Biotechnologia Acta


  • Increase font size
  • Default font size
  • Decrease font size
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta  Т. 14, No. 6 , 2021
P. 5-22, Bibliography 143, Engl.
UDC: 577.112.7: 612.115


Chernyshenko V. O, Lugovska N. E.

Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine

The hemostasis system is designed to maintain a balance between the processes of blood clotting, anticoagulation, as well as fibrinolysis, to ensure constant effective blood circulation in the body and rapid cessation of bleeding in the event of their occurrence. The procoagulant potential of the hemostasis system is based on molecular mechanisms that lead to the formation of fibrin in the bloodstream, which is the framework of the thrombus, and to the aggregation of platelets — the basis of the thrombus body. The anticoagulant potential of blood plasma is provided by mechanisms aimed at inhibiting blood coagulation processes.

Thorough study and understanding of these mechanisms will open up numerous treatments for pathologies associated with both intravascular thrombosis and bleeding of various origins. The purpose of this review is to analyze ways to prevent intravascular thrombosis and stimulate extravascular thrombosis. The review describes and analyzes available and promising means of thrombosis prevention, in particular, direct and indirect anticoagulants and antiplatelets, as well as methods of effective stimulation of thrombosis, which is necessary in case of vascular damage.

The result of this analysis is to determine the nodal points of the protein network of the hemostasis system, the action of which by specific molecular effectors will control the process of thrombosis.

Key words: anticoagulants, antiplatelets, activator, blood clotting, thrombosis.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021

  • References
    • 1. Komisarenko S. V. Scientists’ pursuit for SARS-COV-2 coronavirus: strategies against pandemic. Ukr. Biochem. J. 2020, 92 (6), 5–52.
      2. Kumar D. R., Hanlin E., Glurich I., Mazza J. J., Yale S. H. Virchow’s Contribution to the Understanding of Thrombosis and Cellular Biology. Clin. Med. Res. 2010, 8 (3–4), 168–172.
      3. Shatzel J. J., O'Donnell M., Olson S. R., Kearney M. R., Daughety M. M., Hum J., Nguyen K. P., DeLoughery T. G. Venous thrombosis in unusual sites: A practical review for the hematologist. Eur. J. Haematol. 2019, 102 (1), 53–62.
      4. O'Donnell M., Shatzel J. J., Olson S. R., Daughety M. M., Nguyen K. P., Hum J., DeLoughery T. G. Arterial thrombosis in unusual sites: A practical review. Eur. J. Haematol. 2018, 101 (6), 728–736.
      5. Bode W. The structure of thrombin: a janus-headed proteinase. Semin. Thromb. Hemost. 2006, V. 32, P. 16–31.
      6. Davie E. W., Fujikawa K., Kisiel W. The coagulation cascade: initiation, maitenance, and regulation. Biochemistry. 1991, 30 (43), 10363–10370.
      7. Furie B., Furie B. C. The molecular basis of blood coagulation. Cell. 1988, V. 53, P. 505–518.
      8. Magnusson N. Thrombin and prothrombin. Enzymes. 1971, V. 3, P. 277–321.
      9. Lugovskoy E. V., Makogonenko E. M., Komi-sarenko S. V. Molecular mechanisms of forma-tion and destruction of fibrin. Kyiv: Naukova Dumka. 2013, 230 p. (In Russian).
      10. Morales-Vidal S., Schneck M. J., Flaster M., Biller J. Direct thrombin inhibitors and factor Xa inhibitors in patients with cerebrovascular disease. Expert Review of Neurotherapeutics. 2012, 12 (2), 179–189, quiz 190.
      11. Alquwaizani M., Buckley L., Adams C., Fanikos J.. Anticoagulants: A Review of the Pharmacology, Dosing, and Complications. Curr. Emerg. Hosp. Med. Rep. 2013, 1 (2), 83–97.
      12. Kaye J. B., Schultz L. E., Steiner H.E., Kittles R. A., Cavallari L. H., Karnes J. H. Warfarin Pharmacogenomics in Diverse Populations. Pharmacotherapy. 2017, 37 (9), 1150–1163.
