Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2021 № 5 CURCUMIN-BASED MULTIFUNCTIONAL NANOSYSTEMS M. I. Kaniuk
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)


Biotechnologia Acta  Т. 14, No. 5 , 2021
P. 21-37, Bibliography 101, Engl.
UDC: 577.1
https://doi.org/10.15407/biotech14.05.021s

CURCUMIN-BASED MULTIFUNCTIONAL NANOSYSTEMS

M. I. Kaniuk

Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv

The use of multifunctional nanosystems in medicine and research is of contemporary interest.

Aim. The purpose of the work was to summarize publications on the prospects of creating and using nanocontainers based on curcumin (Cur). Cur fluorescence in nanoparticles (NP) makes it possible to investigate the distribution of fluorescent and non-fluorescent components, significantly accelerating the study and implementation of drugs in practice. Particular attention is paid to the use of hydrophobic substances in NP, to penetrate into a living cell.

Understanding the interaction of NP with living cells is extremely important when these particles are used to transport and deliver water-insoluble drugs to cells. Cur is one of the drugs with various and very promising pharmaceutical effects, it is poorly soluble in aqueous media, and the use of nanocarriers is an effective way to significantly increase its bioavailability. Cur has its own fluorescence, which enables to use it in multifunctional fluorescent nanosystems, for example, with Pluronic® micelles.

The use of the fluorescence method makes it possible to trace the stages of interaction of Cur-loaded NP with cultured cells and their localization in cell organelles.

With this approach, nanoscale dynamics of drug distribution and stability is observed over time.

Conclusions. The main conclusion is that for unstable in the aquatic environment drugs such as Cur, it is necessary to use the most hydrophobic nanostructures without traces of water, which include the nuclei of Pluronic® micelles. This method makes it possible to use other poorly water-soluble drugs.

A promising area of nanomedicine is the creation of complex bio-compatible nanomaterials based on several active drugs that reduce the toxicity of preparations to normal cells.

Key words: multifunctional nanosystems, nanocontainers for medical preparations, curcumin.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021

  • References
    • 1. Priskoka A. O., Checkman I. S. Nanotechnologies in development of drug delivery systems. Ukr. Med. J. 2010, 1 (75), I–II, 14–18.(In Ukrainian).

      2. Chekman І. S. Nanopharmacology. К.: Zadruga. 2011, 424 p. (In Ukrainian).

      3. Prylutska S. V., Grynyuk I. I., Grebinyk S. M., Matyshevska O. P., Prylutskyy Yu. I., Ritter U., Siegmund C., Scharff P. Comparative study of biological action of fullerenes C60 and carbon nanotubes in thymus cells. Mat.-wiss. u. Werkstofftech. 2009, V. 40, P. 238–241. https://doi.org/10.1002/mawe.200900433

      4. Prylutska S. V., Burlaka A. P., Prylutskyy Yu. I., Ritter U., Scharff P. Comparative study of antitumor effect of pristine C60 fullerenes and doxorubicin. Biotechnol. 2011, V. 4, Р. 82–87.

      5. Prylutska S. V. Using of С60 fullerene complexes with antitumor drugs in chemotherapy. Biotechnol. acta. 2014, 7 (3), 9–20. https://doi.org/10.15407/biotech7.03.009

      6. Prylutska S. V., Didenko G. V., Kichmarenko Yu. M., Kruts O. O., Potebnya G. P., Cherepanov V. V., Prylutskyy Yu. I. Effect of C60 fullerene, doxorubicin and their complex on tumor and normal cells of BALB/c mice. Biotechnol. acta. 2014, 7 (1), 60–65. (In Ukrainian) ttps://doi.org/10.15407/biotech7.01.060

      7. Kanyuk M. I. Ultrafine fluorescent diamonds in nanotechnology. Biotechnol. acta. 2014, 7 (4), 9–24. (In Ukrainian). https://doi.org/10.15407/biotech7.04.009

      8. Kanyuk М. І. Use of nanodiamonds in biomedicine. Biotechnol. acta. 2015, 8 (2), 9–25. https://doi.org/10.15407/biotech8.02.009

      9. Kaniuk M. I. Prospects of Curcumin use in Nanobiotechnology. Biotechnol. acta. 2016, 9 (3), P. 23‒36. https://doi.org/10.15407/biotech9.03.023

      10. Prylutska S. V., Remeniak О. V., Honcharenko Yu. V., Prylutskyy Yu. I. Carbon nanotubes as a new class of materials for nanobiotechnology. Biotechnol. 2009, 2 (2), 55–66. (In Ukrainian).

