Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2014 № 6 AMINO ACIDS APPLICATION TO CREATE OF NANOSTRUCTURES I. S. Chekman, N. A. Gorchakova, H. O. Sirova, O. O. Kazakova, T. I. Nagorna, V. F. Shatornaya
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

"Biotechnologia Acta" V. 7, No 6, 2014
doi: 10.15407/biotech7.06.083
Р. 83-91, Bibliography 59, Ukrainian
Universal Decimal classification: 615.272.6

AMINO ACIDS APPLICATION TO CREATE OF NANOSTRUCTURES

I. S. Chekman1, N. A. Gorchakova1, H. O. Sirova2, O. O. Kazakova3, T. I. Nagorna1, V. F. Shatornaya4

1Department of Pharmacology and Clinical pharmacology of Bohomolets National Medical University, Kyiv, Ukraine
2Department of Medical and Bioorganic Chemistry of Kharkiv National Medical University, Ukraine
3Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine, Kyiv
4Biology Department Dnepropetrovsk Medical Academy, Ukraine

Review is devoted to the amino acids that could be used for nanostructures creation. The investigation of corresponding properties of amino acids is essential for their role definition in creation of nanomedicines. However, amino acid studying as components of nanostructures is insufficient. Study of nanoparticles for medicines creation was initiated by the development of nanotechnology. Amino acids in complexes with the nanoparticles of organic and inorganic nature play an important role for medicines targeting in pathological process. They could reduce toxicity of the nanomaterials used in nanomedicine and are used for creation of biosensors, lab-on-chip and therefore they are a promising material for synthesis of new nanodrugs and diagnostic tools.

Key words: amino acids, nanomedicine.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

  • References
    • 1.  Xidos J. D., Li J., Zhu T., Hawkins G. D., Thompson J. D., Chuang Y.­Y., Fast P. L.,  Liotard D. A., Rinaldi D., Cramer C. J., Truhlar D. G. GAMESOL–version 3.1, University of Minnesota, Minneapolis, 2002, based on the General Atomic and Molecular Electronic Structure System (GAMESS) as described in Ref. 4. J. Comp. Chem. 1993, N 14, P. 1347.

      2.  Chekman I. S. Nanoscience: prospects of scientific investigations. Nauka ta innovatsiia. 2009, 5(3), 89–93. (In Ukrainian).

      3.  Avetisova G. Ye., Melkonyan L. H., Chakhalyan A. Kh., Keleshyan S. Gh., Saghyan A. S. Development of new highly active Brevi­Bacterium flavum’ L­alanine producers strains and comparative characterization of their alanin­synthesizing activity. Vavilovskii zh. genetiki i selektsii. 2013, 17 3), 430–434. (In Russian).

      4.  Guidelli E. J., Ramos A. P., Zaniquelli M. E.,  Nicolucci P., Baffa O. Synthesis and characterization of gold/alanine nanocomposites with potential properties for medical application as radiation sensors. ACS Appl. Mater. Interfaces. 2012, 4(11), 5844–5851.
      doi: 10.1021/am3014899.

      5. Wu L., Lu X., Zhang H., Chen J. Amino acid ionic liquid modified mesoporous carbon: a tailor­made nanostructure biosensing platform. Chem. Sus. Chem. 2012, 5(10), 1918–1925.
      doi: 10.1002/cssc.201200274.

      6.  Chernyshova O. S. The binding of β­phenyl­α­alanine by sodium dodecylsulphate’ nanodimensional aggregates. Biulleten Kharkovskogo gos. un­ta. Chim. nauki. 2011,  N 976. 20(43), 187–191. (In Ukrainian).

      7.  Golovnev N. N., Vasiliev A. D., Molokeev M. S., Novikova G. V., Sergeeva M. V. Synthesis of the metals with beta­alanine complex compounds. Biulleten Kharkovskogo gos. un­ta. 2004, N 2, P. 14–20. (In Russian).

      8. Alabanza A. M., Pozharski E., Aslan K. Rapid Crystallization of L­Alanine on engineered surfaces using metal­assisted and microwave­accelerated evaporative crystallization. Cryst. Growth. Des. 2012, 12(1), 346–353.
      http://dx.doi.org/10.1021/cg2011502

      9.  Bratzel G., Buehler M. J. Sequence­structure correlations in silk: Poly­Ala repeat of N. clavipes MaSp1 is naturally optimized at a critical length scale. J. Mech. Behav. Biomed. Mater. 2012, V. 7, P. 30–40. doi: 10.1016/j.jmbbm.2011.07.012.