      13. Onundarson P. T., Arnar D. O., Lund S. H., Gudmundsdottir B. R., Francis C. W., Indridason O. S. Fiix-prothrombin time monitoring improves warfarin anticoagulation outcome in atrial fibrillation: a systematic review of randomized trials comparing Fiix-warfarin or direct oral anticoagulants to standard PT-warfarin. Int. J. Lab. Hematol. 2016, V. 1, P. 78–90.
      14. Gumulec J., Kessler P., Penka M., Klodová D., Králová S., Brejcha M., Wróbel M., Sumná E., Blatný J., Klaricová K., Riedlová P., Lasota Z. Hemorrhagic complications during warfarin treatment. Vnitr. Lek. 2006, 52 (l), 79–91. PMID: 16637455
      15. Linhardt R. J., Claude S. Hudson Award address in carbohydrate chemistry. Heparin: structure and activity. J. Med. Chem. 2003, V. 46, P. 2551–2564.
      16. Alquwaizani M., Buckley L., Adams C., Fanikos J. Anticoagulants: A Review of the Pharmacology, Dosing, and Complications. Curr. Emerg. Hosp. Med. Rep. 2013, 1 (2), 83–97.
      17. Onishi A., Ange K. St., Dordick J. S., Linhardt R. J. Heparin and anticoagulation. Front Biosci. (Landmark Ed). 2016, V. 21, P. 1372–1392.
      18. Cui Hao, Hongmei Xu, Lingfan Yu, Lijuan Zhang. – affiliation-4 Heparin: An essential drug for modern medicine. Prog. Mol. Biol. Transl. Sci. 2019, V. 163, P. 1–19.
      19. Petsch B., Madlener K., Sushko E. Hemostasiology: rational diagnosis and therapy. Kyiv: Zdorov'ya. 2006, P. 1–287.
      20. Shanberge J. N., Fukui H. Studies on the anticoagulant action of heparin, protamine, and Polybrene in the activation of factor IX. J. Lab. Clin. Med. 1967, 69 (6), 927–937. PMID: 6025496
      21. Hoffmann A., Markwardt F. Z. Pharmacology of heparin. Gesamte Inn. Med. 1979, 34 (1), 3–8. PMID: 373277
      22. Aguilar M. D., Kleiman M. D. Low molecular weight heparins. Expert Opin. Pharmacother. 2000, 1 (6), 1091–1103.
      23. Xiao Z., Zhao W., Yang B., Zhang Z., Guan H., Linhardt R. J. Heparinase 1 selectivity for the 3,6-di-O-sulfo-2-deoxy-2-sulfamido-alpha-D-glucopyranose (1,4) 2-O-sulfo-alpha-L-idopyranosyluronic acid (GlcNS3S6S-IdoA2S) linkages. Glycobiology. 2011, 21 (1), 13–22.
      24. Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012. Low Molecular Weight Heparins. 2017 Nov 13]. Bookshelf. – URL:
      25. Senchuk A. Ya., Ventskovsky B. M. Thromboembolic complications in obstetrics and gynecology: monograph. Kyiv: Makkom. 2003, P. 270–272.
      26. Hirsh J., Warkentin T. E., Shaughnessy S. G., Anand S. S., Halperin J. L., Raschke R., Granger C., Ohman E. M., Dalen J. E. Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest. 2001, 119 (1), 64S–94S.
      27. Weitz J. I. Low-molecular-weight heparins. N. Engl. J. Med. 1997, V. 337, P. 688–698.
      28. Onishi A., Ange K. St., Dordick J. S., Linhardt R. J. Heparin and anticoagulation. Frontiers in Bioscience, Landmark. 2016, V. 21, P. 1372–1392.
      29. Casu B., Torri G. Structural characterization of low-molecular weight heparins. Semin. Thromb. Hemost. 1999, 25 (3), 17–25.
      30. Fareed J., Hoppensteadt D., Walenga J., Iqbal O., Ma Q., Jeske W., Sheikh T. Pharmacodynamic and pharmacokinetic properties of enoxaparin: implications for clinical practice. Clin. Pharmacokinet. 2003, 42 (12), 1043–1057.
      31. Ageno W., Bosch J., Cucherat M., Eikelboom J. W. Nadroparin for the prevention of venous thromboembolism in nonsurgical patients: a systematic review and meta-analysis. J. Thromb. Thrombolysis. 2016, 42 (1), 90–98.