      11. Prylutska S. V., Remenyak О. V., Burlaka A. P., Prylutskyy Yu. I. Perspective of carbon nanotubes application in cancer therapy. Oncology. 2010, 12 (1), 5–9. (In Ukrainian).

      12. Sagnou M., Benaki D., Triantis C., Tsotakos T., Psycharis V., Raptopoulou C. P., Pirmettis I., Papadopoulos M., Pelecanou M. Curcumin as the OO bidentate ligand in “2+1” complexes with the [M(CO)3]+ (M = Re, 99m Tc) tricarbonyl core for radiodiagnostic applications. Inorg. Chem. 2011, 50 (4), 1295‒1303. https://doi.org/10.1021/ic102228u

      13. Asti M., Ferrari E., Groci S., Atti G., Rubagotti S., Lori M., Capponi P. C., Zerbini A., Saladini M., Versari A. Synthesis and characterization of 68Ga-labeled curcumin and curcuminoid Complexes as potential radiotracers for imaging of cancer and Alzheimer’s disease. Inorg. Chem. 2014, 53 (10), 4922–4933. https://doi.org/10.1021/ic403113z

      14. Priyadarsini K. I. The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules. 2014, 19 (12), 20091–20112. https://doi.org/10.3390/molecules191220091

      15. Golub A., Matyshevska O., Prylutska S., Sysoyev V., Ped L., Kudrenko V., Radchenko E., Prylutskyy Yu., Scharff P., Braun T. Fullerenes immobilized at silica surface: topology, structure and bioactivity. J. Mol. Liq. 2003, 105 (2‒3), 141–147. https://doi.org/10.1016/S0167-7322(03)00044-8

      16. Moorthi C., Kathiresan K. Curcumin–Piperine/Curcumin–Quercetin/Curcumin – Silibinin dual drug- loaded nanoparticulate combination therapy: A novel approach to target and treat multidrug-resistant cancers. J. Medical Hypotheses and Ideas. 2013, 7 (1), 15–20. https://doi.org/10.1016/j.jmhi.2012.10.005

      17. Mullaicharam A. R., Maheswaran A. Pharmacological effects of curcumin. Int. J. Nutr. Pharmacol. Neurol. Dis. 2012, 2 (2), 92–99. https://doi.org/10.4103/2231-0738.95930

      18. Moghassemi S., Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems. An illustrated review. J. Controlled Release. 2014, V. 185, P. 22–36. https://doi.org/10.1016/j.jconrel.2014.04.015

      19. Pitto-Barry A., Barry N. P. E. Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances. Polym. Chem. 2014, V. 5, P. 3291–3297.https://doi.org/10.1039/C4PY00039K

      20. Yeo P. L., Lim C. L., Chye S. M., Ling A. P. K., Koh R. Y. Niosomes: a review of their structure, properties, methods of preparation, and medical applications. Asian Biomed. (Res. Rev. News). 2017, 11 (4), 301–14. https://doi.org/10.1515/abm-2018-0002

      21. Tavano L., Mauro L., Naimo G. D., Bruno L., Picci N., Andò S., Muzzalupo R. Further Evolution of Multifunctional Niosomes Based on Pluronic Surfactant: Dual Active Targeting and Drug Combination Properties. Langmuir. 2016, 32 (35), 8926–8933. https://doi.org/10.1021/acs.langmuir.6b02063

      22. Tavano L., Muzzalupo R., Picci N., Cindio B. Co-encapsulation of antioxidants into niosomal carriers: Gastrointestinal release studies for nutraceutical applications. Colloids and Surfaces B: Biointerfaces. 2014, V. 114C, P. 82–88. https://doi.org/10.1016/j.colsurfb.2013.09.058

