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General approaches to the mathematical 
modeling of immune processes

Recent results in areas such as molecular 
biology, human genetics, clinical and 
experimental immunology have helped to 
understand the leading role of immune 
defense mechanisms in the pathogenesis of 
infectious diseases. In particular, fundamental 
knowledge has been obtained in clinical 
immunology that reflects the patterns of 
the immune system response to infectious 
diseases [1–3]. An important milestone was 
the discovery of the universal nature of the 
processes of immune defense, namely the 
recognition, learning and memory. And the 
development and improvement of computer 
technology has contributed to the creation of 
appropriate mathematical models [4–9].

Currently, the immunological research 
developed a significantly deeper knowledge 

about the structural characteristics of 
the immune system, the regulation of the 
activity of its individual components, which 
function as a holistic distributed system. 
Mathematical modeling is an analytical tool 
for describing, analyzing and predicting 
the dynamics of immune responses under a 
reductionist approach. Building mathematical 
models of the human immune system that 
reflect the obtained understanding of its 
structure and describe the processes that 
determine it functionally is an urgent task 
for modern systemic immunology and its 
new interdisciplinary field, mathematical 
immunology. Grebennikov et al. [10] 
emphasize the need for systematic development 
of multiscale mathematical models that 
describe the development of immune responses 
at different detailization: intracellular 
regulation of the components of immune 
system activity, population dynamics of cells 
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in organs and systemic immunophysiological 
processes in the whole organism.

The mathematical modeling of infectious 
diseases is one of the important areas of 
implementation of mathematical methods 
in immunology and medicine. This area of 
research emerged about 40 years ago and is 
evolving through the efforts of different 
groups of researchers from different countries. 
Significant progress has been made in research 
of the process of anti-infective immunity, 
which is still the subject of comprehensive 
theoretical studies [11–13]. The work of Hege 
and Cole is considered to be one of the first 
works in the field of modeling of immune 
processes [14]. The authors proposed an 
equation describing the change in the number 
of circulating antibodies depending on the 
number of plasma cells. Cohen in his works 
[15,16] proposed the concept of activation and 
suppression signals to describe the switching 
and paralysis of the immune process.

Notably, two different approaches to the 
mathematical description of the immune 
defense process have been formed. One of them 
is based on the assumption of the leading role 
of antigen and is a mathematical formulation 
of Burnet’s clone selection theory. The other is 
based on Erne’s hypothesis, i.e. the principle 
of network regulation of interactions between 
different populations of immune system cells 
and viral antigen. Hereafter, we consider an 
approach1 based on Burnet’s clone selection 
theory because Erne’s theory exists today only 
as a hypothesis, although there are a number 
of publications related to the mathematical 
modeling of that theory.

Mathematical modeling of Burnet’s clone 
selection theory

The first most detailed study of the 
mathematical description of clone selection 
was made by the American researcher Bell. In 
his work, Bell [17] using the main hypotheses 
of Burnet’s clone selection theory has built a 
mathematical model of the humoral immune 
response to a non-reproducing monovalent 
antigen. He has further modified the model 
for the case of heterogeneous antibodies and 
multivalent antigen [18, 19], and in [20] 
has proposed the simplest model of immune 
response to reproducing antigen, in which the 
interaction between antigen and antibody was 
described in terms of “predator-victim”.

Pimbley has studied the behavior of Bell’s 
model [21–23]. Pimbley has considered not 
only the two-dimensional but also the three-

dimensional model with the inclusion of plasma 
cells and proved the existence of stable periodic 
solutions in each of these variants.

Smirnova and Stepanova [24–26] have also 
considered modeling the immune response. 
Their models were based on Sekarts-Koons’s 
hypothesis. Immunocompetent cells were 
thought to transform into lymphoblasts after 
first contact with the antigen. Several times 
upon repeated contact with the antigen, the 
dividing cells are transformed into plasma 
cells, which in turn produce antibodies. If 
there is no repeated contact, they become 
memory cells.