      10.  Joksimovic R., Altin B., Mehta S. K., Grad­zielski M. Synthesis of silica nanoparticles covered with silver beads. J. Nanosci. Nanotechnol. 2013, 13(10), 6773–6781.
      http://dx.doi.org/10.1166/jnn.2013.7750

      11. Adeyemi O. S., Whiteley C. G. Interaction of metal nanoparticles with recombinant arginine kinase from Trypanosoma brucei: Thermodynamic and spectrofluorimetric evaluation. Biochim. Biophys. Acta. 2013, 1840(1), 701–706.
      doi: 10.1016/j.bbagen.2013.10.038.

      12. Chen Y., Yang L., Huang S., Li Z., Zhang L., He J., Xu Z., Liu L., Cao Y., Sun L. Delivery system for DNAzymes using arginine­modified hydroxyapatite nanoparticles for therapeutic application in a nasopharyngeal carcinoma model. Int. J. Nanomedicine. 2013, V. 8, P. 3107–3718.
      doi: 10.2147/IJN.S48321.

      13.  Bai C. Z., Choi S., Nam K., An S., Park J. S. Arginine modified PAMAM dendrimer for interferon beta gene delivery to malignant glioma. Int. J. Pharm. 2013, 445(1–2), 79–87.
      doi: 10.1016/j.ijpharm.2013.01.057.

      14.  Kondratyeva M. S., Kabanov A. V., Koma­rov V. M. Modeling of helix formation in peptides containing aspartic and glutamic residues. Kompiuternyie issledovaniia i modelirovaniie. 2010, 2(1), 83–90.  (In Russian).

      15.  Wang X., Wu G., Lu C., Zhao W., Wang Y., Fan Y., Gao H., Ma J. A novel delivery system of doxorubicin with high load and pH­responsive release from the nanoparticles of poly (α, β­aspartic acid) derivative. Eur. J. Pharm. Sci. 2012, 47(1), 256–264.
      doi: 10.1016/j.ejps.2012.04.007.

      16.  Zeng J., Huang H., Liu S., Xu H., Huang J., Yu J. Hollow nanosphere fabricated from ­cyclodextrin­grafted α, β ­poly(aspartic acid) as the carrier of camptothecin. Colloids Surf. B. Biointerfaces. 2013, N 105, P. 120–127.
      doi: 10.1016/j.colsurfb.2012.12.024.

      17. Benezra M., Penate­Medina O., Zanzonico P. B.,  Schaer D., Ow H., Burns A., DeStanchina E.,  Longo V., Herz E., Iyer S., Wolchok J., Larson S.M., Wiesner U., Bradbury M. S. Multimodal silica nanoparticles are effective cancer­targeted probes in a model of human melanoma. J. Clin. Invest. 2011, 121(7), 2768–2780.
      doi: 10.1172/JCI45600.

      18.  Hassan H. H., El­Banna S. G., Elhusseiny A. F.,  Mansour el­S. M. Antioxidant activity of new aramide nanoparticles containing redox­active N­phthaloyl valine moieties in the hepatic cytochrome P450 system in male rats. Molecules. 2012, 17(7), 8255–8275.
      doi: 10.3390/molecules17078255.

      19.  Krasylenko O. P., Pedachenko Yu. Ye. The treatment of neurogenic intermittent claudication syndrome caused by stenosis of spinal canal’ lumbar region. Mizhnarodnyi nevrol. zh. 2011, 3(41), 21–26. (In Ukrainian).

      20.  Veiga­da­Cunha M., Hadi F., Balligand T.,  Stroobant V., van Schaftingen E. Molecular identification of hydroxylysine kinase and of ammoniophospholyases acting on 5­phosphohydroxy­L­lysine and phosphoethanolamine. J. Biol. Chem. 2012, 287(10), 7246–7255. doi: 10.1074/jbc.M111.323485.