      23. Del Prado-Audelo M L., Rodríguez-Martínez G., Martínez-López V., Ortega-Sánchez C., Velasquillo-Martínez C., Magaña J. J., González-Torres M., Quintanar-Guerrero D., Sánchez-Sánchez R., Leyva-Gómez G. Curcumin-loaded poly- ε-caprolactone nanoparticles show antioxidant and cytoprotective effects in the presence of reactive oxygen species. J. Bioactive and Compatible Polymers. 2020, 35 (3), 270–285. https://doi.org/10.1177/0883911520921499

      24. Mandal S., Banerjee C., Ghosh S., Kuchlyan J., Sarkar N. Modulation of the photophysical properties of curcumin in nonionic surfactant (Tween-20) forming micelles and niosomes: a comparative study of different microenvironments. J. Phys. Chem. B. 2013, 117 (23), 6957–6968. https://doi.org/10.1021/jp403724g

      25. Pusz J., Wolowiec S. Solid compounds of Ce(III), Pr(III), Nd(III), and Sm(III) ions with chrysin. J. Therm. Anal. Calorim. 2012, V. 110, P. 813–821. https://doi.org/10.1007/s10973-011-1989-4

      26. Mathew A. P., Uthaman S., Cho K. H., Cho C. S., Park I. K. Injectable hydrogels for delivering biotherapeutic molecules. Int. J. Biol. Macromol. 2018, V. 110, P. 17‒29. https://doi.org/10.1016/j.ijbiomac.2017.11.113

      27. Xu Y. Q., Chen W. R., Tsosie J. K., Xie X., Li P., Wan J. B., He C. W., Chen M. W. Niosome Encapsulation of Curcumin: Characterization and Cytotoxic Effect on Ovarian Cancer Cells. J. Nanomaterials. 2016, V. 2016, P. 1‒9. https://doi.org/10.1155/2016/6365295

      28. Roy A., Kundu N., Banik D., Sarkar N. Comparative Fluorescence Resonance Energy-Transfer Study inPluronic Triblock Copolymer Micelle and Niosome Composed ofBiological Component Cholesterol: An Investigation of Effect ofCholesterol and Sucrose on the FRET Parameters. J. Phys. Chem. B. 2016, 120 (1), 131−142. https://doi.org/10.1021/acs.jpcb.5b09761

      29. Le T. M. P., Pham V. P., Dang T. M. L., La T. H., Le T. H., Le Q. H. Preparation of curcumin-loaded pluronic F127/chitosan nanoparticles for cancer therapy. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2013, 4 (2), 025001. https://doi.org/10.1088/2043-6262/4/2/025001

      30. Hosniyeh H., Fatemeh A., Rassoul D., Aeyed N. O. Chitosan–Pluronic nanoparticles as oral delivery of anticancer gemcitabine: preparation and in vitro study. Int. J. Nanomed. 2012, V. 7, P. 1851–1863. https://doi.org/10.2147/IJN.S26365

      31. Kozlov M. Y., Melik-Nubarov N. S., Batrakova E. V., Kabanov A. V. Relationship between pluronic block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes. Macromolecules. 2000, 33 (9), 3305–3313. https://doi.org/10.1021/ma991634x

      32. Prados J., Melguizo C., Ortiz R., Vélez C., Alvarez P. J., Arias J. L., Ruíz M. A., Gallardo V., Aranega A. Doxorubicin-loaded nanoparticles: new advances in breast cancer therapy. Anti-cancer Agents Med. Chem. 2012, 12 (9), 1058–70. https://doi.org/10.2174/187152012803529646

      33. Ganguly R., Kunwar A., Dutta B., Kumar S., Barick K., Ballal A., Aswal V., Hassan P. Heat-induced solubilization of curcumin in kinetically stable pluronic P123 micelles and vesicles: An exploit of slow dynamics of the micellar restructuring processes in the aqueous pluronic system. Colloids and surfaces B: Biointerfaces. 2017, V. 152, P. 176–182. https://doi.org/10.1016/j.colsurfb.2017.01.023

      34. Chiappetta D. A., Sosnik A. Poly (ethylene oxide)–poly (propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. Eur. J. Pharmac. Biopharmac. 2007, 66 (3), 303–317. https://doi.org/10.1016/j.ejpb.2007.03.022

