Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2015 № 1 INDUCTION OF ANTIMICROBIAL ACTIVITY OF SOME MACROMYCETES BY LOW-INTENSITY LIGHT N. L. Poyedinok, O. B. Mykhaylova, A. M. Negriyko, I. A. Dudka, B. F. Vasilyeva, O. V. Efremenkova
Print PDF

ISSN 2410-776X (Online),
ISSN 2410-7751 (Print)

Biotechnologia Acta
V. 8, No 1, 2015

Biotechnologia Acta, V. 8, No 1, 2015; 
doi: 10.15407/biotech8.01.063
P. 63-79, Bibliography 25, English
Universal Decimal classification: 544.431.122: 582.284.3: 628.93

INDUCTION OF ANTIMICROBIAL ACTIVITY OF SOME MACROMYCETES BY LOW-INTENSITY LIGHT

N. L. Poyedinok 1, O. B. Mykhaylova 2, A. M. Negriyko 3, I. A. Dudka 2,  B. F. Vasilyeva 4, O. V. Efremenkova 4

1 Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2 Kholodny Botany Institute of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
3 Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
4 Gause Institute of New Antibiotics, Moscow, Russian Federation

The aim of the work was to study the induction of antimicrobial activity of macromycetes by low-intensity light of different wavelengths and coherence. The objects of investigation were the strains of Flammulina velutipes 3923, Pleurotus ostreatus 531, Ganoderma lucidum 1908 and G. applanatum 1552 from Mushrooms Collection of the Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, the test-cultures from Cultural Collections of the Gause Institute of New Antibiotics, All-Union Research Institute of Antibiotics and the All-Russian Collection of Industrial microorganisms. Helium-neon laser with a wavelength of 632.8 nm and an argon ion laser with wavelengths of 488.0 nm and 514.5 nm were used as a source of coherent visible light lasers. For obtaining incoherent light LEDs with emission at a wavelength of 490.0, 520.0 and 634.0 nm were used. It was found that short-term exposure of sowing mycelium by low intensity light with the energy density of 230 MJ/cm2 in the red and blue wavelength ranges reduced the cultivation period before the appearance of antimicrobial activity and induced the increasing of the culture fluid inhibitory activity against different test-cultures from 20 to 238%.  Selected modes of antimicrobial activity photostimulation could be used in biotechnology of submerged cultivation of macromycetes for intensification of technological stages and increasing the yield of the final product.

Key words: macromycetes, low intensity lights, lasers, antimicrobial activity, light emitting diodes.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