      32. Moayer A. F., Mohebali N., Razmkon A. Incidence of Deep Vein Thrombosis in Patients Undergoing Degenerative Spine Surgery onProphylactic Dalteparin; A Single Center Report. Bull. Emerg. Trauma. 2016, 4 (1), 38–42. PMCID: PMC4779468, PMID: 27162925
      33. Helfer H., Siguret V., MahéAm I. J. Tinzaparin Sodium Pharmacokinetics in Patients with Chronic Kidney Disease: Practical Implications. Cardiovasc. Drugs. 2020, 20 (3), 223–228.
      34. Vavilova T. V. Antithrombotic therapy and methods of its laboratory control (lecture). Clinical Laboratory Diagnostics. 2004, N 12, Р. 21–33. (In Russian).
      35. Lovecchio F. Heparin-induced thrombocytopenia. Clin. Toxicol. (Phila). 2014, 52 (6), 579–583.
      36. Krauel K., Hackbarth C., Fürll B., Greinacher A. Heparin-induced thrombocytopenia: in vitro studies on the interaction of dabigatran, rivaroxaban, and low-sulfated heparin, with platelet factor 4 and anti-PF4/heparin antibodies. Blood. 2012, 119 (5), 1248–1255.
      37. Bara L., Samama M. Pharmacokinetics of low molecular weight heparins. Acta Chir. Scand. Suppl. 1988, V. 543, P. 65–72. PMID: 2847460
      38. Padmanabhan A., Jones C. G., Bougie D. W., Curtis B. R., McFarland J. G., Wang D., Aster R. H. Heparin-independent, PF4-dependent binding of HIT antibodies to platelets: implications for HIT pathogenesis. Blood. 2015, 125 (1), 155–161.
      39. Nicolaes G. A. F., Sorensen K. W., Friedrich U., Tans G., Rosing J., Autin L., Dahlbäck B., Villoutreix B. O. Altered Inactivation Pathway of Factor Va by Activated Protein C in the presence of heparin. Eur. J. Biochem. 2004, V. 271, P. 2724–2736.
      40. Hogwood J., Mulloy B., Gray E. Precipitation and Neutralization of Heparin from Different Sources by Protamine Sulfate. Pharmaceuticals (Basel). 2017, 10 (3), 59.
      41. Legnani C., Preda L., Palareti G., Lunghi B., Rossi E., Coccheri S. Reduced inhibition of activated prothrombin by heparin and venous thromboembolism: heparin resistance revisited. Haematologica. 2002, 87 (2), 182–188. PMID: 11836169
      42. Samuelson B. T., Cuker A. Measurement and reversal of the direct oral anticoagulants. Blood Rev. 2017, 31 (1), 77–84.
      43. DeAnglis A. P., Nur I., Gorman A. J., Meidler R. A method to measure thrombin activity in a mixture of fibrinogen and thrombin powders. Blood Coagul. Fibrinolys. 2017, V. 28, P. 134–138.
      44. Stangier J. Clinical pharmacokinetics and pharmacodynamics of the oral direct thrombin inhibitor dabigatran etexilate. Clin. Pharmacokinet. 2008, 47 (5), 285–295.
      45. Liesenfeld K. H., Lehr T., Dansirikul C., Reilly P. A., Connolly S. J., Ezekowitz M. D., Yusuf S., Wallentin L., Haertter S., Staab A. J. Population pharmacokinetic analysis of the oral thrombin inhibitor dabigatran etexilate in patients with non-valvular atrial fibrillation from the RE-LY trial. Thromb. Haemost. 2011, 9 (11), 2168–2175.
      46. Graff J., Harder S. Anticoagulant therapy with the oral direct factor Xa inhibitors rivaroxaban, apixaban and edoxaban and the thrombin inhibitor dabigatran etexilate in patients with hepatic impairment. Clin. Pharmacokinet. 2013, 52 (4), 243–254.
      47. Yegneswaran S., Banerjee Y., Fernández J. A., Deguchi H., Griffin J. H. Lyso-Sulfatide Binds Factor Xa and Inhibits Thrombin Generation by the Prothrombinase Complex. PLoS One. 2015, 10 (8), e0135025
      48. Koklic T., Chattopadhyay R., Majumder R., Lentz B. R. Factor Xa dimerization competes with prothrombinase complex formation on platelet-like membrane surfaces. Biochem. J. 2015, 467 (1), 37–46.
