Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2014 №5 OPTIMIZATION OF ELASTOLYTIC PEPTIDASE BIOSYNTHESIS BY Bacillus thuringiensis ІМV В-7324 Nidialkova N. А., Matseliukh О. V., Varbanets L. D.
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta
V. 7, No 5, 2014

"Biotechnologia Acta" v. 7, no 5, 2014
doi: 10.15407/biotech7.05.027
Р. 27-34, Bibliography 21, English.
Universal Decimal classification: 577.152.34:577.151.5

OPTIMIZATION OF ELASTOLYTIC PEPTIDASE BIOSYNTHESIS BY Bacillus thuringiensis ІМV В-7324

Nidialkova N. А., Matseliukh О. V., Varbanets L. D.

Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv

The cultivation conditions of Bacillus thuringiensis ІМV В-7324 for synthesis of the elastolytic peptidase were studied. By mono- and two-factorial experiments it was optimized the nutrient medium and conditions of growth for the synthesis of B. thuringiensis ІМV В-7324 elastolytic peptidase. It was established that maximal synthesis of the enzyme (5.15 U/mg of the protein) occurs at the exponential phase of growth on 18 h in submerged cultivation. As a result of screening experiments it was shown that all components of the basic medium except gelatin are significant for the enzyme biosynthesis. The elimination of gelatin leads in 9.8-fold increase of the elastolytic activity (50.55 U/mg of the protein). The influence of the nitrogen and carbon sources on the enzyme synthesis was studied. It was established that the optimal sources are the ammonium sulfate and arabinose. Their usage allows us to increase in 17.4 and 4.6 times the elastolytic activity (90 and 24 U/mg of the protein). The optimal concentrations of the ammonium sulfate and arabinose in the medium which allow to increase the elastolytic activity in 24.7 times (127.45 U/mg of the protein) was determined by the bifactorial experiment on three levels. The optimized nutrient medium contains (g/l): arabinose — 13.0; (NH4)2SO4 — 14.0; КН2РО4 — 1.6; (CH3COO)2Zn — 0.25; MgSO4?7H2O — 0.75. The elastolytic activity of B. thuringiensis ІМV В-7324 was 132.5 U/mg of protein during the growth by submerged cultivation for 18 h in 200 ml of the optimized nutrient medium at initial pH 7.0, on a shaker at 220 rpm at 37 °C.

Key words: Bacillus thuringiensis, elastolytic peptidase, bifactorial experiment

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

  • REFERENCES
    • 1.  Rao M. B., Tanskale A. M., Ghatge M. S., Deshpande V. V. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 1998, 62(3), 597–635.

      2.  Qihe C., Guoqing H., Yingchun J., Hui N. Effects of elastase from a Bacillus strain on the tenderization of beef meat. Food Chem. 2006, 98(4), 624–629.
      http://dx.doi.org/10.1016/j.foodchem.2005.06.043

      3.  Abaev U. K. The wound bandages in surgery. Meditsinskiie novosti. 2003, 12, 30–37. (In Russian).

      4.  Kumar D., Savitri, Thakur N., Verma R., Bhalla T. C. Microbial proteases and application as laundry detergent additive. Res. J. Microbiol. 2008, 3(12), 661–672.
      http://dx.doi.org/10.3923/jm.2008.661.672

      5.  Matselyukh O. V. Obtaining of mutants of Bacillus sp. with enhanced elastase production. Biotekhnolohiia. 2010, 3(2), 42–47. (In Ukrainian).

      6.  Matseliukh O. V., Varbanets L. D., Ivanitsa V. O.  Bacillus thuringiensis IMV B7324 strain — the producer of extracellular elastase. UA 97906 C2, 26.03.2012. (In Ukrainian).

      7.  Koltukova N. V., Vaskivnuk V. T. Selection of the isolation methods for Bacillus mesentericus 316M proteolytic complex in submerged cultivation. Mikrobiol. zh. 1980, 42(2), 245–248. (In Ukrainian).