      21.  Haiko H. V., Magomedov A. M., Kalashni­kov A. V., Kuzub T. A. Features of biochemical changes in the blood serum depending on the form of progression idiopathic coxarthrosis. Zh. “Trauma”. 2012, 13(2), 64–67.  (In Russian).

      22.  Trivedi R., Redente E. F., Thakur A.,  Riches D. W., Kompella U. B. Local delivery of biodegradable pirfenidone nanoparticles ameliorates bleomycin­induced pulmonary fibrosis in mice. Nanotechnology. 2012, 23(50), 505101.
      doi: 10.1088/0957­4484/23/50/505101.

      23.  Zobnina V.G., Kosevich M.V., Boryak O.A., Chagovets V.V. Intermolecular interaction of polyethers oligomers with amino acid histidine. Bulletin of SevNTU. 2011, N 113, P. 88–93.

      24.  Liu Y. R., Hu R., Liu T., Zhang X. B., Tan W.,  Shen G. L., Yu R. Q. Label­free dsDNA­Cu NPs­based fluorescent probe for highly sensitive detection of L­histidine. Talanta. 2013, N 107, P. 402–407.
      doi: 10.1016/ j.talanta.2013.01.038.

      25.  Mirolo L., Schmidt T., Eckhardt S., Meuwly M.,  Fromm K. M. pH­dependent coordination of Ag(I) ions by histidine: experiment, theory, and a model for SilE. Chemistry. 2013, 19(5), 1754–1761.
      doi: 10.1002/chem.201201844.

      26.  Soni S. K., Selvakannan P. R., Bhargava S. K.,  Bansal V. Self­assembled histidine acid phosphatase nanocapsules in ionic liquid [BMIM][BF4] as functional templates for hollow metal nanoparticles. Langmuir. 2012, 28(28), 10389–10397.
      doi: 10.1021/la3014128.

      27.  Wu J. L., Liu C. G., Wang X. L., Huang Z. H. Preparation and characterization of nanoparticles based on histidine­hyaluronic acid conjugates as doxorubicin carriers. J. Mater. Sci. Mater. Med. 2012, 23(8), 1921–1929.
      doi: 10.1007/s10856­012­4665­8.

      28.  Thomas J. J., Rekha M. R., Sharma C. P. Unraveling the intracellular efficacy of dextran­histidine polycation as an efficient nonviral gene delivery system. Mol. Pharm. 2012, 9(1), 121–134.
      doi: 10.1021/mp200485b.

      29. Gu J., Wang X., Jiang X., Chen Y., Chen L.,  Fang X., Sha X. Self­assembled carboxy­methyl poly (L­histidine) coated poly (­amino ester)/DNA complexes for gene transfection. Biomaterials. 2012, 33(2), 644–658.
      doi: 10.1016/j.biomaterials.2011.09.076.

      30. Nishimura T., Matsuo T., Sakurai K. Metal­ion induced transition from multi­ to single­bilayer tubes in histidine bearing lipids and formation of monodisperse Au nanoparticles. Phys. Chem. Chem. Phys. 2011, 13(35), 15899–15905.
      doi: 10.1039/c1cp21065c.

      31. Onishi H, Matsuyama M. Conjugate between chondroitin sulfate and prednisolone with a glycine linker: preparation and in vitro conversion analysis. Chem. Pharm. Bull. (Tokyo). 2013, 61(9), 902–912.
      http://dx.doi.org/10.1248/cpb.c13-00189

      32. Badenhorst C. P., van der Sluis R., Eras­mus E., van Dijk A. A. Glycine conjugation: importance in metabolism, the role of glycine N­acyltransferase, and factors that influence interindividual variation. Expert Opin. Drug. Metab. Toxicol. 2013, 9(9), 1139–1153.
      doi: 10.1517/17425255.2013.796929.

      33. Bordallo H. N., Boldyreva E. V., Buchsteiner A.,  Koza M. M., Landsgesell S. Structure­property relationships in the crystals of the smallest amino acid: an incoherent inelastic neutron scattering study of the glycine polymorphs. J. Phys. Chem. B. 2008, 112(29), 8748–8759.
      doi: 10.1021/jp8014723.