      49. Zubairov D. M. Molecular bases of blood coagulation and thrombus formation. Kazan: FEN. P. 1–364. (In Russian).
      50. Volkov G. L., Platonova T. N., Savchuk A. N., Gornitskaya O. V., Chernyshenko T. M., Krasnobryzha E. N. Modern ideas about the hemostasis system: monograph. Kyiv: Naukova Dumka. 2005, 296 p. (In Russian).
      51. Wen-Jun Dong, Hui-Juan Qian, Yan Qian, Ling Zhou, and San-Lian Hu. Fondaparinux vs. enoxaparin for the prevention of venous thromboembolism after total hip replacement: A meta-analysis. Exp. Ther. Med. 2016, 12 (2), 969–974.
      52. Marcy T. R., Truong T., Rai A. Comparing Direct Oral Anticoagulants and Warfarin for Atrial Fibrillation, Venous Thromboembolism, and Mechanical Heart Valves. Consult. Pharm. 2015, 30 (11), 644–656.
      53. Pollack C. V. Jr, Reilly P. A., van Ryn J., Eikelboom J. W., Glund S., Bernstein R. A., Dubiel R., Huisman M. V., Hylek E. M., Kam C. W., Kamphuisen P. W., Kreuzer J., Levy J. H., Royle G., Sellke F. W., Stangier J., Steiner T., Verhamme P., Wang B., Young L., Weitz J. I. Idarucizumab for Dabigatran Reversal – Full Cohort Analysis. N. Engl. J. Med. 2017, 377 (5), 431–441.
      54. Haas S., Bode C., Norrving B., Turpie A. G. Practical guidance for using rivaroxaban in patients with atrial fibrillation: balancing benefit and risk. Vasc. Health. Risk. Manag. 2014, V. 10, P. 101–114.
      55. Kvasnicka T., Malikova I., Zenahlikova Z., Kettnerova K., Brzezkova R., Zima T., Ulrych J., Briza J., Netuka I., Kvasnicka J. Rivaroxaban – Metabolism, Pharmacologic Properties and Drug Interactions. Curr. Drug Metab. 2017, 18 (7), 636–642.
      56. Greig S. L., Garnock-Jones K. P. Eliquis (apixaban) full prescribing information, 2015; Apixaban: A Review in Venous Thromboembolism. Drugs. 2016, 76 (15), 1493–1504.
      57. Klibanov O. M., Phan D., Ferguson K. Drug updates and approvals: 2015 in review. Nurse Pract. 2015, 40 (12), 34–43; SAVAYSA™ (edoxaban) Tablets Prescribing Information. Nurse Pract. 2015, 40 (12), 34–43.
      58. Corsini A., Ferri N., Proietti M., Boriani G. Edoxaban and the Issue of Drug-Drug Interactions: From Pharmacology to Clinical Practice. Drugs. 2020, 80 (11), 1065–1083.
      59. Milling T. J. Jr, MDa, Kaatz S. Preclinical and clinical data for factor Xa and “universal” reversal agent. Am. J. Emerg. Med. 2016, 34 (11), 39–45.
      60. De Pont A. C. J. M., Schultz M. J. Anticoagulant properties of drotrecogin alfa (activated) during hemofiltration in patients with severe sepsis. Crit. Care. 2009, 13 (1), 113.
      61. Bernard G. R., Vincent J. L., Laterre P. F., LaRosa S. P., Dhainaut J. F., Lopez-Rodriguez A., Steingrub J. S., Garber G. E., Helterbrand J. D., Ely E. W., Fisher C. J. Jr. Efficacy and safety of recombinant human activated protein C for severe sepsis. N. Engl. J. Med. 2001, 344 (10), 699–709.
      62. Vincent J. L. Drotrecogin alpha (activated): the treatment for severe sepsis? Expert Opin. Biol. Ther. 2007, 7 (11), 1763–1777.
      63. Tønnesen K. H., Sager P., Gormsen J. Treatment of severe foot ischaemia by defibrination with ancrod: a randomized blind study. Scand. J. Clin. Lab. Invest. 1978, 38 (5), 431–435.
      64. Jahnke H. Experimental ancrod (Arvin) for acute ischemic stroke: nursing implications. J. Neurosci. Nurs. 1991, 23 (6), 386–389.