      35. Wenzel J. G. W., Balaji K. S. S., Koushik K., Navarre C., Duran S. H., Rahe C. H., Kompella U. B. Pluronic F127 gel formulations of deslorelin and GnRH reduce drug release and effect in cattle. J. Control. Release. 2002, V. 85, P. 51–59. https://doi.org/10.1016/S0168-3659(02)00271-7

      36.Verma G., Hassan P. A. Self assembled materials: design strategies and drug delivery perspectives. Cite this: Phys. Chem. Chem. Phys. 2013, V. 15, P. 17016–17028. https://doi.org/10.1039/c3cp51207j

      37. Zhang X., Burt H. M., Mangold G., Dexter D., Von Hoff D., Mayer L., Hunter W. L. Anti-tumor efficacy and biodistribution of intravenous polymeric micellar paclitaxel. Anticancer Drugs. 1997, 8 (7), 696–701. https://doi.org/10.1097/00001813-199708000-00008

      38. Shin I. G., Kim S. Y., Lee Y. M., Cho C. S., Sung Y. K. Methoxy poly (ethylene glycol)/ϵ-caprolactone amphiphilic block copolymeric micelle containing indomethacin.: I. Preparation and characterization. J. Control. Release. 1998, 51 (1), 1‒11. https://doi.org/10.1016/S0168-3659(97)00164-8

      39. Yu B. G., Okano T., Kataoka K., Sardari S., Kwon G. S. In vitro dissociation of antifungal efficacy and toxicity for amphotericin B-loaded poly(ethylene oxide)-block-poly(beta benzyl L aspartate) micelles. J. Control. Release. 1998. 56 (1‒3), 285–291. https://doi.org/10.1016/S0168-3659(98)00095-9

      40. Jeong Y. I., Nah J. W., Lee H. C., Kim S. H., Cho C. S. Adriamycin release from flower-type polymeric micelle based on star-block copolymer composed of poly(γ-benzyl l-glutamate) as the hydrophobic part and poly(ethylene oxide) as the hydrophilic part. Int. J. Pharm. 1999, 188 (1), 49–58. https://doi.org/10.1016/S0378-5173(99)00202-1

      41. Allen C., Han J., Yu Y., Maysinger D., Eisenberg A. Polycaprolactone–b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone. J. Control. Release. 2000, 63 (3), 275–286. https://doi.org/10.1016/S0168-3659(99)00200-X

      42. Yallapu M. M., Bhusetty Nagesh P. K., Jaggi M., Chauhan S. C. Therapeutic Applications of Curcumin Nanoformulations. AAPS J. 2015, 17 (6), 1341–1356. https://doi.org/10.1208/s12248-015-9811-z

      43. Selvam P., El-Sherbiny I. M., Smyth H. D. Swellable hydrogel particles for controlled release pulmonary administration using propellant-driven metered dose inhalers. J. Aerosol Med. Pulm. Drug Deliv. 2011, 24 (1), 25–34. https://doi.org/10.1089/jamp.2010.0830

      44. Ye Y., Li Y., Fang F. Upconversion nanoparticles conjugated with curcumin as a photosensitizer to inhibit methicillin-resistant Staphylococcus aureus in lung under near infrared light. Int. J. Nanomedicine. 2014, V. 9, P. 5157–5165. https://doi.org/10.2147/IJN.S71365

      45. Pardridge W. M. Blood–brain barrier delivery. Drug Discovery Today. 2007, 12 (1), 54‒61. https://doi.org/10.1016/j.drudis.2006.10.013

      46. Andrieux K., Couvreur P. Nanomedicine as a promising approach for the treatment and diagnosis of brain diseases: the example of Alzheimer's disease. Ann. Pharm. Fr. Elsevier. 2013, 71 (4), 225–233. https://doi.org/10.1016/j.pharma.2013.04.001

      47. Tsai Y. M., Chien C. F., Lin L. C., Tsai T. H. Curcumin and its nano-formulation: the kinetics of tissue distribution and blood–brain barrier penetration. Int. J. Pharmac. 2011, 416 (1), 331–338. https://doi.org/10.1016/j.ijpharm.2011.06.030

