Biotechnologia Acta


  • Increase font size
  • Default font size
  • Decrease font size
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta  Т. 14, No. 5 , 2021
P. 21-37, Bibliography 101, Engl.
UDC: 577.1


M. I. Kaniuk

Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv

The use of multifunctional nanosystems in medicine and research is of contemporary interest.

Aim. The purpose of the work was to summarize publications on the prospects of creating and using nanocontainers based on curcumin (Cur). Cur fluorescence in nanoparticles (NP) makes it possible to investigate the distribution of fluorescent and non-fluorescent components, significantly accelerating the study and implementation of drugs in practice. Particular attention is paid to the use of hydrophobic substances in NP, to penetrate into a living cell.

Understanding the interaction of NP with living cells is extremely important when these particles are used to transport and deliver water-insoluble drugs to cells. Cur is one of the drugs with various and very promising pharmaceutical effects, it is poorly soluble in aqueous media, and the use of nanocarriers is an effective way to significantly increase its bioavailability. Cur has its own fluorescence, which enables to use it in multifunctional fluorescent nanosystems, for example, with Pluronic® micelles.

The use of the fluorescence method makes it possible to trace the stages of interaction of Cur-loaded NP with cultured cells and their localization in cell organelles.

With this approach, nanoscale dynamics of drug distribution and stability is observed over time.

Conclusions. The main conclusion is that for unstable in the aquatic environment drugs such as Cur, it is necessary to use the most hydrophobic nanostructures without traces of water, which include the nuclei of Pluronic® micelles. This method makes it possible to use other poorly water-soluble drugs.

A promising area of nanomedicine is the creation of complex bio-compatible nanomaterials based on several active drugs that reduce the toxicity of preparations to normal cells.

Key words: multifunctional nanosystems, nanocontainers for medical preparations, curcumin.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021

  • References
    • 1. Priskoka A. O., Checkman I. S. Nanotechnologies in development of drug delivery systems. Ukr. Med. J. 2010, 1 (75), I–II, 14–18.(In Ukrainian).

      2. Chekman І. S. Nanopharmacology. К.: Zadruga. 2011, 424 p. (In Ukrainian).

      3. Prylutska S. V., Grynyuk I. I., Grebinyk S. M., Matyshevska O. P., Prylutskyy Yu. I., Ritter U., Siegmund C., Scharff P. Comparative study of biological action of fullerenes C60 and carbon nanotubes in thymus cells. Mat.-wiss. u. Werkstofftech. 2009, V. 40, P. 238–241.

      4. Prylutska S. V., Burlaka A. P., Prylutskyy Yu. I., Ritter U., Scharff P. Comparative study of antitumor effect of pristine C60 fullerenes and doxorubicin. Biotechnol. 2011, V. 4, Р. 82–87.

      5. Prylutska S. V. Using of С60 fullerene complexes with antitumor drugs in chemotherapy. Biotechnol. acta. 2014, 7 (3), 9–20.

      6. Prylutska S. V., Didenko G. V., Kichmarenko Yu. M., Kruts O. O., Potebnya G. P., Cherepanov V. V., Prylutskyy Yu. I. Effect of C60 fullerene, doxorubicin and their complex on tumor and normal cells of BALB/c mice. Biotechnol. acta. 2014, 7 (1), 60–65. (In Ukrainian) ttps://

      7. Kanyuk M. I. Ultrafine fluorescent diamonds in nanotechnology. Biotechnol. acta. 2014, 7 (4), 9–24. (In Ukrainian).

      8. Kanyuk М. І. Use of nanodiamonds in biomedicine. Biotechnol. acta. 2015, 8 (2), 9–25.

      9. Kaniuk M. I. Prospects of Curcumin use in Nanobiotechnology. Biotechnol. acta. 2016, 9 (3), P. 23‒36.

      10. Prylutska S. V., Remeniak О. V., Honcharenko Yu. V., Prylutskyy Yu. I. Carbon nanotubes as a new class of materials for nanobiotechnology. Biotechnol. 2009, 2 (2), 55–66. (In Ukrainian).