      65. Dempfle C. E., Argiriou S., Kucher K., Müller-Peltzer H., Rübsamen K., Heene D. L. Analysis of fibrin formation and proteolysis during intravenous administration of ancrod. Blood. 2000, 96 (8), 2793–2802. PMID: 11023513.
      66. Castro H. C., Zingali R. B., Albuquerque M. G., Pujol-Luz M., Rodrigues C. R. Snake venom thrombin-like enzymes: from reptilase to now. Cell Mol. Life Sci. 2004, 61 (7–8), 843–856.
      67. He J., Chen S., Gu J. Identification and characterization of Harobin, a novel fibrino(geno)lytic serine protease from a sea snake (Lapemis hardwickii). FEBS Lett. 2007, 581 (16), 2965–2973.
      68. Gardiner E. E., Andrews R. K. The cut of the clot(h): snake venom fibrinogenases as therapeutic agents. J. Thromb. Haemost. 2008, 6 (8), 1360–1362.
      69. Mohamed Abd El-Aziz T., Garcia Soares A., Stockand J. D. Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. Toxins (Basel). 2019, 11 (10), 564.
      70. Weisel J. W., Litvinov R. I. Mechanisms of fibrin polymerization and clinical implications. Blood. 2013, 121 (10), 1712–1719.
      71. Chernysh I. N., Nagaswami Ch., Purohit P. K., Weisel J. W. Fibrin clots are equilibrium polymers that can be remodeled without proteolytic digestion. Sci. Rep. 2012, 2 (879), 1–6.
      72. Shrivastava S., Singh S. K., Mukhopadhyay A., Sinha A. S., Mandal R. K., Dash D. Negative regulation of fibrin polymerization and clot formation by nanoparticles of silver. Colloids Surf. B Biointerfaces. 2011, 82 (1), 241–246.
      73. Watson J. W., Doolittle R. F. Peptide-derivatized albumins that inhibit fibrin polymerization. Biochemistry. 2011, 50 (45), 9923–9927.
      74. Pat. UA 143853-2020. – 10. 08. 2020.
      75. Lugovskoy E. V., Gritsenko P. G., Koshel T. A. Calix[4]arene methylenebisphosphonic acids as inhibitors of fibrin polymerization. FEBS J. 2011, V. 278, P. 1244–1251.
      76. Chernyshenko V. O., Korola D. S., Nikolaenko T. V., Dosenko V. E., Pashevin D. A., Kalchenko V. I., Cherenok S. A., Khranovskaya N. N., Garmanchuk L. V., Lugovskoy E. V., Komisarenko S. V. Effect of calix [4] arena 145 on the cell unit of the hemostasis system. Biotechnol. acta. 2016, 9 (3), 37–43. ttps://
      77. Rubenstein D. A, Yin W. Platelet-Activation Mechanisms and Vascular Remodeling. Compr. Physiol. 2018, 8 (3), 1117–1156. PMID: 29978900
      78. Lisman T., Weeterings C., de Groot P. G. Platelet aggregation: involvement of thrombin and fibrin(ogen). Front Biosci. 2005, V. 10, P. 2504–2517.
      79. Estevez B., Du X. New Concepts and Mechanisms of Platelet Activation Signaling. Physiology (Bethesda). 2017, 32 (2), 162–177.
      80. Savage B., Almus-Jacobs F., Ruggeri Z. M. Specific synergy of multiple substrate-receptors interaction in platelet thrombus formation under flow. Cell. 1998, 94 (4), 657–666.
      81. Prevost N., Wolfe D., Tognolini M., Brass L. F. Contact-dependent signaling during the late events of platelet activation. J. Thromb. Haemost. 2003, 1 (7), 1613–1627.
      82. Falati S., Gross P., Merril-Skoloff G. Real-time in vivo imagin of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat. Med. 2002, V. 8, P. 1175–1180.
      83. Grotti S., Bolognese L. P2Y12 inhibitors in acute coronary syndrome: when to give them and when to prolong their use. J. Cardiovasc. Med. (Hagerstown). 2018, 19 (1), 9–12.
      84. Wang D., Yang X. H., Zhang J. D., Li R. B., Jia M., Cui X. R. Compared efficacy of clopidogrel and ticagrelor in treating acute coronary syndrome: a meta-analysis. BMC Cardiovasc. Disord. 2018. 18 (1), 217.