      48. Gravier J., Sancey L., Hirsjärvi S., Rustique E., Passirani C., Benoît J. P., Coll J. L., Texier I. FRET Imaging Approaches for in Vitro and in Vivo Characterization of Synthetic Lipid Nanoparticles. Mol. Pharmac. 2014, 11 (9), 3133–3144. https://doi.org/10.1021/mp500329z

      49. Charron D. M., Zheng G. Nanomedicine development guided by FRET imaging. Nano Today. 2018, V. 18, P. 124‒136. https://doi.org/10.1016/j.nantod.2017.12.006

      50. Hewlings S. J., Kalman D. S. Curcumin: A Review of Its’ Effects on Human Health. Foods. 2017, 6 (10), 92, 1–11. https://doi.org/10.3390/foods6100092

      51. Kabeer A., Mailafiya M. M., Danmaigoro A., Rahim E. A., bu Bakar M. Z. A. Therapeutic potential of curcumin against lead-induced toxicity. A review. Biomed. Res. Therapy. 2019, 6 (3), 3053‒3066. https://doi.org/10.15419/bmrat.v6i3.528

      52. Menon V. P., Sudheer A. R. Antioxidant and anti-inflammatory properties of curcumin. Adv. Exp. Med. Biol. 2007, V. 595, P. 105–125. https://doi.org/10.1007/978-0-387-46401-5_3

      53. Cai W., Zhang B., Duan D., Wu J., Fang J. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells. Toxicol. Appl. Pharmacol. 2012, 262 (3), 341–348. https://doi.org/10.1016/j.taap.2012.05.012

      54. Lian Y. T., Yang X. F., Wang Z. H., Yang Y., Yang Y., Shu Y. W., Cheng L. X., Liu K. Curcumin serves as a human kv1.3 blocker to inhibit effector memory T lymphocyte activities. Phytother. Res. 2013, 27 (9), 1321–1327. https://doi.org/10.1002/ptr.4863

      55. Kocaadam B., Sanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects onhealth. Crit. Rev. Food Sci. Nutr. 2017, 57 (13), 2889–2895. https://doi.org/10.1080/10408398.2015.1077195

      56. Ashrafizadeh M., Zarrabi A., Hashemi F., Zabolian A., Saleki H., Bagherian M., Azami N., Bejandi A. K., Hushmandi K., Ang H. L., Makvandi P., Khan H., Kumar A. P. Polychemotherapy with Curcumin and Doxorubicinvia Biological Nanoplatforms: EnhancingAntitumor Activity. Pharmaceutics. 2020, 12 (11), 1084. https://doi.org/10.3390/pharmaceutics12111084

      57. Kunnumakkara A. B., Harsha C., Banik K., Vikkurthi R., Sailo B. L., Bordoloi D., Gupta S. C., Aggarwal B. B. Is curcumin bioavailability a problem in humans: lessons from clinical trials. Expert Opinion on Drug Metabolism & Toxicology. 2019, 15 (9), 705–733. https://doi.org/10.1080/17425255.2019.1650914

      58. Marchiani A., Rozzo C., Fadda A., Delogu G., Ruzza P. Curcumin and curcumin-like molecules: Fromspice to drugs. Curr. Med. Chem. 2014, 21 (2), 204–222.https://doi.org/10.2174/092986732102131206115810

      59. Priyadarsini K. I., Maity D. K., Naik G. H., Kumar M. S., Unnikrishnan M. K., Satav J. G., Mohan H. Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic. Biol. Med. 2003, 35 (5), 475–484. https://doi.org/10.1016/S0891-5849(03)00325-3

      60. Kunwar A., Barik A., Mishra B., Rathinasamy K., Pandey R., Priyadarsini K. Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim. Biophys. Acta. 2008, 1780 (4), 673‒679. https://doi.org/10.1016/j.bbagen.2007.11.016

      61. Di Martino R. M. C., Bisi A., Rampa A., Gobbi S., Belluti F. Recent progress on curcumin-based therapeutics: a patent review (2012-2016). Part II: curcumin derivatives in cancer and neurodegeneration. Expert Opinion on Therapeutic Patents. 2017, 27 (8), 953–965. https://doi.org/10.1080/13543776.2017.1339793