      11. Prylutska S. V., Remenyak О. V., Burlaka A. P., Prylutskyy Yu. I. Perspective of carbon nanotubes application in cancer therapy. Oncology. 2010, 12 (1), 5–9. (In Ukrainian).

      12. Sagnou M., Benaki D., Triantis C., Tsotakos T., Psycharis V., Raptopoulou C. P., Pirmettis I., Papadopoulos M., Pelecanou M. Curcumin as the OO bidentate ligand in “2+1” complexes with the [M(CO)3]+ (M = Re, 99m Tc) tricarbonyl core for radiodiagnostic applications. Inorg. Chem. 2011, 50 (4), 1295‒1303.

      13. Asti M., Ferrari E., Groci S., Atti G., Rubagotti S., Lori M., Capponi P. C., Zerbini A., Saladini M., Versari A. Synthesis and characterization of 68Ga-labeled curcumin and curcuminoid Complexes as potential radiotracers for imaging of cancer and Alzheimer’s disease. Inorg. Chem. 2014, 53 (10), 4922–4933.

      14. Priyadarsini K. I. The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules. 2014, 19 (12), 20091–20112.

      15. Golub A., Matyshevska O., Prylutska S., Sysoyev V., Ped L., Kudrenko V., Radchenko E., Prylutskyy Yu., Scharff P., Braun T. Fullerenes immobilized at silica surface: topology, structure and bioactivity. J. Mol. Liq. 2003, 105 (2‒3), 141–147.

      16. Moorthi C., Kathiresan K. Curcumin–Piperine/Curcumin–Quercetin/Curcumin – Silibinin dual drug- loaded nanoparticulate combination therapy: A novel approach to target and treat multidrug-resistant cancers. J. Medical Hypotheses and Ideas. 2013, 7 (1), 15–20.

      17. Mullaicharam A. R., Maheswaran A. Pharmacological effects of curcumin. Int. J. Nutr. Pharmacol. Neurol. Dis. 2012, 2 (2), 92–99.

      18. Moghassemi S., Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems. An illustrated review. J. Controlled Release. 2014, V. 185, P. 22–36.

      19. Pitto-Barry A., Barry N. P. E. Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances. Polym. Chem. 2014, V. 5, P. 3291–3297.

      20. Yeo P. L., Lim C. L., Chye S. M., Ling A. P. K., Koh R. Y. Niosomes: a review of their structure, properties, methods of preparation, and medical applications. Asian Biomed. (Res. Rev. News). 2017, 11 (4), 301–14.

      21. Tavano L., Mauro L., Naimo G. D., Bruno L., Picci N., Andò S., Muzzalupo R. Further Evolution of Multifunctional Niosomes Based on Pluronic Surfactant: Dual Active Targeting and Drug Combination Properties. Langmuir. 2016, 32 (35), 8926–8933.

      22. Tavano L., Muzzalupo R., Picci N., Cindio B. Co-encapsulation of antioxidants into niosomal carriers: Gastrointestinal release studies for nutraceutical applications. Colloids and Surfaces B: Biointerfaces. 2014, V. 114C, P. 82–88.

      23. Del Prado-Audelo M L., Rodríguez-Martínez G., Martínez-López V., Ortega-Sánchez C., Velasquillo-Martínez C., Magaña J. J., González-Torres M., Quintanar-Guerrero D., Sánchez-Sánchez R., Leyva-Gómez G. Curcumin-loaded poly- ε-caprolactone nanoparticles show antioxidant and cytoprotective effects in the presence of reactive oxygen species. J. Bioactive and Compatible Polymers. 2020, 35 (3), 270–285.

      24. Mandal S., Banerjee C., Ghosh S., Kuchlyan J., Sarkar N. Modulation of the photophysical properties of curcumin in nonionic surfactant (Tween-20) forming micelles and niosomes: a comparative study of different microenvironments. J. Phys. Chem. B. 2013, 117 (23), 6957–6968.