      8.  Lisenko A. N. Mathematical methods of planning of the multifactorial biomedical experiments. Moskva: Meditsina. 1979, 344 p.  (In Russian).

      9.  Lowry O. H., Rosebrough H. J., Farr A. L., Randall R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193(1), 265–275.

      10.  Trombridg G. O., Moon H. D. Purification of human elastase. Proc. Soc. Exp. Biol. Med. 1972, 141(3), 928–931.

      11.  Lapach S. N., Chubenko A. V., Babitch P. N. Statistical methods in biomedical studies by «Excel». Kyiv: Morion. 2001, 408 p. (In Ukrainian).

      12.  Tenorio­S?nchez S. A., Rojas­Avelizapa N. G.,  Ibarra J. E., Avelizapa L. I. R., Cruz­Cama­rillo R. Characterization of a Bacillus thurin­giensis strain isolated from a highly polychlorinated biphenyls contaminated soil. Tecn?loga. 2010, 3(3), 52–63.

      13.  Brar S. K., Verma M., Tyagi R. D., Surampalli R. Y., Barnab? S., Val?ro J. R. Bacillus thuringiensis proteases: Production and role in growth, sporulation and synergism. Proc. Biochem. 2007, 42(5), 773–790.
      http://dx.doi.org/10.1016/j.procbio.2007.01.015

      14.  Li E., Yousten A. A. Metalloprotease from Bacillus thuringiensis. Appl. Microbiol. 1975, 30(3), 354–361.

      15.  Maal K. B., Emtiazi G., Nahvi I. Increasing the alkaline protease activity of Bacillus cereus and Bacillus polymyxa simultaneously with the start of sporulation phase as a defense mechanism. Afr. J. Biotechnol. 2011, 10(19), 3894–3901.

      16.  Asokan S., Jayanthi C. Alkaline protease production by Bacillus licheniformis and Bacillus coagulans. J. Cell Tissue Res. 2010, 10(1), 2119–2123.

      17.  He G. Q., Chen Q. H., Ju X. J., Shi N. D. Improved elastase production by Bacillus sp. EL31410­further optimization and kinetics studies of culture medium for batch fermentation. J. Zhejiang. Univ. Sci. 2004, 5(2), 149–156.
      http://dx.doi.org/10.1631/jzus.2004.0149

      18.  Bhunia B., Dutta D., Chaudhuri S. Selection of suitable carbon, nitrogen and sulphate source for the production of alkaline protease by Bacillus licheniformis NCIM­2042. Not. Sci. Biol. 2010, 2(2), 56–59.

      19.  Suganthi C., Mageswari A., Karthikeyan S.,  Anbalagan M., Sivakumar A., Gothan­dam K. M. Screening and optimization of protease production from a halotolerant Bacillus licheniformis isolated from saltern sediments. J. Gen. Engin. Biotech. 2013, 11(1), 47–52.
      http://dx.doi.org/10.1016/j.jgeb.2013.02.002

      20.  Balaban N. P., Mardanova A. M., Malikova L. A., Ilinskaya O. N., Sharipova M. R. The biosynthesis of the Bacillus amyloliquefaciens H2 subtilisin­like proteinase and its biological activity. Uchenyie zapiski Kazanskogo universiteta. Seriia estestvennyie nauki. 2008, 150(2), 81–90. (In Russian).

      21.  Chen Q., Ruan H., Zhang H., Ni H., He G. Enhanced production of elastase by Bacillus licheniformis ZJUEL31410: optimization of cultivation conditions using response surface methodology. J. Zhejiang. Univ. Sci. B. 2007, 8 (11), 845–852.
      http://dx.doi.org/10.1631/jzus.2007.B0845

 

Additional menu

Site search

Site navigation

Home Archive 2014 №5 OPTIMIZATION OF ELASTOLYTIC PEPTIDASE BIOSYNTHESIS BY Bacillus thuringiensis ІМV В-7324 Nidialkova N. А., Matseliukh О. V., Varbanets L. D.

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
E-mail
for information: biotech@biochem.kiev.ua.