      85. Schrör K. Aspirin and platelets: the antiplatelet action of aspirin and its role in thrombosis treatment and prophylaxis. Semin. Thromb. Hemost. 1997, 23 (4), 349–356.
      86. Ornelas A., Zacharias-Millward N., Menter D. G., Davis J. S., Lichtenberger L., Hawke D., Hawk E., Vilar E., Bhattacharya P., Millward S. Beyond COX-1: the effects of aspirin on platelet biology and potential mechanisms of chemoprevention. Cancer Metastasis Rev. 2017, 36 (2), 289–303.
      87. Schrör K. Aspirin and platelets: the antiplatelet action of aspirin and its role in thrombosis treatment and prophylaxis. Semin. Thromb. Hemost. 1997, 23 (4), 349–356.
      88. Floyd C. N., Ferro A. Mechanisms of aspirin resistance. Pharmacol. Ther. 2014, 141 (1), 69–78.
      89. Noma K., Higashi Y. Cilostazol for treatment of cerebral infarction. Expert Opin. Pharmacother. 2018, 19 (15), 1719–1726.
      90. Eisert W. G. Dipyridamole in antithrombotic treatment. Adv. Cardiol. 2012, V. 47, P. 78–86.
      91. Varga-Szabo D., Pleines I., Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler. Thromb. Vasc. Biol. 2008, V. 3, P. 403–412.
      92. O’Toole, Mandelman D., Forsyth J. Modulation of the affinity of integrin αIIbβ3 (GPIIbIIIa) by the cytoplasmic domain of αIIb. Science. 1991, V. 254, P. 845–847.
      93. De Cristofaro R., Landolfi R., De Candia E. Allosteric equilibria in the binding of fibrinogen to platelets. Proc. Nat. Acad. Sci. USA. 1988, 85 (22), 8473–8476.
      94. Litvinov R. I., Bennett J. S. Multi-Step Fibrinogen Binding to the Integrin αIIbβ3 Detected Using Force Spectroscopy. Biophys. J. 2005, 89 (4), 2824–2834.
      95. Fradera X., De La Cruz X., Silva C. H. Ligand-induced changes in the binding sites of proteins. Bioinformatics. 2002, 8 (7), 939–948.
      96. Hantgan R. R., Rocco M., Nagaswami C., Weisel J. W. Binding of a fibrinogen mimetic stabilizes integrin alphaIIbbeta3's open conformation. Protein Sci. 2001, 10 (8), 1614–1626.
      97. Buensuceso C., de Virgilio M., Shattil S. J. Detection of integrin alpha IIbbeta 3 clustering in living cells. JBC. 2003, 278 (17), 15217–15224.
      98. Rooney M. M., Farrell D. H., van Hemel B. M. The contribution of the three hypothesized integrin-binding sites in fibrinogen to platelet-mediated clot retraction. Blood. 1998, 92 (7), 2374–2381. PMID: 9746777,
      99. Lazarovici P., Marcinkiewicz C., Lelkes P. I. From Snake Venom's Disintegrins and C-Type Lectins to Anti-Platelet Drugs. Toxins (Basel). 2019, 11 (5), 303.
      100. Zhao M., Wang C., Jiang X., Pen S. Synthesis of RGD containing peptides and their bioactivities. Prep. Biochem. Biotechnol. 2002, 32 (4), 363–380.
      101. Chernyshenko V., Petruk N., Korolova D., Kasatkina L., Gornytska O., Platonova T., Chernyshenko T., Rebriev A., Dzhus O., Garmanchuk L., Lugovskoy E. Antiplatelet and anti-proliferative action of disintegrin from Echis multisquamatis snake venom. Croat. Med. J. 2017, 58 (2), 118–127. PMID: 28409495; PMCID: PMC5410738
      102. Swenson S., Ramu S., Markland F. S. Anti-angiogenesis and RGD-containing snake venom disintegrins. Curr. Pharm. Des. 2007, 13 (28), 2860–2871.
      103. Blankenship J. C., Balog C., Sapp S. K., Califf R. M., Lincoff A. M., Tcheng J. E., Topol E. J. Reduction in vascular access site bleeding in sequential abciximab coronary intervention trials. Catheter Cardiovasc. Interv. 2002, 57 (4), 476–483.