      25. Pusz J., Wolowiec S. Solid compounds of Ce(III), Pr(III), Nd(III), and Sm(III) ions with chrysin. J. Therm. Anal. Calorim. 2012, V. 110, P. 813–821.

      26. Mathew A. P., Uthaman S., Cho K. H., Cho C. S., Park I. K. Injectable hydrogels for delivering biotherapeutic molecules. Int. J. Biol. Macromol. 2018, V. 110, P. 17‒29.

      27. Xu Y. Q., Chen W. R., Tsosie J. K., Xie X., Li P., Wan J. B., He C. W., Chen M. W. Niosome Encapsulation of Curcumin: Characterization and Cytotoxic Effect on Ovarian Cancer Cells. J. Nanomaterials. 2016, V. 2016, P. 1‒9.

      28. Roy A., Kundu N., Banik D., Sarkar N. Comparative Fluorescence Resonance Energy-Transfer Study inPluronic Triblock Copolymer Micelle and Niosome Composed ofBiological Component Cholesterol: An Investigation of Effect ofCholesterol and Sucrose on the FRET Parameters. J. Phys. Chem. B. 2016, 120 (1), 131−142.

      29. Le T. M. P., Pham V. P., Dang T. M. L., La T. H., Le T. H., Le Q. H. Preparation of curcumin-loaded pluronic F127/chitosan nanoparticles for cancer therapy. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2013, 4 (2), 025001.

      30. Hosniyeh H., Fatemeh A., Rassoul D., Aeyed N. O. Chitosan–Pluronic nanoparticles as oral delivery of anticancer gemcitabine: preparation and in vitro study. Int. J. Nanomed. 2012, V. 7, P. 1851–1863.

      31. Kozlov M. Y., Melik-Nubarov N. S., Batrakova E. V., Kabanov A. V. Relationship between pluronic block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes. Macromolecules. 2000, 33 (9), 3305–3313.

      32. Prados J., Melguizo C., Ortiz R., Vélez C., Alvarez P. J., Arias J. L., Ruíz M. A., Gallardo V., Aranega A. Doxorubicin-loaded nanoparticles: new advances in breast cancer therapy. Anti-cancer Agents Med. Chem. 2012, 12 (9), 1058–70.

      33. Ganguly R., Kunwar A., Dutta B., Kumar S., Barick K., Ballal A., Aswal V., Hassan P. Heat-induced solubilization of curcumin in kinetically stable pluronic P123 micelles and vesicles: An exploit of slow dynamics of the micellar restructuring processes in the aqueous pluronic system. Colloids and surfaces B: Biointerfaces. 2017, V. 152, P. 176–182.

      34. Chiappetta D. A., Sosnik A. Poly (ethylene oxide)–poly (propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. Eur. J. Pharmac. Biopharmac. 2007, 66 (3), 303–317.

      35. Wenzel J. G. W., Balaji K. S. S., Koushik K., Navarre C., Duran S. H., Rahe C. H., Kompella U. B. Pluronic F127 gel formulations of deslorelin and GnRH reduce drug release and effect in cattle. J. Control. Release. 2002, V. 85, P. 51–59.

      36.Verma G., Hassan P. A. Self assembled materials: design strategies and drug delivery perspectives. Cite this: Phys. Chem. Chem. Phys. 2013, V. 15, P. 17016–17028.

      37. Zhang X., Burt H. M., Mangold G., Dexter D., Von Hoff D., Mayer L., Hunter W. L. Anti-tumor efficacy and biodistribution of intravenous polymeric micellar paclitaxel. Anticancer Drugs. 1997, 8 (7), 696–701.

      38. Shin I. G., Kim S. Y., Lee Y. M., Cho C. S., Sung Y. K. Methoxy poly (ethylene glycol)/ϵ-caprolactone amphiphilic block copolymeric micelle containing indomethacin.: I. Preparation and characterization. J. Control. Release. 1998, 51 (1), 1‒11.