  • References
      1. Arias C. A., Murray B. E., Murray B. E. Antibiotic-Resistant Bugs in the 21st Century – A Clinical Super-Challenge. N. Engl. J. Med. 2009, 360 (5), 439–443. doi:10.1056/NEJMp0804651.
      2. Sidorenko S. C. Rational antibiotic therapy and evidence based medicine. Antibiotiki i Khimioterapiia. 2001, N 9, P. 12?18. (In Russian).
      3. Donadio S., Carrano L., Brandi L., Serina S., Soffientini A., Raimondi E. Target sands says for discovering novel antibacterial agents. J. Biotechnol. 2002, V. 99, P. 175?185.
        http://dx.doi.org/10.1016/S0168-1656(02)00208-0
      4. Shivrina A. N., Nizkovskaja O. P., Falina N. N., Matisson N., L., Efimanko O. M. Biosynthetic activity of higher fungi. Leningrad.: Nauka. 1969, 243 p. (In Russian).
      5. Djakov M. Ju., Kamzolkina O. V., Poedinok N. L., Bisko N. A., Mihajlova O. B., Efremenkova O. V. Morphological characteristics of natural strains of some macromycetes species and biological analysis of antimicrobial activity in submerged culture. Mikol. Fitopatol. 2010, 44 (3), 225?240. (In Russian).
      6. Krupodorova T. A., Bisko N. A., Pojedynok N. L., Mytropolskaja N. Ju., Vasyleva B. F., Efremenkova O. V. Antimicrobial activity of strains of Ganoderma applanatum (Pers.: Wallr.) PAT and G. lucidum (Curt.: Fr.) P. Karst. under conditions of submerged cultivation. Ukr. bot. zh. 2008, V. 6, P. 590?594. (In Ukrainian).
      7. Alves M. J., Ferreira I. C., Dias J., Teixeira V., Martins A., Pintado M. A review on antimicrobial activity of mushroom (Basidiomycetes) extracts and isolated compounds. Planta Med. 2012, 78 (16), 1707?1718.
        http://dx.doi.org/10.1055/s-0032-1315370
      8. Alves M. J., Ferreira I. C., Dias J., Teixeira V., Martins A., Pintado M. A. Review on antifungal activity of mushroom (basidiomycetes) extracts and isolated compounds. Cur. Top. Med. Chem. 2013, 13 (21), 2648?2659.
        http://dx.doi.org/10.2174/15680266113136660191
      9. Nagaraj K., Mallikarjun N., Naika R., Venugopal T. M. Phytochemical Analysis and In Vitro Antimicrobial Potential of Ganoderma applanatum (Pers.) Pat. of Shivamogga District-Karnataka, India. Int. J. Pharm. Sci. Rev. Res., 2013, 23 (2), 36?41.
      10. Ramesh Ch., M. G. Pattar M. G. Antimicrobial properties, antioxidant activity and bioactive compounds from six wild edible mushrooms of western ghats of Karnataka, India. Pharm. Res. 2010, 2 (2), 107–112. doi: 10.4103/0974-8490.62953.
        http://dx.doi.org/10.4103/0974-8490.62953
      11. Ranadive K. R., Belsare M. H., Deokule S. S., Jagtap N. V., Jadhav H. K., Vaidya J. G. Glimpses of antimicrobial activity of fungi from World. J. New Biologic. Reports. 2013, 2 (2), 142–162.
      12. Oyetayo V. O., Ariyo O. O. Antimicrobial and Antioxidant Properties of Pleurotus ostreatus (Jacq: Fries) Cultivated on Different Tropical Woody Substrates. J. Waste Convers. Bioprod. Biotechnol. 2013, 1 (2), 28–32.
      13. Vamanu E. Studies on the antioxidant and antimicrobial activities of Pleurotus ostreatus PSI101109 mycelium. Pakist. J. Bot. 2013, 45 (1), 311–317.
      14. Corrochano L. M. Fungal phototobiology: a synopsis. IMA Fungus. 2011, 2 (1), 25–28.
        http://dx.doi.org/10.5598/imafungus.2011.02.01.04
      15. Herrera-Estrella A., Horwitz B. A. Looking through the eyes of fungi: molecular genetics of photoreception. Mol. Microbiol. 2007, 64 (1), 5–15.
        http://dx.doi.org/10.1111/j.1365-2958.2007.05632.x
      16. Purschwitz J., Muller S., Kastner Ch. and Fischer R. Seeing the rainbow: light sensing in fungi. Cur. Opin. Microbiol. 2006, 9 (6), 566–571.
        http://dx.doi.org/10.1016/j.mib.2006.10.011
      17. Poedinok N. L. Artificial light using in mushroom cultivation. Biotechnologia Acta. 2013, 6 (6), 58–70. (In Ukrainian).
        http://dx.doi.org/10.15407/biotech6.06.058
      18. Karu T. J. Universal cellular mechanism of laser biostimulation: photoactivation of respiratory chain enzyme cytochrome oxidase. Holography: basic research, innovative projects and nanotechnology. Materials XXV1 School of coherent optics and holography. Irkutsk: "Papirus". 2008, P. 156–175. (In Russian).
      19. Tisch D., Schmoll M. Light regulation of metabolic pathways in fungi. Appl. Microbiol. Biotechnol. 2010, 85 (5), 1259–1277.
        http://dx.doi.org/10.1007/s00253-009-2320-1
      20. Moore D., Robson G. D., Trinci A. P. J. 21st Century Guidebook to Fungi. Cambridge, UK: Cambridge University Press. 2011, 236 р.
        http://dx.doi.org/10.1017/CBO9780511977022
      21. Semerd?ieva M., Veselsky J. L??ive houby d??ve a nyni. Praha: Academia. 1986, 177 p.
      22. Kamada T., Sano H., Nakazawa T., Nakahori K. Regulation of fruiting body photomorphogenesis in Coprinopsis cinerea. Fungal Gen. Biol. 2010, 47 (11), 917–921.
        http://dx.doi.org/10.1016/j.fgb.2010.05.003
      23. Nakano Y., Fujii N., Kojima M. Identification of Blue-Light Photoresponse Genes in Mushroom Mycelia. Biosc. Biotehnol. Biochem. 2010, 74 (10), 2160–2165.
        http://dx.doi.org/10.1271/bbb.100565
      24. Galagan G. V., Calvo S. E., orkovich K. A., Selker E. U., Read N. D., Jaffe D., FitzHugh W., Ma L. J., Smirnov S., Purcell S., Rehman B., Elkins T., Engels R., Wang S., Nielsen C. B., Butler J., Endrizzi M., Qui D., Ianakiev P., Bell-Pedersen D., Nelson M. A., Werner-Washburne M., Selitrennikoff C. P., Kinsey J. A., Braun E. L., Zelter A., Schulte U., Kothe G. O., Jedd G., Mewes W., Staben C., Marcotte E., Greenberg D., Roy A., Foley K., Naylor J., Stange-Thomann N., Barrett R., Gnerre S., Kamal M., Kamvysselis M., Mauceli E., Bielke C., Rudd S., Frishman D., Krystofova S., Rasmussen C., Metzenberg R. L., Perkins D. D., Kroken S., Cogoni C., Macino G., Catcheside D., Li W., Pratt R. J., Osmani S. A., DeSouza C. P., Glass L., Orbach M. J., Berglund J. A., Voelker R., Yarden O., Plamann M., Seiler S., Dunlap J., Radford A., Aramayo R., Natvig D. O., Alex L. A., Mannhaupt G., Ebbole D. J., Freitag M., Paulsen I., Sachs M. S., Lander E. S., Nusbaum C., Birren B. The genome seguence of the filamentous fungus Neurospora crassa. Nature. 2003, V. 422, Р. 859–868.
      25. Zalevsky Z., Belkin M. Coherence and Speckle in Photomedicine and Photobiology. Photomed. Laser Surgery. 2011, 29 (10), 655–656.

 

Additional menu

Site search

Site navigation

Home Archive 2015 № 1 INDUCTION OF ANTIMICROBIAL ACTIVITY OF SOME MACROMYCETES BY LOW-INTENSITY LIGHT N. L. Poyedinok, O. B. Mykhaylova, A. M. Negriyko, I. A. Dudka, B. F. Vasilyeva, O. V. Efremenkova

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
E-mail
for information: biotech@biochem.kiev.ua.