      62. Anand P., Kunnumakkara A. B., Newman R. A., Aggarwal B. B. Bioavailability of curcumin: problems and promises. Mol. Pharm. 2007, 4 (6), 807–818. https://doi.org/10.1021/mp700113r

      63. Basnet P., Skalko-Basnet N. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules. 2011, 16 (6), 4567–4598. https://doi.org/10.3390/molecules16064567

      64. Gupta S. C., Patchva S., Aggarwal B. B. Therapeutic roles of curcumin: lessons learned from clinical trials. The AAPS J. 2013, 15 (1), 195–218. https://doi.org/10.1208/s12248-012-9432-8

      65. Joe B., Vijaykumar M., Lokesh B. R. Biological properties of curcumin-cellular and molecular mechanisms of action. Crit. Rev. Food Sci. Nutr. 2004, 44 (2), 97‒111.https://doi.org/10.1080/10408690490424702

      66. Naik S. R., ThakareV. N., Patil S. R. Protective effect of curcuminon experimentally induced inflammation, hepatotoxicity and cardiotoxicityin rats: Evidence of its antioxidant property. Exp. Toxicol. Pathol. 2011, 63 (5), 419–431. https://doi.org/10.1016/j.etp.2010.03.001

      67. Gupta S. C., Patchva S., Koh W., Aggarwal B. B. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin. Exp. Pharmacol. Physiol. 2012, 39 (3), 283–299. https://doi.org/10.1111/j.1440-1681.2011.05648.x

      68. Goel A., Aggarwal B. B. Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutr. Cancer. 2010, 62 (7), 919–930. https://doi.org/10.1080/01635581.2010.509835

      69. Fang J., Lu J., Holmgren A. Thioredoxin reductase is irreversibly modified by curcumin: a novel molecular mechanism for its anticancer activity. J. Biol. Chem. 2005, 280 (26), 25284–25290. https://doi.org/10.1074/jbc.M414645200

      70. Shi L. Y., Zhang L., Li H., Liu T. L., Lai J. C., Wu Z. B., Qin J. Protective effects ofCurcumin on acrolein-induced neurotoxicity in HT22 mousehippocampal cells. Pharmacol. Reports. 2018, 70 (5), 1040–1046. https://doi.org/10.1016/j.pharep.2018.05.006

      71. Mary C. P. V., Vijayakumar S., Shankar R. Metal chelating ability and antioxidant properties of Curcumin-metal complexes ‒ A DFT approach. J. Mol. Graph. Model. 2018, V. 79, P. 1–14. https://doi.org/10.1016/j.jmgm.2017.10.022

      72. Imran M., Ullah A., Saeed F., Nadeem M., Arshad M. U., Suleria H. A. R. Cucurmin, anticancer, and antitumor perspectives: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2018, 58 (8), 1271–1293. https://doi.org/10.1080/10408398.2016.1252711

      73. Naksuriya O., Okonogi S., Schiffelers R. M., Hennink W. E. Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014, 35 (10), 3365–3383. https://doi.org/10.1016/j.biomaterials.2013.12.090

      74. Aggarwal B. B., Harikumar K. B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol. 2009, 41 (1), 40–59. https://doi.org/10.1016/j.biocel.2008.06.010

      75. Hatamipour M., Johnston T. P., Sahebkar A. One molecule, many targetsand numerous effects: the pleiotropy of curcumin lies in its chemicalstructure. Curr. Pharm. Des. 2018, 24 (19), 2129–2136. https://doi.org/10.2174/1381612824666180522111036

      76. Perrone D., Ardito F., Giannatempo G., Dioguardi M., Troiano G., Russo L. L., DE Lillo A., Laino L., Muzio L. L. Biological and therapeutic activities, and anticancer properties of curcumin. Exp. Ther. Med. 2015, 10 (5), 1615–1623. https://doi.org/10.3892/etm.2015.2749

      77. Sa G., Das T. Sa G.,Das T.Anti cancer effects of curcumin: cycle of life and death. Cell Division. 2008, 3 (14). https://doi.org/10.1186/1747-1028-3-14

      78. Rattis B. A. C., Ramos S. G., Celes M. R. N. Curcumin as a Potential Treatment for COVID-19. Front. Pharmacol. 2021, P. 12. https://doi.org/10.3389/fphar.2021.675287

      79. Di Martino R. M. C., Luppi B., Bisi A., Gobbi S., Rampa A., Abruzzo A., Belluti F. Recent progress on curcumin-based therapeutics: a patent review (2012‒2016). Part I: Curcumin. Expert Opinion on Therapeutic Patents. 2017, 27 (5), 579–590. https://doi.org/10.1080/13543776.2017.1276566

      80. Panahi Y., Alishiri G. H., Parvin S., Sahebkar A. Mitigation of systemic oxidative stress by curcuminoids in osteoarthritis: Results of a randomized controlled trial.J. Diet. Suppl. 2016, 13 (2), 209–220. https://doi.org/10.3109/19390211.2015.1008611

      81. Shoba G., Joy D., Joseph T., Majeed M., Rajendran R., Srinivas P. S. Influence of piperine on the pharmacokinetics of curcumin inanimals and human volunteers. Planta Med. 1998, 64 (4), 353–356. PMID: 9619120. https://doi.org/10.1055/s-2006-957450

      82. Attia Y. M., El-Kersh D. M., Ammar R. A., Adel A., Khalil A., Walid H., Eskander K., Hamdy M., Reda N., Mohsen N. E., Al-Toukhy G. M., Mansour M. T., Elmazar M. M. Inhibition of aldehyde dehydrogenase-1 and p-glycoprotein-mediated multidrug resistance by curcumin and vitamin D3 increases sensitivity to paclitaxel in breast cancer. Chemico-Biological Interactions. 2020, V. 315, P. 108865. https://doi.org/10.1016/j.cbi.2019.108865

      83. Priyadarsini K. I. The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules. 2014, 19 (12), 20091–20112. https://doi.org/10.3390/molecules191220091

      84. Hussain A., Somyajit K., Banik B., Banerjee S., Nagaraju G., Chakravarthy A. R. Enhancing the photocytotoxic potential of curcumin on terpyridyl-lanthanide(III) complex formation. Dalton Trans. 2013, 42 (1), 182–195. https://doi.org/10.1039/C2DT32042H

      85. Zhou S. S., Xue X., Wang J. F., Dong Y., Jiang B., Wei D., Wan M. L., Jia Y. Synthesis, optical properties and biological imaging of the rare earth complexes with curcumin and pyridine. J. Mater. Chem. 2012, 22 (42), 22774–22780. https://doi.org/10.1039/c2jm34117d

      86. Song Y. M., Xu J. P., Ding L., Hou Q., Liu J. W., Zhu Z. L. Syntheses, characterisation and biological activities of rare earth metal complexes with curcumin and 1,10-phenanthroline-5,6-dione. J. Inorg. Biochem. 2009, 103 (3), 396–400. https://doi.org/10.1016/j.jinorgbio.2008.12.001

      87. Cheng L., Hsu C. H., Lin J. K., Hsu M. M., Ho Y. F., Shen T. S., Ko J. Y., Lin J. T., Lin B. R., Wu M. S., Yu H. S., Jee S. H., Chen G. S., Chen T. M., Chen C. A., Lai M. K., Pu Y. S., Pan M. H., Wang Y. J., Tsai C. C., Hsieh C. Y. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001, 21 (4B), 2895–2900.

      88. Mohammed F., Rashid-Doubell F., Taha S., Cassidy S., Fredericks S. Effects of curcumin complexes on MDA‑MB‑231 breast cancer cell proliferation. Int. J. Oncol. 2020, 57 (2), 445–455. https://doi.org/10.3892/ijo.2020.5065

      89. Mourmoura E., Vial G., Laillet B., Rigaudiere J. P., Hininger-Favier I., Dubouchaud H., Morio B., Demaison L. Preserved endothelium-dependent dilatation of the coronary microvasculature at the early phase of diabetes mellitus despite the increased oxidative stress and depressed cardiac mechanical function ex vivo. Cardiovasc Diabetology. 2013, 12 (49), 1169–1186. https://doi.org/10.1186/1475-2840-12-49

      90. Rebillard A., Lefeuvre-Orfila L., Gueritat J., Cillard J. Prostate cancer and physical activity: Adaptive response to oxidative stress. Free Radic. Biol. Med.. 2013, V. 60, P. 115–124. https://doi.org/10.1016/j.freeradbiomed.2013.02.009

      91. Edwards R. L., Luis P. B., Varuzza P. V., Joseph A. I., Presley S. H., Chaturvedi R., Schneider C. The anti-inflammatory activity of curcumin is mediated by its oxidative metabolites. J. Biol. Chem. 2017, 292 (52), 21243–21252. https://doi.org/10.1074/jbc.RA117.000123

      92. Larasati Y. A., Yoneda-Kato N., Nakamae I., Yokoyama T., Meiyanto E., Kato J. Curcumin targets multiple enzymes involved in the ROS metabolic pathway to suppress tumor cell growth. Sci. Rep. 2018, 8 (2039). https://doi.org/10.1038/s41598-018-20179-6

      93. Hua C., Kai K., Bi W., Shi W., Liu Y., Zhang D. Curcumin Induces Oxidative Stress in Botrytis cinerea, Resulting in a Reduction in Gray Mold Decay in Kiwifruit. J. Agric. Food Chem. 2019, 67 (28), 7968–7976. https://doi.org/10.1021/acs.jafc.9b00539

      94. Ellis E. M. Reactive carbonyls and oxidative stress: Potential for therapeutic intervention. Pharmacol. Ther. 2007, 115 (1), 13–24. https://doi.org/10.1016/j.pharmthera.2007.03.015

      95. Rajamanickam V., Yan T., Wu L., Zhao Y., Xu X., Zhu H., Chen X., Wang M., Liu Z., Liu Z., Liang G., Wang Y. Allylated Curcumin Analog CA6 Inhibits TrxR1 and Leads to ROS-Dependent Apoptotic Cell Death in Gastric Cancer Through Akt-FoxO3a. Cancer Manag. Res. 2020, V. 12, P. 247–263. https://doi.org/10.2147/CMAR.S227415

      96. Priyadarsini K. I. Photophysics, photochemistry and photobiology of curcumin: Studies from organic solutions, bio-mimetics and living cells. J. Photochem. Photobiol. C: Photochem. Rev. 2009, 10 (2), 81–95. https://doi.org/10.1016/j.jphotochemrev.2009.05.001

      97. Patra D., El Khoury E., Ahmadieh D., Darwish S., Tafech R. M. Effect of Curcumin on Liposome: Curcumin as a Molecular Probe for Monitoring Interaction of Ionic Liquids with 1, 2‐Dipalmitoyl‐sn‐Glycero‐3‐Phosphocholine Liposome. Photochem. Photobiol. 2012, 88 (2), 317–327. https://doi.org/10.1111/j.1751-1097.2011.01067.x

      98. Chainoglou E., Hadjipavlou-Litina D. Curcumin analogues and derivatives with anti-proliferative and anti-inflammatory activity: Structural characteristics and molecular targets. Expert Opin. Drug Discov. 2019, 14 (8), 821–842. https://doi.org/10.1080/17460441.2019.1614560

      99. Sahebkar A., Serban M. C., Ursoniu S., Banach M. Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials. J. Funct. Foods. 2015, V. 18 B, P. 898–909. https://doi.org/10.1016/j.jff.2015.01.005

      100. Badria F. A., Ibrahim A. S., Badria A. F., Elmarakby A. A. Curcumin Attenuates Iron Accumulation andOxidative Stress in the Liver and Spleen ofChronic Iron-Overloaded Rats. PLoS ONE. 2015, 10 (7), e0134156.1–13. https://doi.org/10.1371/journal.pone.0134156

      101. Yuan J., Liu W., Zhu H., Zhang X., Feng Y., Chen Y., FengH., Lin J. Curcumin attenuates blood-brain barrier disruption after subarachnoid hemorrhage in mice. J. Surg. Res. 2017, 207 (30), 85‒91. https://doi.org/10.1016/j.jss.2016.08.090



 

Additional menu

Site search

Site navigation

Home Archive 2021 № 5 CURCUMIN-BASED MULTIFUNCTIONAL NANOSYSTEMS M. I. Kaniuk

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
E-mail
for information: biotech@biochem.kiev.ua.