      39. Yu B. G., Okano T., Kataoka K., Sardari S., Kwon G. S. In vitro dissociation of antifungal efficacy and toxicity for amphotericin B-loaded poly(ethylene oxide)-block-poly(beta benzyl L aspartate) micelles. J. Control. Release. 1998. 56 (1‒3), 285–291.

      40. Jeong Y. I., Nah J. W., Lee H. C., Kim S. H., Cho C. S. Adriamycin release from flower-type polymeric micelle based on star-block copolymer composed of poly(γ-benzyl l-glutamate) as the hydrophobic part and poly(ethylene oxide) as the hydrophilic part. Int. J. Pharm. 1999, 188 (1), 49–58.

      41. Allen C., Han J., Yu Y., Maysinger D., Eisenberg A. Polycaprolactone–b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone. J. Control. Release. 2000, 63 (3), 275–286.

      42. Yallapu M. M., Bhusetty Nagesh P. K., Jaggi M., Chauhan S. C. Therapeutic Applications of Curcumin Nanoformulations. AAPS J. 2015, 17 (6), 1341–1356.

      43. Selvam P., El-Sherbiny I. M., Smyth H. D. Swellable hydrogel particles for controlled release pulmonary administration using propellant-driven metered dose inhalers. J. Aerosol Med. Pulm. Drug Deliv. 2011, 24 (1), 25–34.

      44. Ye Y., Li Y., Fang F. Upconversion nanoparticles conjugated with curcumin as a photosensitizer to inhibit methicillin-resistant Staphylococcus aureus in lung under near infrared light. Int. J. Nanomedicine. 2014, V. 9, P. 5157–5165.

      45. Pardridge W. M. Blood–brain barrier delivery. Drug Discovery Today. 2007, 12 (1), 54‒61.

      46. Andrieux K., Couvreur P. Nanomedicine as a promising approach for the treatment and diagnosis of brain diseases: the example of Alzheimer's disease. Ann. Pharm. Fr. Elsevier. 2013, 71 (4), 225–233.

      47. Tsai Y. M., Chien C. F., Lin L. C., Tsai T. H. Curcumin and its nano-formulation: the kinetics of tissue distribution and blood–brain barrier penetration. Int. J. Pharmac. 2011, 416 (1), 331–338.

      48. Gravier J., Sancey L., Hirsjärvi S., Rustique E., Passirani C., Benoît J. P., Coll J. L., Texier I. FRET Imaging Approaches for in Vitro and in Vivo Characterization of Synthetic Lipid Nanoparticles. Mol. Pharmac. 2014, 11 (9), 3133–3144.

      49. Charron D. M., Zheng G. Nanomedicine development guided by FRET imaging. Nano Today. 2018, V. 18, P. 124‒136.

      50. Hewlings S. J., Kalman D. S. Curcumin: A Review of Its’ Effects on Human Health. Foods. 2017, 6 (10), 92, 1–11.

      51. Kabeer A., Mailafiya M. M., Danmaigoro A., Rahim E. A., bu Bakar M. Z. A. Therapeutic potential of curcumin against lead-induced toxicity. A review. Biomed. Res. Therapy. 2019, 6 (3), 3053‒3066.

      52. Menon V. P., Sudheer A. R. Antioxidant and anti-inflammatory properties of curcumin. Adv. Exp. Med. Biol. 2007, V. 595, P. 105–125.

      53. Cai W., Zhang B., Duan D., Wu J., Fang J. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells. Toxicol. Appl. Pharmacol. 2012, 262 (3), 341–348.

      54. Lian Y. T., Yang X. F., Wang Z. H., Yang Y., Yang Y., Shu Y. W., Cheng L. X., Liu K. Curcumin serves as a human kv1.3 blocker to inhibit effector memory T lymphocyte activities. Phytother. Res. 2013, 27 (9), 1321–1327.

      55. Kocaadam B., Sanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects onhealth. Crit. Rev. Food Sci. Nutr. 2017, 57 (13), 2889–2895.