      34. Petrikov S., Zinkin V. Y., Solodov A. A.,  Roar A. A., Krylov V. V. Use of enteral glutamine in the structure of artificial feeding in patients with intracranial hemorrhages. Biulleten intensivnoi terapii. 2010, N 4, P. 59–64. (In Russian).

      35. Qiao J., Qi L., Yan H., Li Y., Mu X. Microchip CE­LIF method for the hydrolysis of L­glutamine by using L­asparaginase enzyme reactor based on gold nanoparticles. Electrophoresis. 2013, 34(3), 409–416.
      doi: 10.1002/elps.201200461.

      36. Deng Y., Wang W., Ma C., Li Z. Fabrication of an electrochemical biosensor array for simultaneous detection of L­glutamate and acetylcholine. J. Biomed. Nanotechnol. 2013, 9(8), 1378–1382.
      http://dx.doi.org/10.1166/jbn.2013.1633

      37. Tyurenkov I. N., Bagmutova V. V., Chernysheva J. V., Marchenkova O. V., Berestovitsa V. M., Vasilieva O. S. Comparison of glutamic acid and its new derivative ­ hydrochloride beta phenylglutarimide acid (glutarone) psychotropic properties. Fundamentalnyie issledovaniia. 2013, N 3, P. 167–172. (In Russian).

      38.  Ucero A. C., Berzal S., Ocaña­Salceda C., Sancho M., Orzáez M., Messeguer A., Ruiz­Ortega M., Egido J., Vicent M. J., Ortiz A., Ramos A. M. A polymeric nanomedicine diminishes inflammatory events in renal tubular cells. PLoS One. 2013, 8(1), 51992.
      doi: 10.1371/journal.pone.0051992.

      39. Campos­Ferraz P. L., Bozza T., Nicastro H.,  Lancha A. H. Jr. Distinct effects of leucine or a mixture of the branched­chain amino acids (leucine, isoleucine, and valine) supplementation on resistance to fatigue, and muscle and liver­glycogen degradation, in trained rats. Nutrition. 2013,  29(11–12), 1388–1394.
      doi: 10.1016/ j.nut.2013.05.003.

      40. Liao M., Liu H. Gene expression profiling of nephrotoxicity from copper nanoparticles in rats after repeated oral administration. Environ. Toxicol. Pharmacol. 2012, 34(1), 67–80.
      doi: 10.1016/j.etap.2011.05.014.

      41. Chekman I. S., Simonov P. V. Natural nanostructures and nanomechanisms. Kyiv: Zadruha. 2012, 104 p. (In Ukrainian).

      42. Kumar M., Pandey R. S., Patra K. C., Jain S. K.,  Soni M. L., Dangi J. S., Madan J. Evaluation of neuropeptide loaded trimethyl chitosan nanoparticles for nose to brain delivery. Int. J. Biol. Macromol. 2013, V. 61, P. 189–195.
      doi: 10.1016/j.ijbiomac.2013.06.041.

      43. Raula J., Hanzlíková M., Rahikkala A., Hautala J., Kauppinen E. I., Urtti A., Yliperttula M. Gas­phase synthesis of solid state DNA nanoparticles stabilized by l­leucine. Int. J. Pharm. 2013, 444(1–2), 155–161.
      doi: 10.1016/j.ijpharm.2013.01.026.

      44. Al­Ahmady Z. S., Al­Jamal W. T., Bossche J. V.,  Bui T. T., Drake A. F., Mason A. J., Kostarelos K. Lipid­peptide vesicle nanoscale hybrids for triggered drug release by mild hyperthermia in vitro and in vivo. ACS Nano. 2012, 6(10), 9335–9346. 
      doi: 10.1021/nn302148p.

      45. Kurtseva A. A., Smakhtin M. Yu., Ivanov A. V.,  Besedin A. V. The inflluence of amino acids —  components of glyhislys peptide on skin wounds regeneration and neutrophil functions. Kurskii nauchno­practicheskii vestnik «Chelovek i zdorovie». 2008, N 3,  P. 5–10. (In Russian).

      46. Lee M. K., Kim S., Ahn C. H., Lee J. Hydrophilic and hydrophobic amino acid copolymers for nano­comminution of poorly soluble drugs. Int. J. Pharm. 2010, 384(1–2), 173–180.
      doi: 10.1016/ j.ijpharm.2009.09.041.