      104. Tirofiban. In Meyler's Side Effects of Drugs (Sixteenth Edition), 2016.
      105. Laine L., Jensen D. M. Management of patients with ulcer bleeding. Am. J. Gastroenterol. 2012, 107 (3), 345–360.
      106. Johnstone C., Rich S. E. Bleeding in cancer patients and its treatment: a review. Ann. Palliat. Med. 2018, 7 (2), 265–273.
      107. Rowe A. S., Dietrich S. K., Phillips J. W., Foster K. E., Canter J. R. Activated Prothrombin Complex Concentrate Versus 4-Factor Prothrombin Complex Concentrate for Vitamin K-Antagonist Reversal. Crit. Care Med. 2018, 46 (6), 943–948.
      108. Mehringer S. L., Klick Z., Bain J., McNeely E. B., Subramanian S., Pass L. J., Drinkwater D., Reddy V. S. Activated Factor 7 Versus 4-Factor Prothrombin Complex Concentrate for Critical Bleeding Post-Cardiac Surgery. Ann. Pharmacother. 2018, 52 (6), 533–537.
      109. Kalafatis M., Egan J. O., van’t Veer C. The Regulation of Clotting Factors. Crit. Rev. Eucariotic. Gene Expr. 1997, 7 (3), 241–280.
      110. Colman R. W. Violations of the reactions of thrombin formation. Moskva: Medicine. 1988, 1–240.
      111. Hoffman R., Benz E. J., Shattil S. J. Hematology. Basic Principles and Practice. Churchill Livingstone. 1995, 1577–1589.
      112. Steffel J., Luscher T. F., Tanner F. C. Tissue Factor in Cardiovascular Deseases. Molecular Mechanisms and Clinical Implications. Circulation. 2006, 113 (5), 722–731.
      113. Zhu S., Diamond S. L. Contact activation of blood coagulation on a defined kaolin/collagen surface in a microfluidic assay. Thromb. Res. 2014, 134 (6), 1335–1343.
      114. He S., Eelde A., Petrini P., Wallen H., Gabrielsson L., Svensson J., Blombäck M., Holmström M. A ROTEM method using APTT reagent and tissue factor as the clotting activators may better define bleeding heterogeneity in moderate or severe haemophilia A (part I: Study in plasma samples). Thromb. Res. 2018, V. 171, P. 7–13.
      115. Naudin C., Burillo E., Blankenberg S., Butler L., Renné T. Factor XII Contact Activation. Semin. Thromb. Hemost. 2017, 43 (8), 814–826.
      116. Didiasova M., Wujak L., Schaefer L., Wygrecka M. Factor XII in coagulation, inflammation and beyond. Cell Signal. 2018, V. 51, P. 257–265.
      117. Khanin M. A., Rakov D. V., Kogan A. E. Mathematical Model for the Blood Coagulation Prothrombin Time Test. Thromb. Res. 1998, V. 89, P. 227–232.
      118. Tans G., Rosing J. Snake venom activators of factor X: an overview. Haemostasis. 2001, 31 (3–6), 225–233.
      119. Kisiel W., Hermodson M. A., Davie E. W. Factor X activating enzyme from Russell's viper venom: isolation and characterization. Biochemistry. 1976, 15 (22), 4901–4906.
      120. Takeya H., Nishida S., Miyata T., Kawada S., Saisaka Y., Morita T., Iwanaga S. Coagulation factor X activating enzyme from Russell's viper venom (RVV-X). A novel metalloproteinase with disintegrin (platelet aggregation inhibitor)-like and C-type lectin-like domains. J. Biol. Chem. 1992, 267 (20), 14109–14117. PMID: 1629211
      121. Khan S. U., Al-Saleh S. S. Biochemical characterization of a factor X activator protein purified from Walterinnesia aegyptia venom. Blood Coagul. Fibrinolysis. 2015, 26 (7), 772–777.
      122. Yamada D., Sekiya F., Morita T. Prothrombin and factor X activator activities in the venoms of Viperidae snakes. Toxicon. 1997, 35 (11), 1581–1589.
      123. Siigur E., Tõnismägi K., Trummal K., Samel M., Vija H., Subbi J., Siigur J. Factor X activator from Vipera lebetina snake venom, molecular characterization and substrate specificity. Biochim. Biophys. Acta. 2001, 1568 (1), 90–98.