      56. Ashrafizadeh M., Zarrabi A., Hashemi F., Zabolian A., Saleki H., Bagherian M., Azami N., Bejandi A. K., Hushmandi K., Ang H. L., Makvandi P., Khan H., Kumar A. P. Polychemotherapy with Curcumin and Doxorubicinvia Biological Nanoplatforms: EnhancingAntitumor Activity. Pharmaceutics. 2020, 12 (11), 1084.

      57. Kunnumakkara A. B., Harsha C., Banik K., Vikkurthi R., Sailo B. L., Bordoloi D., Gupta S. C., Aggarwal B. B. Is curcumin bioavailability a problem in humans: lessons from clinical trials. Expert Opinion on Drug Metabolism & Toxicology. 2019, 15 (9), 705–733.

      58. Marchiani A., Rozzo C., Fadda A., Delogu G., Ruzza P. Curcumin and curcumin-like molecules: Fromspice to drugs. Curr. Med. Chem. 2014, 21 (2), 204–222.

      59. Priyadarsini K. I., Maity D. K., Naik G. H., Kumar M. S., Unnikrishnan M. K., Satav J. G., Mohan H. Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic. Biol. Med. 2003, 35 (5), 475–484.

      60. Kunwar A., Barik A., Mishra B., Rathinasamy K., Pandey R., Priyadarsini K. Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim. Biophys. Acta. 2008, 1780 (4), 673‒679.

      61. Di Martino R. M. C., Bisi A., Rampa A., Gobbi S., Belluti F. Recent progress on curcumin-based therapeutics: a patent review (2012-2016). Part II: curcumin derivatives in cancer and neurodegeneration. Expert Opinion on Therapeutic Patents. 2017, 27 (8), 953–965.

      62. Anand P., Kunnumakkara A. B., Newman R. A., Aggarwal B. B. Bioavailability of curcumin: problems and promises. Mol. Pharm. 2007, 4 (6), 807–818.

      63. Basnet P., Skalko-Basnet N. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules. 2011, 16 (6), 4567–4598.

      64. Gupta S. C., Patchva S., Aggarwal B. B. Therapeutic roles of curcumin: lessons learned from clinical trials. The AAPS J. 2013, 15 (1), 195–218.

      65. Joe B., Vijaykumar M., Lokesh B. R. Biological properties of curcumin-cellular and molecular mechanisms of action. Crit. Rev. Food Sci. Nutr. 2004, 44 (2), 97‒111.

      66. Naik S. R., ThakareV. N., Patil S. R. Protective effect of curcuminon experimentally induced inflammation, hepatotoxicity and cardiotoxicityin rats: Evidence of its antioxidant property. Exp. Toxicol. Pathol. 2011, 63 (5), 419–431.

      67. Gupta S. C., Patchva S., Koh W., Aggarwal B. B. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin. Exp. Pharmacol. Physiol. 2012, 39 (3), 283–299.

      68. Goel A., Aggarwal B. B. Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutr. Cancer. 2010, 62 (7), 919–930.

      69. Fang J., Lu J., Holmgren A. Thioredoxin reductase is irreversibly modified by curcumin: a novel molecular mechanism for its anticancer activity. J. Biol. Chem. 2005, 280 (26), 25284–25290.

      70. Shi L. Y., Zhang L., Li H., Liu T. L., Lai J. C., Wu Z. B., Qin J. Protective effects ofCurcumin on acrolein-induced neurotoxicity in HT22 mousehippocampal cells. Pharmacol. Reports. 2018, 70 (5), 1040–1046.

      71. Mary C. P. V., Vijayakumar S., Shankar R. Metal chelating ability and antioxidant properties of Curcumin-metal complexes ‒ A DFT approach. J. Mol. Graph. Model. 2018, V. 79, P. 1–14.

      72. Imran M., Ullah A., Saeed F., Nadeem M., Arshad M. U., Suleria H. A. R. Cucurmin, anticancer, and antitumor perspectives: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2018, 58 (8), 1271–1293.