Sekarts-Koons’s hypothesis became 
the basis for studies by Jilek [27–29], who 
analyzed in detail the interaction of antigen 
with lymphocytes. He proposed a number of 
probabilistic models for different cell types 
that repeatedly contacted with a specific 
antigen.

Mohler in his works [30–32] continued 
and generalized the ideas that were the basis 
of Bell’s model. In [30], he has considered 
the case of the production of two classes 
of antibodies Ig M and Ig G. “Switching” 
antibody synthesis occurs over a period of time 
that depends on the antigen’s concentration 
in the body. The concentration of these cells 
is the initial condition in the simulation of 
second response. Mohler investigates T- and 
B-systems of immunity and the principles of 
their cooperation in the process of antibody 
formation. The author also considers a model 
that reflects the course of the immune process 
in various organs and systems of the body: in 
the blood, lymph nodes, spleen. This model 
is a combination of bilinear schemes, each of 
which reflects the dynamics of the process 
components in the corresponding organ.

Italian scientists Bruni, Giovenco, Koch, 
and Strom have proposed a model of humoral 
response [33, 34] describing the heterogeneity 
of the immunocyte population using the 
continuous functions of the two arguments of 
affinity and time. This model is a system of five 
integral-differential equations that describe 
the dynamics of B-immunocytes, B-plasma 
cells, antibodies, the immune complex, and the 
nonproliferating antigen. It is assumed that 
B-immunocytes are generated, and the rate 
of their generation depends on the affinity 
distribution of cellular receptors. The immune 
system in these models was considered from the 
standpoint of the theory of bilinear systems. 
A series of works is devoted to modeling the 
immune response to a reproducing antigen, 
i.e. the response against bacteria, viruses 
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and tumors. The immune response against 
bacteria was studied in [35–41]. The case of 
cellular immune response against tumors was 
considered in [42–44].

The basic principles of mathematical 
modeling of the immune response and in-
fectious diseases were formulated by Mar-
chuk in building a basic model of infectious 
disease in 1975. The dynamics of populations 
of viruses, plasma cells and antibodies, and the 
characteristics of the degree of damage to the 
target organ were considered in this model, 
based on a system of nonlinear differential 
equations with delay. The main task of this 
model was to describe the disease as a physical 
process of interaction of cells and molecules 
of the immune system, target organ and 
pathogen. By the time the basic model of 
infectious disease emerged, mathematical 
models of the immune response have already 
been developed [4, 14, 17, 20, 27].

However, the model proposed by Mar chuk 
has a number of features that distinguish 
it from others and allow it to be used in 
theoretical studies of the immune system. 
First, Burnet’s clone selection theory, which 
still retains the importance of a fundamental 
element of modern immunology, was used as 
the basic mechanism of the immune response. 
Second, the introduction into the model of a 
variable m (a quantity that describes the degree 
of damage to the target organ) transforms the 
model of the immune response into a model of 
infectious disease.

Thirdly, the model uses delayed equations, 
allowing a more accurate description of the 
dynamics of the immune response. Finally, 
a function m was introduced into the model 
that reflects a decrease in the intensity of the 
immune response due to significant damage to 
the target organ. The mathematical model of 
Marchuk-Petrov [45] describes the dynamics 
of viral damage and immune response by 
a more complete system of differential 
equations, taking into account in the form of 
delays in the duration of cell division of the 
immune system. The monograph [46] presents 
models of experimental viral infections and 
mathematical models of viral hepatitis.

In the works of Asachenkov [47, 48], 
Belykh [49, 50], Romanyukha [51–53], and 
Bocharov [54–56], the basic model was used to 
study the most general laws of the dynamics of 
immune defense, as well as to analyze various 
variants of viral and bacterial infections, 
including mechanisms of infectious diseases 
in the chronic state, treatment of chronic 
forms of infections, study of the severity of 

viral hepatitis to variations in the parameters 
of the virus in the body, optimal management 
of infections [57–59]. Although the model 
equations describe the development of a 
humoral immune response in infectious 
diseases, the principles of constructing the 
basic model equations reflect a universal 
approach to modeling infectious diseases. This 
allowed us to successfully use both the model 
itself and its modifications for the analysis of 
various infections (influenza, viral hepatitis, 
pneumonia, chronic bronchitis, bronchial 
asthma, tuberculosis, mixed infections, etc.).

A number of studies describe the 
development of HIV in the human body 
[60–64]. The effect of antigenic load on the 
aging of the immune system was also studied 
[52, 65]. Antigenic load is understood as the 
total flow of molecules of biological nature, 
which enter the lymphatic tissue and cause 
immune response processes. To describe the 
dynamics of aging of the immune defense, a 
mathematical model of age-related changes 
in the properties of peripheral T-lymphocytes 
[66], and the models presented in [53] were 
used. As a result of modeling the estimation 
of severity of a course of pneumonia for 
various age categories is received. In [67], 
the immune system is presented as a complex 
dynamic and multilevel biological system 
that protects organisms from pathogen 
invasion and tumor development, and plays 
an active role in tissue homeostasis and organ 
regeneration. In [68], a mathematical model 
describing the antiviral immune response 
is considered, taking into account the 
interacting regulatory effects of the immune 
and neuroendocrine systems, and is based 
on the description of the manifestations of 
these effects [69–73]. The model takes into 
account the spatial organization of immune 
and infectious processes in various organs 
and tissues, for which the delay time of the 
interaction of components is introduced. The 
model consists of a system of 18 ordinary 
differential equations with a delayed 
argument; system parameters characterize 
the speed of various processes that affect 
the dynamics of infection. Chirkov’s works 
are also notable [74, 75], stating that the 
correct formulation and solution of the 
problem of immune response management 
can significantly affect the correct choice 
of treatment, as well as the theoretical 
studies of the immune response. That is 
why Rusakov and Chirkov [76, 77] set the 
task of controlling the immune response in 
conditions of uncertainty.
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Mai, Wang et al. [78] considered the 
prediction of treatment outcomes using 
mathematical models of the immune response 
to infection. They have revealed a fundamental 
limit to the accuracy of predicting results for 
a general class of mathematical models of the 
immune response to infection. It is noted that 
the accuracy of the forecast can be improved in 
the case of a slow forecast. Several systems of 
ordinary differential equations that simulate 
the host’s immune response to pathogen load 
have been studied. The observed advantage of 
such systems of equations to study the immune 
response to infection is the ability to collect 
data on a large number of “virtual patients”, 
each with a given set of parameters, and 
obtain many time points during the course of 
infection. It is noted that the combination of 
forecasting results with the treatment regimen 
is another important approach.

Kuznetsov and Shishkin [79–82] have 
summarized the data on the proliferation and 
differentiation of Th, Tc and B-lymphocytes 
in the form of mathematical models that 
give a holistic and detailed description of the 
processes of immune response, which allows 
to study the patterns of immune system and 
simulate the development of complex diseases 
to study their pathogenesis and etiology. The 
mechanisms of rubella, a complex autoimmune 
disease, were studied using the developed 
mathematical model and software.

Quiruette et al. [83] have considered the 
influence of diffusion and advection on the 
kinetics and localization of infection. The 
mathematical model in this study presents 
human airway as a one-dimensional pathway 
where stationary cells interact with the 
influenza virus. A platform is proposed to 
study the localization and spread of respiratory 
viral infections within the human respiratory 
tract. However, the paper does not take into 
account the complex structure of airways, 
which, according to Weibel’s model [84], are 
dichotomously divided and divided into 23 
generations.

A number of works primarily related to the 
names of Bocharov and Grebennikov [85–92] 
are also of note on modeling viral infection and 
the dynamics of viral response. 

Eftimie, Gillard, Cantrell [93] have 
reviewed chosen areas of research in the field 
of mathematical immunology, which have 
developed recently, based on current advances 
in genetics, biochemistry and experimental 
and clinical immunology. A significant number 
of mathematical models have been developed in 
recent decades. The review is well structured. 

To emphasize the complex, multiscale 
dynamics of the immune response, the study 
used a step-by-step approach to discuss a 
number of models obtained to study the 
dynamics of both innate and adaptive immune 
responses at the molecular, cellular, and tissue 
levels. The mathematical tools used to study 
these models were also discussed, as well as 
some future trends and prospects for both 
experimental and mathematical immunology. 
Beauchemin, Handel [94] have presented an 
overview of mathematical models of influenza 
A in the host organism or cell structure.

There are now developments in the 
mathematical modeling of coronavirus 
infection [95], which are based on the clinical 
characteristics of patients affected by SARS-
CoV-2 [96–99]. The model was tested on 
well-studied influenza viruses and then 
compared the pathogenesis of two viruses. The 
interaction between congenital and adaptive 
host immune responses has been found to 
be a potential cause of more severe course 
and mortality in patients with COVID-19, in 
particular the time mismatch between the 
two immune responses has a major impact on 
disease progression. The authors suggest that 
temporarily suppressing the adaptive immune 
response and preventing its effects on innate 
immunity may allow innate immunity to get 
neutrolize of the virus more effectively.

Integrated mathematical model 
of the functional system of respiration, 

blood circulation, thermoregulation 
and immune protection

A simulation model [100] considered an 
infectious disease, the course of which is 
controlled by the immune system, as one of 
the types of disturbances in the circulatory 
system. To study the dynamics of infectious 
disease and the impact of the circulatory 
system on this process we used a mathematical 
model of the functional respiratory system 
(FRS) of the body [101–104] in combination 
with the immune response model [11], which 
allowed to investigate the role of systemic 
circulation when simulating the course of an 
infectious disease [105, 106]. This approach 
is justified also because the reliability of 
the body depends on the reliability of its 
respiratory and circulatory systems [72–75]. 
This approach was further developed into an 
integrated mathematical model simulating the 
course of infectious disease and compensation 
of obtained hypoxic conditions through 
pharmacological correction [111–113].
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The aim of this work was to study the 
dependence of the course of an infectious 
disease on the volume velocity of the systemic 
circulation on a complex mathematical model 
of immune protection. 

The mathematical model of immunity in 
general can be written as follows:

Let V be the number of antigens, m the 
relative characteristic of the damaged organ, 
F — the concentration of antigens, С — the 
concentrations of plasma cells. Then the 
dynamics of the immunodeficiency process, 
according to [105] can be formulated as:

and the criterion of self-organization

where fk(m(), V()) is the function that 
characterizes the degree of virus damage to 
the target organ of k-tissue reservoir, 4 is 
the coefficient grading the influence of the 
type of disease being simulated on the level 

of gas homeostasis, where Gti
O2(), Gti

CO2(), 
Gti

N2() are flows of oxygen, carbon dioxide 
and nitrogen through the capillary tissue 
membranes of i tissue at  time, qti

O2(), 
qti

CO2() are rates of oxygen utilization and 
removal of carbon dioxide from i tissue,  
coefficients characterize the vital importance 
of the body, and  coefficients characterize 
the  sensitivity of the body to hypoxia, 
hypercapnia and excess nitrogen [101, 102, 
114–116]. Fig. 1 presents a general view 
of a complex mathematical model of the 
relationship and interaction of functional 
systems of the body to simulate the course of 
an infectious disease.

Analysis of the results of computational 
experiments to study the role 

of blood circulation 
in infectious diseases of the body

The mathematical model of immunity was 
studied to determine the response of the main 
parameters of the immune system depending 
on changes in ,  parameters of the model, 
etc.  It was assumed that at the initial moment 
of time t0 : V(t0) = 0.001, m(t0) = 0, F(t0) = 1, 
(t0) = 1. It was also found that the behavior 
of the model is quite stable with respect to 
its main parameters. A series of experiments 
was performed to study the effect of blood 
circulation through the capillaries of the 
target organ tissues on the course of infectious 
disease in the body. Fig. 2–5 present the results 
of computational experiments reflecting the 
behavior of the basic parameters of the immune 
system m, V, C, F, obtained by simulating the 
processes under different conditions of blood 

Fig 1. Complex mathematical model of functional systems of an organism
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supply to the target organ. This was ensured 
by setting the value nk, the degree of change in 
tissue circulation relative to the “norm” (nk = 
Qtk

/Q0
tk

).
It was determined that the transients in 

the parameters of the model of the immune 
system are faster, and the maximum levels 
of these parameters decrease with increasing 

blood circulation through the capillaries 
of the tissues of the target organ (Fig. 6, 
7). Graphical dependences for m, V, C, F 
(Fig. 6–9) were obtained analyzing the 
results of computational experiments under 
given initial conditions for the model of the 
immune system and different levels of blood 
circulation through the capillaries of the target 

Fig. 2. Dynamics of m(t) (relative characteristics 
of the affected organ) under different 

conditions of blood circulation in the capillaries 
of the target organ: 

1 — nk = 0.5; 2 — nk = 0.9; 3 — nk = 1; 4 — nk = 1.5

Fig. 5. Dynamics of C(t) (concentrations of plasma 
cells) under the different blood circulatory 

conditions in capillaries of the target organ: 
1 — nk = 0.5; 2 — nk = 0.9; 3 — nk = 1; 4 — nk = 1.5

Fig. 3. Dynamics of   (concentration of pathogenic 
antigens) under different circulatory conditions in 

the capillaries of the target organ:
1 — nk = 0.5; 2 — nk = 0.9; 3 — nk = 1; 4 — nk = 1.5

Fig. 4. Dynamics of  (concentration of antibodies) 
under different conditions of blood circulation in 

the capillaries of the target organ:
1 — nk = 0.5; 2 — nk = 0.9; 3 — nk = 1; 4 — nk = 1.5
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organ tissues. The experiments assumed that 
the multiplication factor of antigen (), the 
coefficient determining the probability of 
neutralization of antigen by antibody (y), the 
stimulation factor of the immune system (a), 
the rate of antibody production by plasma 
cells (), the values c, f are time of inverse 
lifespan of plasma cells and antibodies, the rate 
of damage to the target organ () and the rate 
of recovery of the mass of the affected organ 
(m) clearly depend on the degree of change in 

blood circulation through the capillaries of the 
tissues of the target organ. Based on studies 
of the biochemistry of processes occurring in 
the infected body, Pogozhev has proposed the 
following relations for the parameters of the 
body’s immune status model [117]:

Fig. 6. The nature of the change in V 
(concentration of pathogenic antigens) depending 
on the blood circulation through the capillaries of 
the target organ under given initial conditions for 

the development of infectious disease

Fig. 7. The nature of the change in m (relative 
characteristics of the affected organ) depending 

on the blood circulation through the capillaries of 
the target organ under given initial conditions for 

the development of infectious disease

Fig. 8. The nature of the change in F (antibody 
concentration) depending on blood circulation 

through the capillaries of the target organ under 
given initial conditions for the development of 

infectious disease

Fig. 9. The nature of the change in C 
(concentration of plasma cells) depending on 

blood circulation through the capillaries of the 
target organ under given initial conditions for the 

development of infectious disease

V

C

nk

m

nk

nk

nk

F
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The number of antibodies required to 
neutralize one virus was assumed to be 10. 
It was assumed that  does not depend on nk. 
Time tc of the formation of the cascade of 
plasma cells was determined by the formula:

where tc = 0.5 day. 
Continuous non-increasing function (m), 

0 m, which characterizes the degree of 
disruption of the normal functioning of the 
immune system due to significant damage to 
the target organ, was given following [118]:

where m* is the the level of damage to the 
target organ, at which the activity of the 
immune system begins to decline.

Thus the approaches to mathematical 
modeling of immune processes are analyzed. 
A complex mathematical model of the human 
body is presented, which in particular includes 
a mathematical model of immune defense based 
on a mathematical description of Burnet’s 
clone selection theory in the form of a system 
of nonlinear differential equations with delay, 
in which the population dynamics of viruses, 
plasma cells, antibodies and target organ’s 
damage characteristics are considered.

The main task of this model was to consider 
the description of the disease as a physical 
process of interaction of cells and molecules 

of the immune system, the target organ and 
pathogen under study. The dependence of 
the course of an infectious disease on the 
volume velocity of the systemic circulation 
was investigated using complex mathematical 
model, which includes mathematical models 
of the functional system of respiration 
and blood circulation, immune response 
thermoregulation, and erythropoiesis.

We analyzed the dynamics of the main 
parameters that characterize the course of 
infectious disease and that are obtained in 
computational experiments with the immune 
model under different circulatory conditions 
in the capillaries of the target organ. It was 
revealed that the immune system is quite 
sensitive to changes in blood circulation 
through tissue capillaries and therefore 
organ circulation can be considered control 
parameters in the model. The results of 
computational experiments show that at low 
levels of viral damage to the target organ, 
complete and rapid recovery can be provided 
by a corresponding change in the circulatory 
system in the body.

The study was funded under the theme 
“To develop mathematical models of the 
integration organisms of functional systems 
for a body and methods of integration of their 
mathematical models to maintain the reliability 
and safety of human life in extreme conditions” 
(State registration — 0115U002573), 2015-
2017. Research work 170.10). The authors 
declare no conflict of interests.
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Метою роботи було розробити математичну 
модель для дослідження гіпоксичних станів 
за імітації інфекційного ураження організму. 
Модель засновано на методах математичного 
моделювання і теорії оптимального управлін-
ня рухомими об’єктами. Для імітації процесу 
ураження організму було застосовано матема-
тичну модель імунного відгуку, розроблену 
Г. І. Марчук і учнями його наукової школи, 
адаптовану до сучасних умов. Ця модель базу-
ється на теорії відбору клонів Барнета про ви-
значальну роль антигену. Наведено результа-
ти моделювання з використанням такої моде-
лі. Залежність перебігу інфекції від об’ємної 
швидкості системного кровотоку аналізується 
на комплексній математичній моделі імунного 
відгуку, системи дихання і кровообігу. Пока-
зано, що імунна система дуже чутлива до змін 
кровотоку в капілярах. Таким чином, потоки 
крові в органах можна використовувати як 
параметри моделі, за допомогою якої реалі-
зується взаємодія системи дихання, імунного 
відгуку і кровообігу.

Ключові слова: математична модель імунного 
відгуку, функціональна система дихання, 
імітація перебігу інфекційного захворювання, 
інтегрована математична модель, взаємодія 
функціональних систем організму.
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Целью работы была разработка матема-
тической модели для исследования гипокси-
ческих состояний при имитации инфекцион-
ного поражения организма. Модель основана 
на методах математического моделирования 
и теории оптимального управления движу-
щимися объектами. Для имитации процесса 
поражения организма использовалась ма-
тематическая модель моделью иммунного 
отклика, разработанной Г. И. Марчуком и 
учениками его научной школы, адаптиро-
ванная к современным условиям. Эта модель 
базируется на теории отбора клонов Барнета 
об определяющей роли антигена. Приведены 
результаты моделирования с использованием 
такой модели. Зависимость течения инфек-
ции от объемной скорости системного крово-
тока анализируется на комплексной матема-
тической модели иммунного отклика, систе-
мы дыхания и кровообращения. Показано, 
что иммунная система весьма чувствительна 
к изменениям кровотока по капиллярам. Та-
ким образом, потоки крови в органах можно 
использовать в качестве параметров модели, 
с помощью которой реализуется взаимодей-
ствие системы дыхания, иммунного отклика 
и кровообращения.

Ключевые слова: математическая модель 
иммунного отклика, функциональная система 
дыхания, имитация течения инфекционного 
заболевания, интегрированная математиче-
ская модель, взаимодействие функциональ-
ных систем организма.