      47. Daima H. K., Selvakannan P. R., Shukla R.,  Bhargava S. K., Bansal V. Fine­tuning the antimicrobial profile of biocompatible gold nanoparticles by sequential surface functionalization using polyoxometalates and lysine. PLoS One. 2013, 8 (10), 79676.
      doi: 10.1371/journal.pone.0079676.

      48.  Khosroshahi A. G., Amanlou M., Sabzevari O.,  Daha F. J., Aghasadeghi M. R., Ghorbani M.,  Ardestani M. S., Alavidjeh M. S., Sadat S. M.,  Pouriayevali M. H., Mousavi L., Ebrahimi S. E. A comparative study of two novel nanosized radiolabeled analogues of methionine for SPECT tumor imaging. Curr. Med. Chem. 2013, 20(1), 123–133.
      http://dx.doi.org/10.2174/0929867311302010012

      49. Okada Y., Takano T. Y., Kobayashi N.,  Hayashi A., Yonekura M., Nishiyama Y., Abe T.,  Yoshida T., Yamamoto T. A., Seino S., Doi T. New protein purification system using gold­magnetic beads and a novel peptide tag, «the methionine tag». Bioconjug. Chem. 2011, 22(5), 887–893.
      doi: 10.1021/bc100429d.

      50. Rai S., Singh H. Electronic structure theory based study of proline interacting with gold nano clusters. J. Mol. Model. 2013, 19(10), 4099–40109.
      doi: 10.1007/s00894­012­1711­x.

      51. Soldatkin O. O. Development of amperometric microbiosensor for D­serin determination. Biotechnologiia. 2011, 4(3), 36–42. (In Ukrainian).

      52. An J. H., Oh B. K., Choi J. W. Detection of tyrosine hydroxylase in dopaminergic neuron cell using gold nanoparticles­based barcode DNA. J. Biomed. Nanotechnol. 2013, 9(4), 639–643.
      http://dx.doi.org/10.1166/jbn.2013.1525

      53. Ditto A. J., Reho J. J., Shah K. N., Smolen J. A., Holda J. H., Ramirez R. J., Yun Y. H. In vivo gene delivery with L­tyrosine polyphosphate nanoparticles. Mol. Pharm. 2013, 10(5), 1836–1844.
      doi: 10.1021/mp300623a.

      54.  Liang R. P., Meng X. Y., Liu C. M., Qiu J. D. PDMS microchip coated with polydopamine/gold nanoparticles hybrid for efficient electrophoresis separation of amino acids. Electrophoresis. 2011, 32(23), 3331–3340.
      doi: 10.1002/elps.201100403.

      55. Selvakannan P., Mantri K., Tardio J., Bhargava S. K. High surface area Au­SBA­15 and Au­MCM­41 materials synthesis: tryptophan amino acid mediated confinement of gold nanostructures within the mesoporous silica pore walls. J. Colloid. Interface Sci. 2013, N 394, P. 475–484.
      doi: 10.1016/j.jcis.2012.12.008.

      56. Li J., Kuang D., Feng Y., Zhang F., Xu Z., Liu M., Wang D. Green synthesis of silver nanoparticles­graphene oxide nanocomposite and its application in electrochemical sensing of tryptophan. Biosens. Bioelectron. 2013, V. 42, P. 198–206.
      doi: 10.1016/ j.bios.2012.10.029.

      57.  Akagi T., Piyapakorn P., Akashi M. Formation of unimer nanoparticles by controlling the self­association of hydrophobically modified poly(amino acid)s. Langmuir. 2012, 28(11), 5249–5256.
      doi: 10.1021/la205093j.

      58. Sergeev H. B. Nanochemistry. Moskow: MSU Publishing house. 2003, 288 p. (In Russian).

      59. Chekman I. S. Nanopharmacology. Kyiv: Zadruha. 2011, 424 p. (In Ukrainian).

 

Additional menu

Site search

Site navigation

Home Archive 2014 № 6 AMINO ACIDS APPLICATION TO CREATE OF NANOSTRUCTURES I. S. Chekman, N. A. Gorchakova, H. O. Sirova, O. O. Kazakova, T. I. Nagorna, V. F. Shatornaya

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
E-mail
for information: biotech@biochem.kiev.ua.