Select your language

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

 1 2014

"Biotechnologia Acta" v. 7, no 1, 2014 
https://doi.org/10.15407/biotech7.01.100
Р. 100-109, Bibliography 18, Ukrainian
Universal Decimal classification: 541.18:542.8:577.352

ANTIMICROBIAL ACTIVITY OF MICROORGANISMS AND COLLOIDAL SILVER BASED ON COMPLEX MATERIALS

Voitenko O. Yu., Podolska V. I., Gryshchenko N. I., Ulberg Z. R., Yakubenko L. M.

Ovcharenko Institute for Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv

The antimicrobial properties of complex materials containing ultradispersed silver particles directly formed in the Candida albіcans, Escherichia сolі, Pseudomonas fluorescens, and Bacillus cereus cell walls were investigated. Complex material based on pseudomonas was more active against gram-positive bacteria, the yeast like fungi based material was mainly active against colibacillus. After a cell-matrix treatment in a hypertonic solution or by acid hydrolysis, the antimicrobial properties of complex materials increased by 20—40%. In a liquid-phase medium, the complex materials with incorporated silver particles in composition with antibiotics strengthened anti-microbial properties of chloramphenicol, tetracycline and amoxiclav antibiotics with respect to E. faecalis, as well as penicillin antibiotics (ceftriaxone, cefotaxime, amoxicillin, amoxiclav) against E. coli. The obtained data can serve as a basis for development of the new antibacterial and fungicide cells based materials impregnated with ultradispersed substances.

Key words: complex materials, ultradispersed silver particles, antibacterial effect.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2014

References

  1. Kapustynska O. Patients with diabetes mellitus type 2 risk factors of coronary  heart isease and diabetic cardiomyopathy. Experim. Сlinical Physiol. Biochem. 2014, N 2, P. 106–111. (In Ukrainian).
  2. Pankiv B. I. Diabetes: diagnostic criteria, etiology and pathogenesis. Int. J. Endocrinol. 2013, 8 (56), 53–69. (In Ukrainian).
  3. Kuzishin O. V., Kovalishin N. V., Almashina Kh. V. Biochemistry of diabetes: 1. Theoretical part (review). Bull. of Prikarpat. National Un-t. Chem. Ser. 2010, Is. ІХ, Р. 74–115. (In Ukrainian).
  4. Kovalishin N. V., Almashina Kh. V., Kuzishin O. V., Midak L. Ya. Biochemistry of diabetes: 2. Experimental part — 1. Bull. of Prikarpat. National Un-t. Chem. Ser. 2010, Is. Х, Р. 141–157. (In Ukrainian)
  5. Diabetes: diagnostics, treatment, prevention. Eds. I. I. Dedov, M. V. Shestakova. Moskow: Medical news agency. 2011, 808 p. (In Russian).
  6. Halenova T. I., Kuznetsova M. Y., Sav chuk O. M., Ostapchenko L. I. Isolation and characterization of insulin receptor of plasma membranes of rat liver cells at type 2 diabetes model. Biotechnologia Acta. 2014, 7 (3), 81–87. (In Ukrainian).
  7. Harsoliya M. S., Patel V. M., Modasiya M., Pathan J. K., Chauhan A., Parihar M., Ali M. Recent advances & applications of nanotechnology in diabetes. Int. J. Pharm. & Biol. Archiv. 2012, 3 (2), 255–261.
  8. Asatiani N., Kurashvili R., Popitashvili A., Helashvili M., Shelestova O., Tsutskiridze L. Gestational diabetes mellitus. Diabetes and Heart. 2009, 5 (131), 47–51. (In Russian).
  9. Tkachenko V. I., Vydyborets N. V., Bondar O. K. Modern approaches to the treatment of diabetes mellitus type 2 in the family physician’s practice. Diabetes and Heart. 2014, 2 (178), 38–42. (In Ukrainian).
  10. Tronko M. D., Pasteur I. P. Advances of regenerative medicine in the therapy of type 1 diabetes mellitus. IІІ. Clinical trials in the use of stem cell s for the therapy of main disease. Endokrynologia. 2013, 18 (3), 53–63. (In Ukrainian).
  11. Biletskyi S. V., Novytska O. Z., Petrynych O. A., Kazantseva T. V. The state of carbohydrate and lipid metabolism and glomerular filtration rate in patients with degree II hypertensive disease associated with type II diabetes. Buk. Med. Herald. 2014, 18 (2), 8–10. (In Ukrainian).
  12. Pertseva N. O., Turlyun T. S. Clinical and morphological parallels in conditions of impaired platelet-vascular hemostasis in patients with type 2 diabetes. Morfologiia 2011, 5 (2), 5–18. (In Ukrainian).
  13. Stavniichuk R. V., Kuchmerovska Т. М. Diabetic neuropathy. Role of a 12/15-lipoksi genaza and metabolism of arakhidonovy acid. Endokrynologia. 2014, 2 (19), 156–166. (In Ukrainian)
  14. Grytsiuk M. I., Bojchyk T. M., Petryshen O. I. Comparative characteristics of experimental models of diabetes mellitus. World of Medicine and Biology. 2014, 2 (44), 199–203. (In Ukrainian).
  15. Sona P. S. Nanoparticulate drug delivery systems for the treatment of diabetes. Digest J. Nanomater. Biostructur. 2010, 5 (2), 411–418.
  16. Globa Ye. V., Zelinska N. B. Using auto antibodies for differential diagnosis of different types of diabetes mellitus. Int. J. Endocrinol. 2014, 2 (58), 121–125. (In Ukrainian).
  17. Prylutska S. V., Grynyuk I. I., Matyshevska O. P., Prylutskyy Yu. I., Ritter U., Scharff P. Anti-oxidant properties of C60 fullerenes in vitro. Fullerenes, Nanotubes, Carbon Nanostruct. 2008, 16 (5–6), 698–705.
    http://dx.doi.org/10.1080/15363830802317148
  18. Shubina T. E., Sharapa D. I., Schubert Ch., Zahn D., Halik M., Keller P. A., Pyne S. G., Jennepalli S., Guldi D.M., Clark T. Fullerene van der Waals oligomers as electron traps. J. Am. Chem. Soc. 2014, 136 (31), 10890–10893.
    https://doi.org/10.1021/ja505949m
  19. Prior A. M., Thapa M., Hua D. H. Aldose reductase inhibitors and nanodelivery of diabetic therapeutics. Mini Rev. Med. Chem. 2012, 12 (4), 326–336.
  20. Mishra M., Kumar H., Singha R. K., Tripathi K. Diabetes and nanomaterials. Digest J. Nanomater. Biostruct. 2008, 3 (3), 109–113.
  21. De Ara?jo T. M., Teixeira Z., Barbosa-Sampaio H. C., Rezende L. F., Boschero A. C., Dur?n N., H?ehr N. F. Insulin-loaded poly(epsilon-caprolactone) nanoparticles: efficient, sustained and safe insulin delivery system. J. Biomed. Nanotechnol.2013, 9 (6), 1098–1106.
  22. Gu Z., Aimetti A. A., Wang Q., Dang T. T., Zhang Y., Veiseh O., Cheng H., Langer R. S., Anderson D. G. Injectable nano-network for glucose-mediated insulin delivery. ACS Nano. 2013, 7 (5), 4194–4201.
  23. Gu Z., Dang T.T., Ma M., Tang B.C., Cheng H., Jiang S., Dong Y., Zhang Y., Anderson D.G. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano. 2013, 7 (8), 6758–6766.