      124. Pat. JP5569398B2. – 2014-08-13.
      125. Kornalík F. Use of ecarin in the diagnosis of coagulation disorders. Cas. Lek. Cesk. 1988, 127 (51), 1578–1581. PMID: 3073011
      126. Yamada D., Sekiya F., Morita T. Prothrombin and fX Activator Activities in the Venomes of Viperidae Snakes. Toxicon. 1997, 35 (11), 1581–1589.
      127. Kornalik F., Blombäck B. Prothrombin activation induced by Ecarin – a prothrombin converting enzyme from Echis carinatus venom. Thromb. Res. 1975, 6 (1), 57–63.
      128. Nishida S., Fujita T., Kohno N., Atoda H., Morita T., Takeya H., Kido I., Paine M. J., Kawabata S., Iwanaga S. cDNA cloning and deduced amino acid sequence of prothrombin activator (ecarin) from Kenyan Echis carinatus venom. Biochemistry. 1995, 34 (5), 1771–1778.
      129. Ugarova T. P., Platonova T. N., Soloviev D. A. Reports of the Academy of Sciences of the Ukrainian SSR: A prothrombin activator from the venom of Echis multisquamatis. Ser. B. Geol., Chem. Biol. Sci. 1989, V. 6, P. 75–79.
      130. Gornitskaya O. V., Platonova T. N., Volkov G. L. Enzymes of snake venom. Ukr. biochem. J. 2003, 75 (3), 22–32. PMID: 14577148
      131. Korolova D. S., Chernyshenko T. M., Gornytska O. V., Chernyshenko V. O., Platonova T. M. Meizothrombin preparation and its role in fibrin formation and platelet aggregation. Advances in Bioscience and Biotechnology. 2014, 5 (7), 588–595.
      132. Tans G., Govers-Riemslag J. W. P. Purification and Properties of a Protrombin Activator from the Venom of Notechis scutatus. J. Biol. Chem. 1985, 260 (16), 9366–9372. PMID: 3894355.
      133. Platonova T. N., Chernyshenko T. M., Gornitskaya O. V. Complex laboratory diagnostics of disorders of the hemostasis system in disseminated intravascular coagulation. Laboratory Diagnostics. 2000, N 3, P. 3–11.
      134. Ullah A., Masood R., Ali I., Ullah K., Ali H., Akbar H., Betzel C. Thrombin-like enzymes from snake venom: Structural characterization and mechanism of action. Int. J. Biol. Macromol. 2018, V. 114, P. 788–811.
      135. Gusev E. I., Skvortsova V. I., Suslina Z. A. Batroxobin in patients with ischemic stroke in the carotid system. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova. 2006, 106 (8), 31–34. PMID: 16972594
      136. Koh D. C. I., Armugam A., Jeyaseelan K. Snake venom components and their applications in biomedicine. Cellular and Molecular Life Sciences. 2006, 63 (24), 3030–3041.
      137. Joshi S. A., Gadre K. S., Halli R., Shandilya R. Topical use of Hemocoagulase (Reptilase): A simple and effective way of managing post-extraction bleeding. Ann. Maxillofac. Surg. 2014, 4 (1), 119.
      138. Aslam S., Francis P. G., Rao B. H., Ummar M., Issac J. K., Nair R. B. A double blind study on the efficacy of local application of hemocoagulase solution in wound healing. J. Contemp. Dent. Pract. 2013, 14 (3), 394–400.
      139. Qiu M., Zhang X., Cai H., Xu Z., Lin H. The impact of hemocoagulase for improvement of coagulation and reduction of bleeding in fracture-related hip hemiarthroplasty geriatric patients: A prospective, single-blinded, randomized, controlled study. Injury. 2017, 48 (4), 914–919.
      140. Lerner A., Ramesh A., Matthias T. The temperature and pH repertoire of the transglutaminase family is expanding. FEBS Open Bio. 2020, 10 (4), 492–494.
      141. Pat. EP0669834B1. – 1999-09-08.
      142.Pat. US8722039B2. – 2014-05-13.
      143. Pat. CN102727929B. – 2014-04-02.


Additional menu

Site search

Site navigation


Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
for information: