.18 and supported by
the National Academy of Sciences of Ukraine.
The authors declare that they have no conflicts
of interest.
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IIOETAITHA IHTETPAIIA
HAABHHUX Y BIIKPUTOMY JOCTYIII
JAHUX MIKPOYMIIIB J1JId AHAJI3Y
JIU®EPEHIINHOI EKCITPECII TEHIB

Y IIJIAITEHTIT JIIOAWUHN

O. Jluxenko
A. Dpososa
M. Ob6oserncvra

TacTUTyT MOJIeKyIApHOI 6ioJorii Ta TeHeTUKY
HAH Vkpaiuu, Kuis

E-mail: lykhenko.olexandr@gmail.com

MeToio poboTm OyJI0 HaBeCTH IOCTiZOBHI
eranu o0OpOOJeHHS HASBHUX y BiAKpPUTOMY
OOCTYIII HaHUX 13 BUKOPHUCTAHHAM Oiouumis
IJs TpoBeNeHHsS ix iHTerpamii Ta aHasisy
nudepeHItiiinoi ekcipecii remis.

3 Bigkpurux 6a3 manux OyJao 3i6pano mani
3 TeHHOI eKcIipecii B IJameHTi 3 mepuIoro
i apyroro TpuMecTpiB BariTHocTi JIOJUHU.
Hani mopmasisoBanu, iHTerpyBaJu iX B €IUHY
MaTPHUILI0 eKcIpecii 3rigfHO 3 MeTagaHUMHU i
BU3HAYMJIU AU(EPeHITiliHO eKCIIepCcoBaHi reHu.

ITouaTkoBU#i KOA IIOCJHiZOBHOCTI Aifi mida
IPOBEJIEHHS iHTEerpaTUBHOTO aHAJi3y HATTUCAHUMI
MOBOI0 IporpamyBaHHa R i € y Bigkpurtromy
moctyni y Burasazni pemosuropiio Ha GitHub.
3 BUKOPHUCTAHHAM iHTErpaTHBHOTO aHAaJi3y
BUABJIEHO YOTHUPU KJacTepu (PyHKIiOHAJIBHO
3baraueHux Au(GepeHIiiHO eKCIIPeCOBAHUX I'eHiB
y IJIAIleHTi JIOAWHYU B iHTepBaJi MiK mepmuMm i
IPYTUM TPUMeCTPaMU BariTHOCTI.

BcramoBaeHo, mo iMyHHI mpoiiecu, Ipoiie-
CU PO3BUTKY, BAaCKyJIOTeHe3 i aHrioreHes, Cur-
HaJIIHTr, a TaKOXK Ti, 1[0 moB’s3aHi 3 ioHaMu
NUHKY, 3MIiHIOIOThCA MidK IepIIUM i ApyruM
TPUMECTPOM PO3BUTKY IIJAIleHTU. 3aIPOIOHO-
BaHy NOCJiJOBHICTH Aili AJ1d NPOBEAEeHHA iHTE-
TPaTUBHOTO aHAJi3y MOXKHA 3aCTOCOBYBATH IO
OyOb-AKUX JaHUX, OTPUMAaHUX 34 MOMOMOTOI0
MiKpPOUMITiB.

Knwouwoei cnosa: MikpoMacuB, TPAHCKPUIITOM,
iHTerpaTUBHUN AaHAJNiI3, EeMIIIPUYHHUI MeTOJI
Baeca, meraanasis, qu(epeHIIiINHO eKCIpecoBaHi
TeHU, IJIaIeHTa.

IIO9TAITHAA HHTET'PAIIN S
NMEIOIIUXCA B OTKPBITOM JOCTYIIE
JAHHBIX MUKPOYMUIIOB AJId AHAJINU3A
JIN®PEPEHIITNAJIBHON S9KCIIPECCUA
I'EHOB B IIJTAITEHTE YEJIOBEKA

O. Jluxenko
A. Dpoaosa
M. Ob6osnernckasn

WHCTUTYT MOJIEKYIAPHOMN OMOJIOTUY U TeHETUKU
HAH Vkpaunsl, Kues

E-mail: lykhenko.olexandr@gmail.com

ITenbro paboThI OBIJIO NBJI0KUTD IIOCJIENO0-
BaTeJbHBIE 3Tallbl 00PabOTKM MMEIIINXCA B
OTKPBITOM IOCTYIIe MaHHBIX C MCHOJIb30Ba-
HIeM MUKPOUYMUIIOB JJIA IIPOBEeIEeHUA UHTE-
rpanuu U aHajgusa guddepeHnaabHON dKC-
IIpeccuu TeHOB.

W3 oTKpBITEIX 6a3 JaHHBIX OBIJIN COOPAHBI
ITaHHBbIe T€HHOI 9KCIIPECCUN B ILJIAIICHTE JKeH-
IIIUH C IePBOT0 U BTOPOTO TPUMECTPOB Oepe-
MeHHOCTHU. [laHHBIe HOPMAJIU30BaJIU U UHTE-
TPUPOBAJIU B €AUHYIO MAaTPUILY 9KCIPECCUU B
COOTBETCTBUM C METATaHHBIMU U OIIPEeJTUIN
nuddepeHnaIbHO Y9KCIIPECCUPOBAHHBIE I'€HBL.

HNexomHbIll KO IIOCJaeI0BATEeILHOCTH Heii-
CTBUII IJIs IPOBEIeHUS NHTETPATUBHOTO aHa-
Ju3a HaIllICaH Ha A3bIKe IPOrpaMMUPOBAHUS
R u maxomuTca B OTKPBHITOM AOCTYIIe B BHeE
penosutopuda Ha GitHub. IIpu ucnons3oBanuu
MHTETPaTUBHOTO aHAJIM3a BBISABJIEHBI UeTHIPE
KJiacTepa (DyHKIIMOHAJIbHO 000TAIlleHHBIX (-
depeHIINAIbHO 9KCIPECCUPOBAHHLIX I'€HOB B
IJIAIleHTe YeJIoBeKa MeKAY IePBBIM U BTOPBIM
TpuUMecTpaMu 6epeMeHHOCTH.

HMmMmyHHBIE IIpoIlecchl, IPOIleCChl Pa3BU-
TUA, BACKYJIOT€He3 U aHTUOTeHe3, CUTHAJIUHT U
TIpOIlecChl, CBABAHHBIE C MOHAMU ITUHKA U3Me-
HAIOTCA MEKIY IePBBIM U BTOPHIM TPUMECTPOM
pasBuTUA maneHThI. IlpenaoiKenHasa mocieno-
BaTeJbHOCTDH MEMCTBUU AJIS IIPOBEIEHUA MHTE-
TPATHUBHOTO aHAJIM3a MOJKET OBITH IIPpUMeHeHa
K JIOOLIM JaHHBIM, IIOJYUYEHHBIM C IIOMOIIIBIO
MUKPOYUIIOB.

Knroueevle cnoséa: MUKPOMAaCCUB, TPAHCKPUII-
TOM, WHTETPATUBHBIN aHAJIN3, SMIUPUUYECKUNA
merton Baiieca, meraaHanus, nuddepeHIInaIbHO
DKCIIPECCUPOBAaHHBIE I'eHbI, IIJIAIleHTA.
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