  24. Zdvizhkov Y., Bura M. Particular qualities of application of polyethylene glycol-based polymeric carrier for drug delivery to the coal target. Visnyk of the Lviv University. Series Bіology. 2014, Is. 64, P. 3–20. (In Ukrainian).
  25. Wong T. W. Chitosan and its use in design of insulin delivery system. Recent Pat. Drug. Deliv. Formul. 2009, 3 (1), 8–25.
  26. Minimol P. F., Paul W., Sharma C. P. PEGylated starch acetate nanoparticles and its potential use for oral insulin delivery. Carbohydr. Polym. 2013, 95 (1), 1–8. 27.
  27. Lee C., Choi J. S., Kim I., Oh K. T., Lee E. S., Park E. S., Lee K. C., Youn Y. S. Long-acting inhalable chitosan-coated poly(lactic-coglycolic acid) nanoparticles containing hydrophobically modified exendin-4 for treating type 2 diabetes. Int. J. Nanomed.  2013, 8, 2975–2983.
  28. Chuang E. Y., Nguyen G. T., Su F. Y., Lin K. J., Chen C. T., Mi F. L., Yen T. C., Juang J. H., Sung H. W. Combination therapy via oral co-administration of insulin- and exendin-4-loaded nanoparticles to treat type 2 diabetic rats undergoing OGTT. Biomaterials. 2013, 34 (32), 7994–8001.
  29. Zheng C., Guo Q., Wu Z., Sun L., Zhang Z., Li C., Zhang X. Amphiphilic glycopolymer nanoparticles as vehicles for nasal delivery of peptides and proteins. Eur. J. Pharm Sci. 2013, 49 (4), 474–482.
  30. Kim J. Y., Lee H., Oh K. S., Kweon S., Jeon O. C., Byun Y., Kim K., Kwon I. C., Kim S. Y., Yuk S. H. Multilayer nanoparticles for sustained delivery of exenatide to treat type 2 diabetes mellitus. Biomaterials. 2013, 34 (33), 8444–8449.
  31. Wang Y., Zhang X., Cheng C., Li C. Mucoadhesive and enzymatic inhibitory nanoparticles for transnasal insulin delivery. Nanomedicine (Lond). 2014, 9 (4), 451–464.
  32. Wu Z. M., Ling L., Zhou L. Y., Guo X. D., Jiang W., Qian Y., Luo K. Q., Zhang L. J. Novel preparation of PLGA/HP55 nanoparticles for oral insulin delivery. Nanoscale Res. Let. 2012, 7 (1), 299–306.
  33. Kuchmerovska Т. М., Donchenko G. V., Tychonenko T. M., Guzyk M. M., Stavniichuk R. V., Yanitska L. V., Stepanenko S. P., Klimen ko А. P. Nicotinamide influence on pancreatic cells  viability. Ukr. Biochim. Zhurn. 2012, 84 (2), 81–88. (In Ukrainian).
  34. Prylutska S. V., Remeniak O. V., Honcharenko Yu. V., Prylutskyy Yu. I. Cardon nanotubes as a new class of materials for nanobiotechnology. Biotekhnolohiia. 2009, 2 (2), 55–66. (In Ukrainian).
  35. Rotko D. M., Prylutska S. V., Bogutska K. I., Prylutskyy Yu. I. Carbon nanotubes as new materials for neuroengineering. Biotekhnolohiia. 2011, 4 (5), 9–24. (In Ukrainian).
  36. Zhang Y., Bai Y., Yan B. Functionalized carbon nanotubes for potential medicinal applications. Drug Discov. Today. 2010, 15 (11–12), 428–435. 37.
  37. Ilie I., Ilie R., Mocan T., Tabaran F., Iancu C., Mocan L. Nicotinamide-functionalized multiwalled carbon nanotubes increase insulin production in pancreatic beta cells via MIF pathway. Int. J. Nanomedicine. 2013, 8, 3345–3353.
  38. Nedzvetsky V., Andrievsky G., Chachibaia T., Tykhomyrov A. Differences in antioxidant/protective efficacy of hydrated C60 fullerene nanostructures in liver and brain of rats with  streptozotocin-induced diabetes. J. Diabetes. Metab. 2012, 3, 215–223.
  39. Bal R., T?rk G., Tuzcu M., Yilmaz O., Ozercan I., Kuloglu T., G?r S., Nedzvetsky V. S., Tykhomyrov A. A., Andrievsky G. V., Baydas G., Naziroglu M. Protective effects of nanostructures of hydrated C60 fullerene on reproductive function in streptozotocin diabetic male rats. Toxicology. 2011, 282 (3), 69–81.
  40. Wang P., Yoo B., Yang J., Zhang X., Ross A., Pantazopoulos P., Dai G., Moore A. GLP-1R–targeting magnetic nanoparticles for pancreatic islet imaging. Diabetes. 2014, 63 (5), 1465–1474.
  41. Zhu Zh., Garcia-Gancedo L., Flewitt A. J., Xie H., Moussy F., Milne W. I. A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors, 2012, 12 (5), 5996–6022.
  42. Pyeshkova V. M., Saiapina O. Y., Soldatkin O. O., Dzyadevych S. V. Traditional and biosensor methods of mono- and disaccharides determination. Biotekhnolohiia. 2010, 3 (3), 9–22. (In Ukrainian).
  43. Rogaleva N. S., Shkotova L. V., Lvova O. V., Garbuz V. V., Muratov V. B., Duda Т. І., Vasilev O. O., Korpan Ya. І., Biloivan О. А. Amperometric biosensor modified with multiwalled carbon nanotubes for glucose determination. Biotechnolohiіa. 2012, 5 (1), 53–61. (In Ukrainian).
  44. Zhu Z., Song W., Burugapalli K., Moussy F., Li Y. L., Zhong X. H. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor. Nanotechnology. 2010, 21 (16), 165501. https://doi.org/10.1088/0957-4484/21/16/165501.