      73. Naksuriya O., Okonogi S., Schiffelers R. M., Hennink W. E. Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014, 35 (10), 3365–3383.

      74. Aggarwal B. B., Harikumar K. B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol. 2009, 41 (1), 40–59.

      75. Hatamipour M., Johnston T. P., Sahebkar A. One molecule, many targetsand numerous effects: the pleiotropy of curcumin lies in its chemicalstructure. Curr. Pharm. Des. 2018, 24 (19), 2129–2136.

      76. Perrone D., Ardito F., Giannatempo G., Dioguardi M., Troiano G., Russo L. L., DE Lillo A., Laino L., Muzio L. L. Biological and therapeutic activities, and anticancer properties of curcumin. Exp. Ther. Med. 2015, 10 (5), 1615–1623.

      77. Sa G., Das T. Sa G.,Das T.Anti cancer effects of curcumin: cycle of life and death. Cell Division. 2008, 3 (14).

      78. Rattis B. A. C., Ramos S. G., Celes M. R. N. Curcumin as a Potential Treatment for COVID-19. Front. Pharmacol. 2021, P. 12.

      79. Di Martino R. M. C., Luppi B., Bisi A., Gobbi S., Rampa A., Abruzzo A., Belluti F. Recent progress on curcumin-based therapeutics: a patent review (2012‒2016). Part I: Curcumin. Expert Opinion on Therapeutic Patents. 2017, 27 (5), 579–590.

      80. Panahi Y., Alishiri G. H., Parvin S., Sahebkar A. Mitigation of systemic oxidative stress by curcuminoids in osteoarthritis: Results of a randomized controlled trial.J. Diet. Suppl. 2016, 13 (2), 209–220.

      81. Shoba G., Joy D., Joseph T., Majeed M., Rajendran R., Srinivas P. S. Influence of piperine on the pharmacokinetics of curcumin inanimals and human volunteers. Planta Med. 1998, 64 (4), 353–356. PMID: 9619120.

      82. Attia Y. M., El-Kersh D. M., Ammar R. A., Adel A., Khalil A., Walid H., Eskander K., Hamdy M., Reda N., Mohsen N. E., Al-Toukhy G. M., Mansour M. T., Elmazar M. M. Inhibition of aldehyde dehydrogenase-1 and p-glycoprotein-mediated multidrug resistance by curcumin and vitamin D3 increases sensitivity to paclitaxel in breast cancer. Chemico-Biological Interactions. 2020, V. 315, P. 108865.

      83. Priyadarsini K. I. The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules. 2014, 19 (12), 20091–20112.

      84. Hussain A., Somyajit K., Banik B., Banerjee S., Nagaraju G., Chakravarthy A. R. Enhancing the photocytotoxic potential of curcumin on terpyridyl-lanthanide(III) complex formation. Dalton Trans. 2013, 42 (1), 182–195.

      85. Zhou S. S., Xue X., Wang J. F., Dong Y., Jiang B., Wei D., Wan M. L., Jia Y. Synthesis, optical properties and biological imaging of the rare earth complexes with curcumin and pyridine. J. Mater. Chem. 2012, 22 (42), 22774–22780.

      86. Song Y. M., Xu J. P., Ding L., Hou Q., Liu J. W., Zhu Z. L. Syntheses, characterisation and biological activities of rare earth metal complexes with curcumin and 1,10-phenanthroline-5,6-dione. J. Inorg. Biochem. 2009, 103 (3), 396–400.

      87. Cheng L., Hsu C. H., Lin J. K., Hsu M. M., Ho Y. F., Shen T. S., Ko J. Y., Lin J. T., Lin B. R., Wu M. S., Yu H. S., Jee S. H., Chen G. S., Chen T. M., Chen C. A., Lai M. K., Pu Y. S., Pan M. H., Wang Y. J., Tsai C. C., Hsieh C. Y. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001, 21 (4B), 2895–2900.

      88. Mohammed F., Rashid-Doubell F., Taha S., Cassidy S., Fredericks S. Effects of curcumin complexes on MDA‑MB‑231 breast cancer cell proliferation. Int. J. Oncol. 2020, 57 (2), 445–455.

      89. Mourmoura E., Vial G., Laillet B., Rigaudiere J. P., Hininger-Favier I., Dubouchaud H., Morio B., Demaison L. Preserved endothelium-dependent dilatation of the coronary microvasculature at the early phase of diabetes mellitus despite the increased oxidative stress and depressed cardiac mechanical function ex vivo. Cardiovasc Diabetology. 2013, 12 (49), 1169–1186.

      90. Rebillard A., Lefeuvre-Orfila L., Gueritat J., Cillard J. Prostate cancer and physical activity: Adaptive response to oxidative stress. Free Radic. Biol. Med.. 2013, V. 60, P. 115–124.

      91. Edwards R. L., Luis P. B., Varuzza P. V., Joseph A. I., Presley S. H., Chaturvedi R., Schneider C. The anti-inflammatory activity of curcumin is mediated by its oxidative metabolites. J. Biol. Chem. 2017, 292 (52), 21243–21252.

      92. Larasati Y. A., Yoneda-Kato N., Nakamae I., Yokoyama T., Meiyanto E., Kato J. Curcumin targets multiple enzymes involved in the ROS metabolic pathway to suppress tumor cell growth. Sci. Rep. 2018, 8 (2039).

      93. Hua C., Kai K., Bi W., Shi W., Liu Y., Zhang D. Curcumin Induces Oxidative Stress in Botrytis cinerea, Resulting in a Reduction in Gray Mold Decay in Kiwifruit. J. Agric. Food Chem. 2019, 67 (28), 7968–7976.

      94. Ellis E. M. Reactive carbonyls and oxidative stress: Potential for therapeutic intervention. Pharmacol. Ther. 2007, 115 (1), 13–24.

      95. Rajamanickam V., Yan T., Wu L., Zhao Y., Xu X., Zhu H., Chen X., Wang M., Liu Z., Liu Z., Liang G., Wang Y. Allylated Curcumin Analog CA6 Inhibits TrxR1 and Leads to ROS-Dependent Apoptotic Cell Death in Gastric Cancer Through Akt-FoxO3a. Cancer Manag. Res. 2020, V. 12, P. 247–263.

      96. Priyadarsini K. I. Photophysics, photochemistry and photobiology of curcumin: Studies from organic solutions, bio-mimetics and living cells. J. Photochem. Photobiol. C: Photochem. Rev. 2009, 10 (2), 81–95.

      97. Patra D., El Khoury E., Ahmadieh D., Darwish S., Tafech R. M. Effect of Curcumin on Liposome: Curcumin as a Molecular Probe for Monitoring Interaction of Ionic Liquids with 1, 2‐Dipalmitoyl‐sn‐Glycero‐3‐Phosphocholine Liposome. Photochem. Photobiol. 2012, 88 (2), 317–327.

      98. Chainoglou E., Hadjipavlou-Litina D. Curcumin analogues and derivatives with anti-proliferative and anti-inflammatory activity: Structural characteristics and molecular targets. Expert Opin. Drug Discov. 2019, 14 (8), 821–842.

      99. Sahebkar A., Serban M. C., Ursoniu S., Banach M. Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials. J. Funct. Foods. 2015, V. 18 B, P. 898–909.

      100. Badria F. A., Ibrahim A. S., Badria A. F., Elmarakby A. A. Curcumin Attenuates Iron Accumulation andOxidative Stress in the Liver and Spleen ofChronic Iron-Overloaded Rats. PLoS ONE. 2015, 10 (7), e0134156.1–13.

      101. Yuan J., Liu W., Zhu H., Zhang X., Feng Y., Chen Y., FengH., Lin J. Curcumin attenuates blood-brain barrier disruption after subarachnoid hemorrhage in mice. J. Surg. Res. 2017, 207 (30), 85‒91.


Additional menu

Site search

Site navigation


Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
for information: